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In the paper, we introduce a differential equations model of paddy ecosystems in the fallow season to study the effect of weeds
removal from the paddy fields. We found that there is an unstable equilibrium of the extinction of weeds and herbivores in the
system. When the intensity of weeds removal meets certain conditions and the intrinsic growth rate of herbivores is higher than
their excretion rate, there is a coexistence equilibrium state in the system. By linearizing the system and using the Routh–Hurwitz
criterion, we obtained the local asymptotically stable conditions of the coexistence equilibrium state. ,e critical value formula of
the Hopf bifurcation is presented too. ,e model demonstrates that weeds removal from paddy fields could largely reduce the
weeds biomass in the equilibrium state, but it also decreases the herbivore biomass, which probably reduces the content of
inorganic fertilizer in the soil. We found a particular intensity of weeds removal that could result in the minimum content of
inorganic fertilizer, suggesting weeds removal should be kept away from this intensity.

1. Introduction

Paddy field fertility is the premise of high quality, high yield,
and low energy consumption of rice. ,e method of in-
creasing rice yield by applying a large amount of chemical
fertilizers and pesticides has threatened the sustainable
development of grain and the ecological security. ,erefore,
how to use biodiversity in paddy ecosystems to improve the
stability and sustainability of agricultural systems has been
attracting more and more attention [1–3].

,ere are many factors affecting the fertility of a paddy
ecosystem, such as soil nutrient availability, light, moisture,
weeds, insects, microorganisms, and so on. Not only the
number of these factors is big but also the relations among
them are complicated. In addition, there are many human
disturbances in a paddy ecosystem. Because of these
problems, the current research focuses on the experiments
and data analyses of paddy ecosystems but rarely on the
dynamics of the systems by establishing mathematical
models. For example, through experiments, it is found that
putting ducks in rice fields could improve soil fertility,

control weeds, and reduce rice diseases [4–7]. Our interest is
in using models of differential equations to study the
complex nonlinear relationships in paddy ecosystems. For
the forest and aquatic ecosystems, some matured mathe-
matical models have been established [8–26]. For example,
Hofmann and Ambler developed a system consisting of ten
coupled ordinary differential equations to describe the in-
teractions among nitrate, ammonium, two phytoplankton
size components, five copepods, and a debris pool on the
continental shelf outside the southeastern United States [13].
For an aquatic ecosystem, it is very important to explore the
reproductive mechanism of phytoplankton. Because peri-
odic solutions in mathematics can represent reproduction,
many scholars have studied the existences of periodic so-
lutions, almost periodic solutions, and Hopf bifurcations of
some aquatic ecosystems [8, 10, 12, 14, 17–19, 27], and some
scholars have studied the effect of time delay on nutrient
metabolism kinetics [17].

In recent years, we have established some mathematical
models of paddy ecosystems from different aspects [28–32].
We built a differential equations model of a paddy ecosystem
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in fallow season in [28], and studied the interaction between
weeds and soil nutrient availability with the discovery of the
existence of the stable node, unstable saddle point, or saddle-
node in the system. Xiang et al. found that adding the factor
of domesticated animals in a paddy ecosystem in the fallow
season could improve the level of nutrient availability in the
soil [29], and some new features such as a Hopf bifurcation
appear in the system.

In addition to farming animals in paddy fields, weeds
removal is also a common activity of farmland management.
Farmers gather weeds from paddy fields to reduce the
consumption of soil nutrients and to feed animals too.
Removing weeds from the paddy fields has some un-
avoidable impacts on the paddy ecosystem. We are inter-
ested in how the factors in a paddy ecosystem are affected by
this activity and what principles should be followed to
measure it. ,e main purpose of this paper is to analyze the
effect of weeds removal in a paddy ecosystem in the fallow
season by establishing a differential equations model and
find a strategy of weeds removal.

,e rest of the paper is organized as follows. In the next
section, the mathematical model of the paddy ecosystem
with weeds removal is introduced. We present the condi-
tions of existence of equilibria in Section 3. ,en, we
consider the stability of equilibria in Section 4. In Section 5,
we analyze the effect of weeds removal on the main factors in
the paddy ecosystem. We study the Hopf bifurcation from
the coexistence equilibrium in Section 6. Some numerical
simulations are carried out in Section 7. Finally, we give our
conclusion.

2. Modeling of the Paddy Ecosystem in the
Fallow Season with Weeds Removal

We only consider the effect of weeds removal on three main
components of a paddy ecosystem in fallow season: weeds,
inorganic fertilizer, and herbivores. ,ere is an obvious
nutrient-dependent consumption ring among the three:
weeds are used as food for farmed animals in paddy fields,
weeds are nourished by the effective nutrients in the soil, and
the effective nutrients can be transformed from animal
manure. In [29], Xiang et al. proposed the following dif-
ferential equation model of a paddy ecosystem in the fallow
season to analyze the interactions among the three main
components:

_p(t) � f(I)H(u)p − h(p)A − d1p,

_u(t) � − f(I)H(u)p +(1 − r)h(p)A + d1p + d2A,

_A(t) � bA 1 −
A

K
  + rh(p)A − d2A,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where p(t) is the weeds biomass per unit area at time t, u(t)

is the inorganic fertilizer content per unit area, and A(t) is
the herbivore biomass per unit area. ,e function f(I) �

(fmI/(Ik + I)) is a light effect function. ,e function

H(u) � (au/(m + u)) is used as Michaelis–Menten uptake
kinetics of the general form, where m is the half saturation
concentration of inorganic fertilizer and a is the maximum
uptake rate of inorganic fertilizer u. ,e function

h(p) � c 1 − e
− λp

 , (2)

is the rate of grazing weeds per herbivore, where c is the
maximum rate of grazing weeds by a herbivore and λ is a
constant affecting the grazing rate. ,e three terms on the
right of the first equation in system (1), respectively, rep-
resent the growth of weeds, the herbivore grazing, and the
natural mortality of weeds, which the first term f(I)H(u)p

shows the weeds growth is affected by the light intensity I

and the inorganic fertilizer u, d1 is the mortality rate of
weeds. ,ere are four terms on the right hand side of the
second equation in system (1), the first term is the con-
sumption of inorganic fertilizer by the growth of weeds, the
second term represents the inorganic fertilizer converted
from someweeds that have been wasted by the herbivore, the
third term is the inorganic fertilizers transformed from dead
weeds, and the last term is herbivore excrements. ,e three
terms on the right hand side of the last equation in system (1)
represent in turn the growth of herbivore, the herbivore
assimilating of weeds and herbivore excretion, where b is the
intrinsic growth rate of herbivore and K is the largest en-
vironmental capacity of herbivore, r is the assimilating ratio
of herbivore, and d2 is the excretion rate of herbivore.

To consider the effect of weeds removal from the paddy
fields, we introduce the weeds removal term d0p into the first
equation of the model (1),

_p(t) � f(I)H(u)p − h(p)A − d0p − d1p,

_u(t) � − f(I)H(u)p +(1 − r)h(p)A + d1p + d2A,

_A(t) � bA 1 −
A

K
  + rh(p)A − d2A.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

,e third term d0p on the right of the first equation
represents the rate of artificial weeds removal and d0 is called
the weeds removal intensity.

To reduce the system parameters, we make the following
transformations, p � (p/K), u � (u/K), A � (A/K),
m � (m/K), a � f(I)a, and λ � λK. System (3) thereby is in
the following form:

_p(t) � H(u)p − h(p)A − d0p − d1p,

_u(t) � − H(u)p +(1 − r)h(p)A + d1p + d2A,

_A(t) � bA(1 − A) + rh(p)A − d2A.

⎧⎪⎪⎨

⎪⎪⎩
(4)

In system (4), we have removed the bar above some
variables or parameters. Note that the parameter a in the
function H(u) represents both the light effect and the uptake
rate of inorganic fertilizer. Here, we call the parameter a the
coupling effect coefficient of light and fertilizer.

In the sense of ecology, the parameters in system (4) are
nonnegative, and 0< r< 1, d1 > 0, and d2 > 0. ,e properties
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of paddy ecosystem without weeds removal have been
studied in [29], so we only consider the case d0 > 0.

3. The Existence of Equilibria

Denote the three expressions on the right hand side of
system (4) by

F1(p, u, A) � H(u)p − h(p)A − d0p − d1p,

F2(p, u, A) � − H(u)p +(1 − r)h(p)A + d1p + d2A,

F3(p, u, A) � bA(1 − A) + rh(p)A − d2A.

(5)

In order to obtain the equilibrium states, we need to solve
the nonlinear equations Fi(p, u, A) � 0 (i � 1, 2, 3). Accord-
ingly, we have F1(p, u, A) + F2(p, u, A) + F3(p, u, A) � 0, or

d0p � bA(1 − A). (6)

From (6), we know 0≤A≤ 1.
According to F3(p,u,A) � A(b(1 − A) + rh(p) − d2) � 0,

we have A � 0 or b(1 − A) � d2 − rh(p).
If A � 0, then F1(p, u, A) � (H(u) − d0 − d1)p � 0 and

F2(p, u, A) � (− H(u) + d1)p � 0; thereby, we obtain that
p � 0. Hence, there exists one equilibrium of system (4) as
follows:

p1, u1, A1(  � 0, u1, 0( , (7)

where u1 is an arbitrary nonnegative real constant.
If equation b(1 − A) � d2 − rh(p) holds, we have the

following:

h(p) �
d2 − b + bA

r
. (8)

Define

d(A) �
1
r

d2 − b + bA( , (9)

where A ∈ [0, 1]. Obviously, d(A) � h(p). From h(p)≥ 0,
we know that d(A)≥ 0 when A ∈ [0, 1], so we have
A≥ 1 − (d2/b) � A∗. Synthesizing (2) and (8), we obtain the
following:

e
− λp

� 1 −
d(A)

c
> 0. (10)

,us, we have d(A)< c. It follows that

A< 1 −
d2

b
+

rc

b
. (11)

Denote A∗ � min 1, 1 − (d2/b  + (rc/b)}. Notice that
0≤A≤ 1, we have the following:

max 0, A∗ ≤A<A
∗
. (12)

,erefore, if the variable A locates in the above range,
then we get

p � −
1
λ
ln 1 −

d(A)

c
 . (13)

Substituting p into (6) yields

d0 ln 1 −
d(A)

c
  � − λbA(1 − A). (14)

Formula (14) is regarded as an equation of an unknown
quantity A. For the existence of the roots of equation (14), we
give the following Lemma 1.

Lemma 1. If b> d2, then, equation (14) has at least one
positive root A2 ∈ (A∗, A∗).

Proof. From b>d2 we know A∗ > 0. Define

φ(A) � λbA(1 − A) + d0 ln 1 −
d(A)

c
 . (15)

It is continuous in the intervals [A∗, A∗). Obviously, the
value of the function φ(A) at A � A∗ is

φ A∗(  � λd2 1 −
d2

b
 . (16)

If rc> d2, then A∗ � 1, and we have the following:

φ A
∗

(  � d0 ln 1 −
d2

rc
 < 0. (17)

If rc≤d2, then A∗ � 1 − (d2/b) + (rc/b), and we have the
following:

lim
A⟶A∗ − 0

φ(A) � λ 1 −
d2

b
+

rc

b
  d2 − rc( 

+ d0 lim
A⟶A∗− 0

ln 1 −
d2 − b + bA

rc
  � − ∞.

(18)

,us, the function φ(A) must have a zero point
A2 ∈ (A∗, A∗). ,erefore, equation (14) has at least one
positive root A2 ∈ (A∗, A∗).

We make the following hypothesis on the positive root
A2,

(H1). a>d0 + d1 + d0d(A2)/(b(1 − A2)).

Substituting A � A2 into (6) yields

p2 �
b

d0
A2 1 − A2( . (19)

By substituting A � A2 and p � p2 into F1(p, u, A) � 0,
we get

H(u) �
au

m + u
� d0 + d1 +

A2h p2( 

p2

� d0 + d1 +
A2d A2( 

p2
.

(20)

,en, we obtain

u �
m b 1 − A2(  d0 + d1(  + d0d A2( ( 

b 1 − A2(  a − d0 − d1(  − d0d A2( 
Δ u2. (21)
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Notice that d(A)> 0 for A ∈ [A∗, A∗), it follows that the
numerator of u2 is positive. Denote the denominator of u2 by

g A2(  � b 1 − A2(  a − d0 − d1(  − d0d A2( . (22)

Obviously, if the assumption (H1) holds, then the
denominator

g A2(  � b 1 − A2(  a − d0 − d1 −
d0d A2( 

b 1 − A2( 
 > 0. (23)

,erefore, we deduce that u2 > 0.
Based on the above analysis, we obtain the following

conclusions about the existence of equilibria in system (4). □

Theorem 1. System (4) has weeds and herbivore extinction
equilibrium (p1, u1, A1) � (0, u1, 0). If conditions b>d2, and
(H1) hold, there also exists at least one positive equilibrium
Ep � (p2, u2, A2), where u1 is an arbitrary nonegative real
constant, A2 is one positive root of equation (14), and p2 and
u2 are given in (19) and (21), respectively.

,e biological significance of condition b>d2 in Lemma
1 and ,eorem 1 is that the intrinsic growth rate b of
herbivore should be greater than its excretion rate d2. ,e
use of hypothesis (H1) is to ensure that u2 is positive. Re-
garding hypothesis (H1), let us make a further explanation.
If we set

A
∗∗

� 1 −
d0d2

b r a − d0 − d1(  + d0( 
, (24)

then hypothesis (H1) is equivalent to

a>d0 + d1,

A2 <A
∗∗

.
(25)

Obvousily, A∗∗ >A∗. But the relationship between A∗∗

and A∗ is complex. If d2 ≤ rc, then A∗ � 1>A∗∗. If d2 > rc,
then A∗ � 1 − (d2/b) + (rc/b). Furthermore, if
d0 > (a − d1)/(1 + c/(d2 − rc)), then we have A∗ >A∗∗.
Otherwise, A∗ ≤A∗∗. ,erefore, if conditions

d2 > rc,

d0 ≤
a − d1

1 + c/ d2 − rc( 
,

(26)

hold, then we may not need a hypothesis (H1).,at is to say,
(H1) should be assumed only if d2 ≤ rc or d2 > rc and
d0 > (a − d1)/(1 + c/(d2 − rc)).

Generally speaking, in order to ensure the normal
growth of herbivore, its excretion rate d2 should not be
greater than its assimilation rate rc of weeds (that is d2 ≤ rc).
,e case of “d2 > rc” may appear in the period when the
herbivore is sick. ,erefore, under normal circumstances,
condition (H1) is necessary to ensure the existence of
positive equilibrium.

4. The Stability of Equilibria

Now, let us discuss the stabilities of equilibrium (p∗, u∗, A∗)

of system (4). With a coordinate transformation x � p − p∗,
y � u − u∗, z � A − A∗, system (4) is converted to

_x(t) � − d0 + d1( x(t) + H y + u
∗

(  x + p
∗

(  − H u
∗

( p
∗

  − h x + p
∗

(  z + A
∗

(  − h p
∗

( A
∗

 ,

_y(t) � d1x(t) + d2z(t) − H y + u
∗

(  x + p
∗

(  − H u
∗

( p
∗

  +(1 − r) h x + p
∗

(  z + A
∗

(  − h p
∗

( A
∗

 ,

_z(t) � b − 2bA
∗

− d2( z − bz
2

+ r h x + p
∗

(  z + A
∗

(  − h p
∗

( A
∗

 .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

,e linearized system of (27) at the equilibrium (0, 0, 0)

is as follows:

_x(t) � H u
∗

(  − h′ p
∗

( A
∗

− d0 − d1 x + p
∗
H′ u
∗

( y − h p
∗

( z,

_y(t) � d1 − H u
∗

(  +(1 − r)h′ p
∗

( A
∗

 x − p
∗
H′ u
∗

( y + d2 +(1 − r)h p
∗

(  z,

_z(t) � rh′ p
∗

( A
∗
x + b − 2bA

∗
+ rh p

∗
(  − d2( z,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

where H′(u) � (am/(m + u)2), and h′(p) � cλe− λp.
,e stability of the equilibrium (p1, u1, A1) � (0, u1, 0)

of system (4) is presented in ,eorem 2.

Theorem 2. 2e equilibrium (p1, u1, A1) � (0, u1, 0) of
system (4) is unstable.

Proof. For the equilibrium (p1, u1, A1) � (0, u1, 0), we have
h(p1) � h(0) � 0 and h′(p1) � h′(0) � cλ, so the linearized
system (28) becomes as follows:

_x(t) � H u
∗

(  − d0 − d1 x,

_y(t) � d1 − H u
∗

(  x + d2z,

_z(t) � b − d2( z.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)
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Its solution under initial condition (x(0), y(0), z(0)) is
as follows:

x(t) � x(0)e
H u∗( )− d0− d1( )t

,

z(t) � z(0)e
b− d2( )t

,

y(t) �
x(0) d1 − H u

∗
( ( 

H u
∗

(  − d0 − d1
e

H u∗( )− d0− d1( )t

+
z(0)d2

b − d2
e

b− d2( )t
+ y(0).

(30)

It shows that the equilibrium (0, 0, 0) of system (29) is
unstable. ,erefore, the equilibrium (p1, u1, A1) � (0, u1, 0)

of system (4) is also unstable.
Next, we discuss the stability of the positive equilibrium

Ep. For convenience, we introduce the following symbols to
express the coefficients of system (28),

a11 � H u2(  − A2h′ p2(  − d0 − d1,

a12 � p2H′ u2( ,

a21 � − H u2(  +(1 − r)A2h′ p2(  + d1,

a23 � d2 +(1 − r)h p2( ,

a31 � rA2h′ p2( ,

a33 � b − 2bA2 + rh p2(  − d2,

a13 � − h p2( ,

a22 � − a12.

(31)

Obviously, a21 � − a11 − a31 − d0. At the positive equi-
librium Ep, we have b(1 − A2) � d2 − rh(p2) and
h(p2) � d(A2). ,us, we obtain the following:

a13 � − d A2( ,

a23 � d A2(  + b 1 − A2( ,

a33 � − bA2.

(32)

Considering the following facts:

H′ u2(  �
am

m + u2( 
2 > 0,

h′ p2(  � cλe
− λp2 � λ c − d A2( ( > 0,

(33)

it is easy to see that a12 and a31 are all positive. As for the
positive and negative properties of a11 and a21, we have the
following conclusions. □

Lemma 2. At the coexistence equilibrium Ep, a11 > 0 and
a21 < 0.

Proof. Let

D0 A2( ≜d A2(  − λp2 c − d A2( ( . (34)

From in (13), we have

D0 A2(  � d A2(  + c − d A2( ( ln 1 −
d A2( 

c
 

� c − d A2( ( 
d A2( 

c − d A2( 
+ ln 1 −

d A2( 

c
  .

(35)

Notice that c> d(A2), we get the following result by
Lemma 2.1 in [29].

− ln 1 −
d A2( 

c
 <

d A2( /c
1 − d A2( /c

�
d A2( 

c − d A2( 
. (36)

It follows that D0(A2)> 0.
From F1(p2, u2, A2) � H(u2)p2 − A2h(p2) − (d0 + d1)

p2 � 0, h(p2) � d(A2), we have

H u2(  − d0 − d1 �
A2d A2( 

p2
. (37)

,erefore,

a11 �
A2d A2( 

p2
− A2h′ p2(  �

A2

p2
d A2(  − p2h′ p2( ( .

(38)

Substituting (33) into the expression of a11 yields

a11 �
A2D0 A2( 

p2
. (39)

,erefore, a11 > 0.
From (31) and (33), we obtain that

a21 � − a11 + d0(  − a31

� − a11 + d0(  − rA2h′ p2( 

� − a11 + d0(  − rλ c − d A2( ( < 0.

(40)

We introduce the following notations:

a1 � a12 − a11 + bA2,

a2 � bA2 a12 − a11(  + a12d0 + a31 d A2(  + a12( ,

a3 � a12d0bA2 + a12a31b 2A2 − 1( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

and define a quadratic function

J(A) � − 2bλA
2

+ λ 2rc − 2d2 + 3b( A + d0 − λ rc − d2 + b( .

(42)

It is easy to verify that limA⟶±∞J(A) � − ∞.
If rc> d2, then

J A
∗

(  � J(1) � λ rc − d2(  + d0 > 0, (43)

otherwise

J A
∗

(  � J 1 −
d2

b
+

rc

b
  � d0 > 0. (44)

,erefore, the quadratic equation J(A) � 0 has two real
roots A− <A∗ and A+ >A∗.
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According to the properties of polynomial J(A), we can
determine whether a3 defined in (41) is a positive number. □

Lemma 3. If A2 >A− , then a3 > 0. Otherwise, if A2 <A− ,
then a3 < 0.

Proof. According to the definition of a31 in (31), by
replacing h′(p2) with (33), we get the following:

a3 � a12b d0A2 + rA2h′ p2(  2A2 − 1(  

� a12bA2 d0 + rλ c − d A2( (  2A2 − 1(  

� a12bA2 d0 + λ rc − d2 + b − bA2(  2A2 − 1(  

� a12bA2 − 2bλA
2
2 + λ 2rc − 2d2 + 3b( A2 + d0

− λ rc − d2 + b(  � a12bA2J A2( .

(45)

Notice that the following facts hold: J(A∗)> 0; the
highest power coefficient of quadratic polynomial J(A) is a
negative number; A− and A+ are two real roots of equation
J(A) � 0; and A2 <A∗ <A+. ,erefore, when A ∈ (A− , A+),
we get J(A)> 0, and when A<A− or A>A+, we get
J(A)< 0.

,us, considering that A2 <A∗ <A+, if A2 >A− ; then, we
have J(A2)> 0, implying a3 > 0. Otherwise, if A2 <A− , then
J(A2)< 0, implying a3 < 0.

Next, we give some conclusions on the stability of the
positive equilibrium Ep. □

Theorem 3

(i) Suppose that a2 > 0 and a1a2 > a3. If A2 >A− holds,
then the positive equilibrium (p2, u2, A2) is locally
asymptotically stable.

(ii) If A2 <A− , then, the positive equilibrium (p2, u2, A2)

is unstable.

Proof. For the coexistence equilibrium Ep � (p2, u2, A2),
the characteristic equation of the linearized system (28) is as
follows:

Δ(λ) �

λ − a11 − a12 d A2( 

a11 + a31 + d0 λ + a12 − d A2(  − b 1 − A2( 

− a31 0 λ + bA2





� 0.

(46)

Expanding the determinant, we get the following:

Δ(λ) � λ3 + a12 − a11 + bA2( λ2

+ a31 d A2(  + a12(  + a12d0 + bA2 a12 − a11(  λ

+ a12d0bA2 + a12a31b 2A2 − 1( 

� λ3 + a1λ
2

+ a2λ + a3 � 0.

(47)

(i) If A2 >A− holds, then we know a3 > 0 from Lemma
3. ,us we have a1 > 0 from the assumptions a2 > 0
and a1a2 > a3. ,erefore, using the Routh–Hurwitz

criterion, the positive equilibrium Ep is locally as-
ymptotically stable.

(ii) If A2 <A− , then a3 < 0 from Lemma 3. Hence, the
characteristic equation (47) has at least one positive
real root. ,erefore, the positive equilibrium
(p2, u2, A2) is unstable.

From (41), if a12 > a11, then a2 > 0, and

a1a2 − a3 � bA2 a12 − a11( 
2

+ b
2
A

2
2 + a31 d + a12(  + a12d0  a12 − a11( 

+ bA2da31 + ba12a31 1 − A2( > 0.

(48)

We have the following corollary. □

Corollary 1. Suppose that A2 >A− holds. If a12 > a11, then,
the positive equilibrium Ep is locally asymptotically stable.

5. Effects of Weeds Removal and Other
Environmental Parameters on Main
Factors in Paddy Fields

From ,eorem 1, the coexistence equilibrium state
(p2, u2, A2) exists when b>d2 and (H1) hold, where A2 is
one of the solutions of equation (14), and p2 and u2 are
computed in (19), (21), respectively.

From (14), we obtain the following:
dd0

dA
� − λb

(1 − 2A)ln(1 − d(A)/c) + b/(rc)(A(1 − A)/(1 − d(A)/c))

ln2(1 − d(A)/c)
.

(49)

If (1/2)≤A≤ 1, then (dd0/dA)< 0. Otherwise, by
Lemma 2.1 in [29], we have the following:
dd0

dA
< − λb

(2A − 1)(d(A)/(c − d(A))) +(b/r)(A(1 − A)/(c − d(A)))

ln2(1 − d(A)/c)

� − λb
bA

2
− 2 b − d2( A + b − d2

r(c − d(A))ln2(1 − d(A)/c)
.

(50)

Under the condition b> d2, the discriminant of the
quadratic function bA2 − 2(b − d2)A + b − d2 is as follows:

− 2 b − d2( ( 
2

− 4b b − d2(  � − 4d2 b − d2( < 0. (51)

Hence, bA2 − 2(b − d2)A + b − d2 > 0. It gives that
(dd0/dA)< 0. ,us, we get the following:

dA

dd0
< 0. (52)

In the coexistence equilibrium state, p2 can still be
calculated by (13). It is not difficult to obtain that

dp2

dd0
�

b

λr(c − d(A))

dA

dd0
< 0. (53)

,erefore, the biomass of herbivores and weeds de-
creases monotonously with the increase of the intensity of
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weeds removal. Obviously, the result that weeds biomass p2
decreases monotonously with the increase of weeds removal
intensity d0 is consistent with the conventional under-
standing, but interestingly, it has nothing to do with the
coupling effect coefficient a of light and fertilizer, the
mortality rate d1 of weeds, and the half saturation con-
centration m of inorganic fertilizer.

,e expression (21) of the inorganic fertilizer content u2
can also be written as follows:

u2 �
m d0 + d1 + d0d A2( / b 1 − A2( ( ( ( 

a − d0 + d1 + d0d A2( / b 1 − A2( ( ( ( 
. (54)

Notice that the herbivores biomass A2 is independent of
parameters a, m, and d1, hence u2 is proportional to the half
saturation concentration m of inorganic fertilizer. If the
efficiency of photosynthesis of weeds or absorbing inorganic
fertilizers increases (increases a), the content of inorganic
fertilizer at a steady state will decrease. If the mortality rate
d1 of weeds is increasing, the content of inorganic fertilizer
could be increasing. However, the relationships between
inorganic fertilizer biomass and other parameters are not so
simple. We only consider the relationship between u2 and
d0. Because A2 is affected by the parameter d0, we denote
d0 + (d0d(A2)/(b(1 − A2))) by w(d0), that is,

w d0(  � d0 1 −
1
r

  +
d0d2

rb 1 − A2( 
, (55)

where d0 ≥ 0. ,us, the inorganic fertilizer content u2 can be
rewritten as follows:

u2 �
m d1 + w d0( ( 

a − d1 + w d0( ( 
. (56)

It is easy to obtain that

du2

dd0
�

ma

a − d1 − w d0( ( 
2
dw

dd0
, (57)

dw

dd0
� 1 −

1
r

+
d2

rb 1 − A2( 
+

d0d2

rb 1 − A2( 
2
dA2

dd0
. (58)

Because A2 >A∗ � 1 − (d2/b), we have the following:

1 −
1
r

+
d2

rb 1 − A2( 
> 0. (59)

,erefore, w(d0) consists of two parts, one part increases
with the increase of d0 and the other part related to A2
decreases with the increase of d0. Hence, there must be a
unique d0 such that (dw/dd0) � 0. From this equation, we
have the following:

dA2

dd0
� −

1 − A2(  d2 − (1 − r)b 1 − A2(  

d0d2
. (60)

From (14) and (49), we get the following:

dd0

dA2
� −

d0

λr 1 − A2(  c − d A2( (
d0 − λr 1 − 2A2(  c − d A2( (  .

(61)

Multiplying (60) and (61), we obtain the following:

d0 � λr c − d A2( (  1 − 2A2(  +
d2λr c − d A2( ( 

d2 − (1 − r)b 1 − A2( 
.

(62)

By solving simultaneous equations (14) and (62), we
obtain the unique d∗0 that satisfies (dw/dd0) � 0.

Notice that

d2w
dd

2
0

�
ma d2 − (1 − r)b 1 − A2( 

2
 

rb 1 − A2( 
2

a − d1 − w d0( ( 
2 > 0, (63)

so (d2w/dd2
0)|d0�d∗0
> 0. ,us the parameter value d∗0 is a

minimum point of w(d0). Furthermore, from (57), it is easy
to know that the nondifferentiable points of u2 (such that
a − d1 − w(d0) � 0) are not extreme points. ,erefore, the
weeds removal intensity d∗0 minimizes the inorganic fer-
tilizer content u2. ,is shows that with the increase of pa-
rameter d0, the content of inorganic fertilizer u2 first has a
downward trend, then when d0 � d∗0 , u2 reaches the min-
imum, and then u2 will show an upward trend.

6. Hopf Bifurcation

In this section, taking m as the Hopf bifurcation parameter,
we consider the existence of a Hopf bifurcation of system (4)
at the coexistence equilibrium Ep. We always assume that
the positive equilibrium Ep exists and A2 >A− holds.

From equation (14) for determining A2 and expression
(19) for calculating p2, we know that A2 and p2 in equilibrium
(p2, u2, A2) are independent of the half saturation concen-
tration m of inorganic fertilizer, but u2 is related to m. We still
find that the root A− of equation (42) is also independent of
m. According to (31), we can see that the parameters a12, a21,
and a22 are also related to m, while a13, a23, a31, and a33 are
not related to m. From (39), we can see that the parameter a11
is not related to m either. From (41), the coefficients of the
characteristic equation (47) depend on the parameter m. Let
us set a1 � a1(m), a2 � a2(m) and a3 � a3(m).

Lemma 3 tells us the constant term a3 of the charac-
teristic polynomial Δ(λ) is positive under the assumption
A2 >A− . ,erefore, a Hopf bifurcation takes place when the
real part of a pair of conjugate complex eigenvalues changes
sign.

We define a function

L(m) � a1(m) a2(m) − a3(m), (64)

and give the following lemma [33].

Lemma 4. If there exists a critical value m0 of a parameter m

such that a2(m0)> 0, L(m0) � 0 and L′(m0)≠ 0, then system
(4) undergoes a Hopf bifurcation at Ep when m passes m0.

According to Lemma 4, we can know that the Hopf
bifurcation critical value m0 of the parameter m is the real
root of equation L(m) � 0 which satisfies the conditions
L′(m0)≠ 0 and a2(m0)> 0.
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Because a3 > 0 and L(m0) � 0, the condition a2(m0)> 0
is equivalent to a1(m0) � a12(m0) − a11 + bA2 > 0.

From (21), we get the following:

m + u2 � m +
m b 1 − A2(  d0 + d1(  + d0d A2( ( 

b 1 − A2(  a − d0 − d1(  − d0d A2( 

�
mab 1 − A2( 

g A2( 
.

(65)

Substituting (65) into (33), by (31) we obtain the
following:

a12 � p2
amg

2
A2( 

mab 1 − A2( ( 
2 �

A2g
2

A2( 

mabd0 1 − A2( 
. (66)

It shows that a12 is related to m. From (41), we have the
following:

L(m) � a12 − a11 + bA2(  a31 d A2(  + a12(  + a12d0 + bA2 a12 − a11(  

− a12d0bA2 − a12a31b 2A2 − 1( 

� a12 − a11 + bA2(  a31 + d0 + bA2( a12 + a31d A2(  − a11bA2 

− d0bA2 + a31b 2A2 − 1(  a12

� a31 + d0 + bA2( a
2
12

+ b
2
A
2
2 − 2a11bA2 + a31 d A2(  − a11 + b − bA2(  − a11d0 a12

+ bA2 − a11(  a31d A2(  − a11bA2( .

(67)

,erefore, the condition L(m0) � 0 can be rewritten as
follows:

a31 + d0 + bA2( a
2
12 + b

2
A
2
2 − 2a11bA2 + a31 d A2(  − a11(

+ b − bA2 − a11d0

− a12 + bA2 − a11(  a31d A2( (

− a11bA2 � 0.

(68)

Of all the parameters of the equation (68), only a12 is
related to the bifurcation parameter m. ,erefore, by cal-
culating a12 from equation (68), the bifurcation parameter m

can be determined by (66).
In addition, from (31), (39), and (66), we obtain that

L′(m) � 2 a31 + d0 + bA2( a12 + b
2
A
2
2 − 2a11bA2 + a31 d A2(  − a11 + b − bA2(  − a11d0 a12′(m)

� − 2 a31 + d0 + bA2( a12 + b
2
A
2
2 − 2a11bA2 + a31 d A2(  − a11 + b − bA2(  − a11d0  ×

A2g
2

A2( 

m
2
abd0 1 − A2( 

.

(69)

Notice that g(A2)> 0, the condition L′(m0)≠ 0 can be
replaced by the following condition:

a12 ≠ −
b
2
A

2
2 − 2a11bA2 + a31 d A2(  − a11 + b − bA2(  − a11d0

2 a31 + d0 + bA2( 
.

(70)

According to Lemma 4, we can get the existence of a
Hopf bifurcation of system (4).

Theorem 4. Suppose that conditions (H1), b> d2 and
A2 >A− hold. If equation (68) has a positive real root a12
satisfying (70) and a12 > a11 − bA2, then system (4) undergoes
a Hopf bifurcation at Ep when m passes m0, where

m0 �
A2g

2
A2( 

aba12d0 1 − A2( 
. (71)

Hence, once a12 is obtained from equation (68), we can
calculate the critical value m0 with (71), which is obtained by
(66).

According to the conditions of ,eorem 4, we sum-
marize the process of calculating the critical value m0 of the
Hopf bifurcation as follows:

(1) If the condition b>d2 holds, then A2 is obtained by
solving equation (14) and p2 is calculated by (19). If
the condition (H1) is validated, then system (4) has a
positive equilibrium Ep.

(2) Find the root A− of the quadratic equation (42) and
verify the assumption A2 >A− .

(3) Calculate a11 with (39) and a31 with (31).
(4) Solve the quadratic equation (68). If there is a

positive real root, then we obtain the parameter a12.
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(5) Verify the conditions (70) and a12 > a11 − bA2. If one
of them is not valid, the critical value m0 can not be
calculated.

(6) Calculate the critical value m0 with (71).

Remark 1. If the quadratic equation (68) has two positive
real roots for a12, and both of them satisfy all the conditions
of ,eorem 4, then there are two Hopf bifurcations at the
positive equilibrium point Ep.

7. An Example

In system (4), take a set of simulation parameters a � 40,
c � 6, r � 0.5, λ � 6, d0 � 0.3, d1 � 0.2, and d2 � 0.7. We
consider two cases of parameter b � 1 and b � 4.4, which
satisfy the condition b> d2.

By the process of calculating the critical value m0 of a
Hopf bifurcation in Section 6, we obtain the calculation
results of the Hopf bifurcation, which are listed in Table 1.
From the line of condi1 in the table and a � 40, it follows that
hypothesis (H1) holds, so there is a positive equilibrium
point in system (4) by ,eorem 1. It is easy to see from the
second and seventh rows of Table 1 that A2 >A− . From the
second line to the fourth line counted backward in the table,
we obtain a12 > a11 − bA2 and a12 ≠ cond i2. ,erefore, the
conditions in ,eorem 4 are all satisfied.

From Table 1, we see that the critical value
m0 ≈ 0.020224 when parameter b � 1. ,erefore, system (4)
undergoes a Hopf bifurcation at Ep when m passes
m0 ≈ 0.020224. If we let m � 0.02<m0 ≈ 0.020224, system
(4) has a positive equilibrium Ep ≈ (0.0433, 0.0774, 0.9868).
From (41), we get a1 ≈ 0.7533, a2 ≈ 69.7690> 0, and
a3 ≈ 49.8515. Hence, a1a2 − a3 ≈ 2.7039> 0. According to
,eorem 3, the positive equilibrium
Ep ≈ (0.0433, 0.0774, 0.9868) is locally asymptotically stable
(see Figure 1). ,erefore, if m passes m0 ≈ 0.020224 from
0.02, then the positive equilibrium Ep loses its stability, and
system (4) has a periodic solution (see Figure 2, where
m � 0.021).

When the parameter b � 4.4, from Table 1, we still know
that system (4) has two critical values of the Hopf bifurcation
m0 ≈ 0.024358 or m0 ≈ 4.318921. ,erefore, system (4)
undergos a Hopf bifurcation at Ep when m passes
m0 ≈ 0.024358. It also undergoes the other Hopf bifurcation
when m passes m0 ≈ 4.318921. If we let
m � 0.02<m0 ≈ 0.024358, system (4) has a positive equi-
librium Ep ≈ (0.0433, 0.0813, 0.9970). From (41), we get
a1 ≈ 3.8315, a2 ≈ 64.3037> 0, and a3 ≈ 208.7775. ,us, we
have a1a2 − a3 ≈ 37.6027> 0. ,erefore, according to ,e-
orem 3, the positive equilibrium
Ep ≈ (0.0433, 0.0813, 0.9970) is locally asymptotically stable,
which means there exists a periodic solution of system (4)
when m>m0 ≈ 0.024358. If we let
m � 4.32>m0 ≈ 4.318921, system (4) has a positive equi-
librium Ep ≈ (0.0433, 17.5696, 0.9970). From (41), we get
a1 ≈ 0.4710, a2 ≈ 2.0527> 0, and a3 ≈ 0.9666.,en, we have
a1a2 − a3 ≈ 1.9931 × 10− 4 > 0. ,erefore, according to
,eorem 3, the positive equilibrium

Ep ≈ (0.0433, 17.5696, 0.9970) is locally asymptotically
stable, implying that there exists a periodic solution of
system (4) when m<m0 ≈ 4.318921.

Table 1: ,e calculation results of the Hopf bifurcation.

Items b � 1 b � 4.4
A2 0.9868 0.9970
p2 0.0433 0.0433
cond i1

(1) 31.7831 32.1058
A− 0.4911 0.4945
a11 3.8907 3.9316
a31 13.6962 13.8371
a12

(2) 3.6166 0.0156, 2.7721
a11 − bA2 2.9038 − 0.4553
cond i2

(3) 1.4071 1.3939
m0 0.020224 4.318921, 0.024358
(1)cond i1 � d0 + d1 + (d0d(A2)/(b(1 − A2))).

(2)a12 is the positive real
roots of equation (68). (3)condi2 is the right side of (70).
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Figure 1: ,e phase diagram of u − A of system (4) with a � 40,
c � 6, λ � 6, r � 0.5, b � 1, d0 � 0.3, d1 � 0.2, d2 � 0.7 and
m � 0.02. It describes the asymptotic stability of the equilibrium
(0.0433, 0.0774, 0.9868).
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Figure 2: ,e phase diagram of u − A of system (4) with a � 40,
c � 6, λ � 6, r � 0.5, b � 1, d0 � 0.3, d1 � 0.2, d2 � 0.7, and
m � 0.021. It describes the instability of the positive equilibrium
and indicates a positive periodic solution exists in the system (4).
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Combining the above calculation results when b � 4.4,
we see that when the parameter m passes through the critical
values 0.024358 and 4.318921 from left to right, the positive
equilibrium of system (4) undergoes a process of change
from stability to instability and then to stability. Figure 3
depicts the relationship between the maximum real part of
the eigenvalue of the characteristic equation (47) with b �

4.4 and the parameter m. It can be seen from Figure 3 that
the maximum real part of the eigenvalue is positive in the
interval [0.024358, 4.318921], indicating that system (4) is
unstable in this range, while the maximum real part of the
system outside the interval is negative, which indicates that
system (4) is stable in this range. ,is is consistent with our
calculation in the above.

8. Conclusion

By establishing a differential equation model of paddy
ecosystem in the fallow season with weeds removal and
analyzing its stability and Hopf bifurcation, we found the
interaction among weeds, inorganic fertilizer, and herbi-
vores in this system.

In a paddy ecosystem in the fallow season, because of the
human management activities of weeds removal and animal
farming, the extinction of weeds and herbivores may occur.
However, the extinction state of weeds and herbivores is
unstable. From (30), we know that as long as the growth rate
of herbivores is higher than their excretion rate, the ex-
tinction of herbivores in paddy fields can be avoided.

Furthermore, when b>d2, if the coupling effect coeffi-
cient of light and fertilizer a is higher than the sum of weeds
removal intensity d0, weeds mortality d1 , and
(d0d(A2)/(b(1 − A2))) (assumption (H1)), the coexistence
equilibrium Ep can be found in the system.

Our results are obtained under the condition of d0 > 0.
When weeds are not removed, i.e., d0 � 0, the situation is

relatively simple. Xiang et al. has considered the case of d0 �

0 in [29]. ,ey obtained that p2 and u2 as follows:

p2 � −
1
λ
ln 1 −

d2

rc
 ,

u2 �
m rp2d1 + d2( 

rp2 a − d1(  − d2
.

(72)

Obviously, they need conditions rc> d2 and
p2 >d2/(r(a − d1)). In ,eorem 1, we replaced their con-
dition p2 >d2/(r(a − d1)) with (H1) and deleted condition
rc> d2. ,us, our results include the case of rc≤ d2. Because
conditions (H1) and (25) are equivalent, from (25), we know
that the intensity of weeds removal d0 should not be too high
(d0 < a − d1).

By using the Routh–Hurwitz criterion, we obtain the
conditions for local asymptotic stability of the positive
equilibrium Ep, in which the condition A2 >A− is used to
guarantee the coefficient a3 > 0. If d0 � 0, then we have A2 �

1 from (6), so the coefficient a3 � a12a31b> 0 is natural. So
there is no requirement for the lower bound of A2 in
,eorem 2.5 for the local stability of positive equilibrium in
[29]. However, if weeds removal is considered in the system,
then whether a3 is positive or negative is affected by the value
A2. From (41), we see that A2 should not be too small,
otherwise a3 will be negative. ,is is why we propose the
condition A2 >A− in ,eorem 3.

When the coefficients ai of cubic characteristic poly-
nomial (47) are positive, the Hopf bifurcation may be
generated when a1a2 � a3. According to this principle, we
obtain the Hopf bifurcation conditions of system (4) at the
positive equilibrium Ep, and give the Hopf bifurcation
critical value formula (71) with m being the bifurcation
parameter. ,e half saturation concentration of inorganic
fertilizer is a key parameter in Michaelis–Menten uptake
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Figure 3:,e relationship curve between the maximum real part of the eigenvalue of the characteristic equation (47) and parameter m with
a � 40, c � 6, λ � 6, r � 0.5, b � 4.4, d0 � 0.3, d1 � 0.2 and d2 � 0.7.
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kinetics, which is affected by species of weeds. A Hopf bi-
furcation appears at a positive equilibrium Ep when the
parameter m passes through the critical value m0, which
indicates that different kinds of weeds in paddy field may
lead to different dynamic properties of the paddy ecosystem.
It is necessary to know the half saturation concentration of
inorganic fertilizer for each weeds, so as to grasp the stability
of the paddy ecosystem in advance. From our numerical
simulation results, the paddy ecosystem with high half
saturation concentration of weeds is more prone to Hopf
bifurcation.

From the analysis in Section 5, we also see that weeds
removal can reduce the biomass of weeds in an equilibrium
state. However, this activity also reduces the biomass of
herbivores in paddy fields. If the intensity of weeds removal
is d∗0 , the soil inorganic fertilizer content is the lowest. ,e
weeds removal intensity is too small to achieve the purpose
of weeding.,erefore, the intensity of weeds removal should
be greater than the minimum point d∗0 as far as possible. But
considering that d0 is restricted by condition (H1), it has an
upper bound. For example, we can know from (25) that d0
cannot exceed a − d1 at least. If the minimum point d∗0 is
greater than the upper bound, then we should try to use low-
intensity weeding. If d∗0 is less than the upper bound, the
intensity of weeds removal should be close to the upper
bound and not exceed it.
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