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Event-triggered average consensus of multiagent systems with switching topologies is studied in this paper. A distributed protocol
based on event-triggered time sequences and switching time sequences is designed. Based on the inequality technique and stability
theory of differential equations, a sufficient condition for achieving average consensus is obtained under the assumption that
switching signal is ergodic and the total period over which connected topologies is sufficiently large. A numerical simulation is
presented to show the effectiveness of the theoretical results.

1. Introduction

Recently, the consensus problem of multiagent systems has
attracted a great deal of attention in many fields such as
multirobot systems [1], sensor networks [2], and unmanned
air vehicles (UAVs).,is hot topic has been widely discussed
in the literature by different methods, such as Lyapunov
function methods [3, 4], linear matrix inequality methods
[5–7], matrix decomposition approaches [8], and impulsive
control methods [9, 10], just to name a few.

In practical engineering applications, connections be-
tween agents often change due to obstacles in the envi-
ronment or limitations of sensor communication distance.
Hence, consensus of multiagent systems with switching
topologies has attracted considerable attention [11–23]. In
particular, the average consensus problem with switching
topologies was studied in [17]. ,e leader-following con-
sensus of second-order agents with switching topologies was
studied in [18], which proved that the consensus of mul-
tiagent systems was asymptotically reachable and gave an
estimate of the convergence rate. In [19], for controllability
of multiagent systems with periodically switching topologies
was studied and a criterion for m-periodic controllability
was proposed. In [20], the guaranteed-performance con-
sensualization for high-order linear and nonlinear

multiagent systems with switching topologies was studied.
In [21], the consensus of multiagent systems with switching
jointly reachable interconnection was studied. In [22], the
consensus problem of multiagent systems with jointly
connected switching topologies was studied by adding
adaptive control. However, the control protocol used in the
above literature requires continuous communication among
agents, which is hard to realize due to the limited com-
munication bandwidth. It may also result in the waste of
computing resources as well as the consumption of a large
amount of energy.

To improve the usage of limited bandwidth resource,
event-triggered consensus of multiagent systems with
switching topologies has been extensively studied [24–29].
In [30], the event-triggered leaderless and leader-following
consensus problems of multiagent systems with jointly
connected topology were investigated. In [31], an event-
triggered protocol for networks with switching topologies
was proposed where the triggering functions were designed
based on continuous information. In [32], event-triggered
control for pinning cluster synchronization in an array of
coupled neural networks was studied. In [33], event-trig-
gered control leader-following consensus problems of
multiagent systems with semi-Markov switching topologies
were discussed. ,e event-triggered consensus problems of
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multiagent systems with jointly connected switching to-
pologies were also presented in [34–37].

By the above discussion, how to define the control
protocol, which updates at both the triggering time instants
and switching time instants, is an interesting topic for
multiagent systems with switching topologies. In this paper,
event-triggered consensus of first-order multiagent systems
with switching topologies is studied.,e contribution of this
paper is as follows: (1) ,e event-triggered consensus of
multiagent systems with switching communication topol-
ogies is considered. ,e update time instants of the con-
troller are determined by both triggering time instants and
switching time instants. (2) ,e Zeno-behavior of the
sampling time sequences of the controller can be excluded
directly and the infimum of the sampling interval can be
bigger than a given positive constant. (3) A sufficient
condition on consensus is presented under the assumption
that the switching communication topologies are ergodic.

,e rest of this paper is organized as follows. Section 2
introduces some preliminaries and the first-order multi-
agent model. ,e main results are presented in Section 3. A
numerical example is presented in Section 4 to illustrate the
effectiveness of theoretical results. Section 5 concludes the
paper and offers suggestions for future work.

Notations. let ‖x‖ be the Euclidean norm of vector x and ‖A‖

be the corresponding induced matrix norm for a matrix A.
λmin(A) and λmax(A) are the minimum and maximum ei-
genvalues of a symmetric real matrix A. 1n � [1, 1, . . . , 1]T.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. Consider Λ � 1, 2, . . . , M{ } as index set,
where M is the total number of all possible interconnection
graphs. To consider the consensus problem of multiagent
systems with switching topologies, we define Gp � (V, εp,

Ap), p ∈ Λ as graphs of order n with the set of nodes V �

1, 2, . . . , n{ } (denoting the n agents) for any p ∈ Λ, the set of
edges εp ⊂V × V, and adjacency matrices Ap � (a

p
ij)n×n,

where a
p
ij is the weight of the edge (i, j) ∈ εp in the graphGp.

a
p
ij > 0 if and only if there is an edge (i, j) in Gp. Moreover,

we assume a
p
ii � 0 for all i � 1, . . . , n, p ∈ Λ. ,e degree

matrices Dp � diag d
p
1 , . . . , dp

n􏽮 􏽯 are diagonal matrices,
whose diagonal elements are given by d

p
i � 􏽐

n
j�1a

p
ij. ,e

Laplacian of the weighted graph is defined as Lp � Dp − Ap

for every p. ,e set of neighbors of node i is denoted by
Ni � j ∈V: (i, j) ∈ εp􏽮 􏽯.

Let Gs be the set of connected graphs in Gp and Gu be
the set of unconnected graphs in Gp. ,e cardinality of Λ is
denoted by |Λ|. Without loss of generality, we assume that
Gs � Gp, p � 1, 2, . . . , ]􏽮 􏽯 and Gu � Gp, p � ] + 1, ]+􏽮

2, . . . , |Λ|} for some ] ∈ Λ. For any t> t0, let Tp(t0, t) denote
the total activation time of Gp, p ∈ Λ, and Ts(t) �

􏽐
]
p�1Tp(t0, t), and Tu(t) � 􏽐

|Λ|
p�]+1Tp(t0, t).

In the following, we assume that switching is “ergodic
switching” [13], i.e., each graph will be activated infinite times.

2.2. Problem Formulation. Consider the first-order multi-
agent systems described by

_xi(t) � ui(t), i � 1, 2, . . . , n, (1)

where xi(t) and ui(t) ∈ R denote the position and control
input of agent i, respectively.

In order to discuss the consensus problem of multiagent
systems (1) and avoid the Zeno-behavior directly, i.e., there
is no infinite sampling in a finite interval, the following
distributed event-triggered control protocol will be used:

ui(t) �

0, t ∈ ti
k, ti

k + ς􏽨 􏼁,

− 􏽘
j∈Ni

a
p
ij xi ti

k( 􏼁 − xj t
j

k′􏼐 􏼑􏼐 􏼑, t ∈ ti
k + ς, ti

k+1􏽨 􏽩,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where ς> 0, t
j

k′ � argmin
l∈Ni:t≥t

j

l

t − t
j

l􏽮 􏽯. ti
k is the kth trig-

gering time instant for agent i and is defined iteratively as

t
i
k+1 � inf

t>ti
k
+ς

t: fi(t)≥ 0􏼈 􏼉∪ tp, (3)

in which tp is the switching time and fi(t) is the triggering
function defined as follows:

fi(t) � ei(t)
����

���� − β 􏽘
j∈Ni

a
p
ij xi t

i
k􏼐 􏼑 − xj t

j

k′􏼐 􏼑􏼐 􏼑

����������

����������
, (4)

for some β> 0 and ei(t) � xi(ti
k) − xi(t).

Remark 1. From formulas (2) and (3), one can see that if
ti
k+1 − ti

k < ς, then ui(t) � 0, which means that the agent will
not sample the information of its neighboring agents. ,e
controller update only occurs when ti

k+1 − ti
k ≥ ς. ,us, the

Zeno-behavior of the sampling time sequences of the
controller can be excluded directly.

Noticing that xi(ti
k) � xi(t) + ei(t), event-triggered

control protocol (2) can be rewritten as

ui(t) � − 􏽘
j∈Ni

a
p
ij xi(t) − xj(t) + ei(t) − ej(t)􏼐 􏼑.

(5)

Denoting x(t) � [x1(t), . . . , xn(t)]T and e(t) � [e1(t),

. . . , en(t)]T, by (1) and (5), we have the following equation:
_x(t) � − Lpx(t) − Lpe(t). (6)

Defining x(t) � 1/n􏽐
n
i�1xi(t), by simple computation,

one can easily obtain that _x(t) � 0, which shows that x(t) is
constant.

Denoting δ(t) � x(t) − x(t)1n, by (6), we have the
following equation:

_δ(t) � − Lpδ(t) − Lpe(t). (7)

Definition 1. ,e MASs (1) is said to achieve average
consensus under designed control protocol, if
limt⟶∞‖xi(t) − x(t)‖ � 0 holds for any initial conditions.
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3. Main Results

Lemma 1 (see [23]). Suppose L is the Laplacian of an un-
directed and connected graph G, then

e
− L t− t0( )v

�����

�����≤ e
− λ2(L) t− t0( )‖v‖, t≥ t0, (8)

holds for v ∈ Rn and 1T
n v � 0.

Theorem 1. Consider multiagent systems (1) with control
strategy (2) and triggering time sequence (3). 9e average
consensus can be achieved asymptotically, if the switching
guarantees that

inf
t>t0

Ts(t)

Tu(t)
>

c

λ
, (9)

where 0< λ<min1≤p≤v λp
2􏽮 􏽯 and λp

2 is the minimum nonzero
eigenvalue of undirected connected graph Gp:

max
v+1≤p≤|Λ|

Lp

�����

�����􏼚 􏼛< c<∞,

0< β< min
1≤p≤|Λ|

λp
2

�
n

√
Lp

�����

�����
2

+
�
n

√
Lp

�����

�����λ
p
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(10)

Proof. Since the switching is “ergodic switching,” one can
see that the estimating process is independent of the order of
the activated topology. Without loss of generality, assume
that activate topology on [tq− 1, tq], q � 1, 2, . . . , isGp, where
p ∈ Λ and p � q mod |Λ|, and set p � |Λ| if p � 0.

From equation (7), by the variation of parameter for-
mula, for t ∈ [tp− 1, tp], p � 1, 2, . . . , v, we have

δ(t) � e
− Lp t− tp− 1( 􏼁δ tp− 1􏼐 􏼑 + 􏽚

t

tp− 1

e
− Lp(t− s)

− Lpe(s)􏼐 􏼑ds.

(11)

,en, since 1T
n δ(tp− 1) � 0, by Lemma 1, we can derive

that

‖δ(t)‖≤ e
− λp

2 t− tp− 1( 􏼁 δ tp− 1􏼐 􏼑
�����

����� + 􏽚
t

tp− 1

e
− λp

2 (t− s)
· Lp

�����

����� · ‖e(s)‖ds.

(12)

On the other hand, for t ∈ [tp− 1, tp], p � v + 1, v + 2,

. . . , |Λ|, we have

‖δ(t)‖≤ e
Lp

����
���� t− tp− 1( 􏼁 δ tp− 1􏼐 􏼑

�����

�����

+ 􏽚
t

tp− 1

e
Lp

����
����(t− s)

· Lp

�����

����� · ‖e(s)‖ds.

(13)

It follows from (4) that fi(t)≤ 0, that is,

ei(t)
����

����≤ β 􏽘
j∈Ni

a
p
ij xi t

i
k􏼐 􏼑 − xj t

j

k′􏼐 􏼑􏼐 􏼑

����������

����������

≤ β 􏽘
j∈Ni

a
p
ij δi(t) − δj(t)􏼐 􏼑 + 􏽘

j∈Ni

a
p
ij ei(t) − ej(t)􏼐 􏼑

����������

����������

≤ β Lp

�����

�����||e(t)|| + β Lp

�����

�����‖δ(t)‖.

(14)

,en,

‖e(t)‖≤
�
n

√
β Lp

�����

�����

1 −
�
n

√
β Lp

�����

�����
‖δ(t)‖. (15)

Due to the fact that (1 −
�
n

√
β‖Lp‖)λp

2 −
�
n

√
β‖Lp‖2 > 0,

there is a positive constant λ such that

1 −
�
n

√
β Lp

�����

�����􏼒 􏼓 λp
2 − λ􏼐 􏼑 −

�
n

√
β Lp

�����

�����
2
> 0. (16)

In the following, for p � 1, 2, . . . , v, it will be proved that

‖δ(t)‖≤ δ tp− 1􏼐 􏼑
�����

�����e
− λ t− tp− 1( 􏼁

, t ∈ tp− 1, tp􏽨 􏽩. (17)

In order to prove (17), we first claim that

‖δ(t)‖< μδ tp− 1􏼐 􏼑
�����

�����e
− λ t− tp− 1( 􏼁 ≜ψ(t), t ∈ tp− 1, tp􏽨 􏽩,

(18)

holds for any μ> 1.
Otherwise, by the continuity of ‖δ(t)‖, there must exist a

t∗ > tp− 1 such that

‖δ(t)‖<ψ(t), for t ∈ tp− 1, t
∗

􏽨 􏼑, δ t
∗

( 􏼁
����

���� � ψ t
∗

( 􏼁. (19)

,en, we have
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ψ t
∗

( 􏼁 � δ t
∗

( 􏼁
����

����< μe
− λp

2 t∗− tp− 1( 􏼁 δ tp− 1􏼐 􏼑
�����

����� + μ􏽚
t∗

tp− 1

e
− λp

2 t∗− s( )
· Lp

�����

����� · ‖e(s)‖ds< μe
− λp

2 t∗ − tp− 1( 􏼁 δ tp− 1􏼐 􏼑
�����

�����

+
μ

�
n

√
β Lp

�����

�����
2

1 −
�
n

√
β Lp

�����

�����
􏽚

t∗

tp− 1

e
− λp

2 t∗− s( )
‖δ(s)‖ds

� μe
− λp

2 t∗− tp− 1( 􏼁 δ tp− 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
μ

�
n

√
β δ tp− 1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Lp

�����

�����
2

λp
2 − λ􏼐 􏼑 1 −

�
n

√
β Lp

�����

�����􏼒 􏼓

e
− λ t∗− tp− 1( 􏼁

− e
− λp

2 t∗ − tp− 1( 􏼁
􏼒 􏼓

� μ δ tp− 1􏼐 􏼑
�����

����� e
− λp

2 t∗ − tp− 1( 􏼁
+

�
n

√
β Lp

�����

�����
2

λp
2 − λ􏼐 􏼑 1 −

�
n

√
β Lp

�����

�����􏼒 􏼓

e
− λ t∗ − tp− 1( 􏼁

− e
− λp

2 t∗ − tp− 1( 􏼁
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

< μ δ tp− 1􏼐 􏼑
�����

����� e
− λp

2 t∗ − tp− 1( 􏼁
+ e

− λ t∗ − tp− 1( 􏼁
− e

− λp

2 t∗− tp− 1( 􏼁
􏼒 􏼓􏼒 􏼓

� μ δ tp− 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
− λ t∗ − tp− 1( 􏼁

� ψ t
∗

( 􏼁,

(20)

which is a contradiction. Hence, (18) holds for any number
μ> 1. Let μ⟶ 1, we have

‖δ(t)‖≤ δ tp− 1􏼐 􏼑
�����

�����e
− λ t− tp− 1( 􏼁

, t ∈ tp− 1, tp􏽨 􏽩, p � 1, 2, . . . , v.

(21)

,erefore, for t ∈ [t0, t1], one can derive that

‖δ(t)‖≤ δ t0( 􏼁
����

����e
− λ t− t0( ). (22)

,en, for t ∈ [t1, t2], we have

‖δ(t)‖≤ δ t1( 􏼁
����

����e
− λ t− t1( ) ≤ δ t0( 􏼁

����
����e

− λ t1− t0( )e
− λ t− t1( ).

(23)

Repeating the above procedure, for t ∈ [tv− 1, tv], one has

‖δ(t)‖≤ δ t0( 􏼁
����

����e
− 􏽐

v− 1
p�1λ tp− tp− 1( 􏼁− λ t− tv− 1( ). (24)

For p � v + 1, v + 2, . . . , |Λ|, in terms of (13), we have

‖δ(t)‖≤ e
Lp

����
���� t− tp− 1( 􏼁 δ tp− 1􏼐 􏼑

�����

�����

+ 􏽚
t

tp− 1

e
Lp

����
����(t− s)

· Lp

�����

����� · ‖e(s)‖ds.

(25)

Since maxv+1≤p≤|Λ| ‖Lp‖􏽮 􏽯< c<∞ and
�
n

√
β‖Lp‖2 <

λp
2(1 −

�
n

√
β‖Lp‖), then there is c such that

�
n

√
β‖Lp‖2 < (c −

‖Lp‖)(1−
�
n

√
β‖Lp‖), p � v + 1, v + 2, . . . , |Λ|. By a similar

argument to that in the proof of (17), we have

‖δ(t)‖≤φe
c t− tv( ), t ∈ tv, tv+1􏼂 􏼃, (26)

where φ � ‖δ(t0)‖e􏽐
v

p�1 − λ(tp− tp− 1).
Repeating the above procedure, we can derive that

‖δ(t)‖≤ ‖δ(t)‖≤φe􏽐
|Λ|− 1
p�v+1c tp − tp− 1( 􏼁+c t− t|Λ|− 1( ), t ∈ t|Λ|− 1, t|Λ|􏽨 􏽩.

(27)

In general, since Gp is finite and switching is “ergodic
switching,” by (24), (27), and mathematical induction, we have

‖δ(t)‖≤ δ t0( 􏼁
����

����e
− 􏽐

v

p�1λTp t0 ,t( )+􏽐
Λ
p�v+1cTp t0 ,t( )

≤ δ t0( 􏼁
����

����e
− λTs(t)+cTu(t)

, t≥ t0.

(28)

Noticing that inf(Ts(t)/Tu(t))> (c/λ), there is a con-
stant ρ> 0 such that (c + ρ)Tu(t)≤ (λ − ρ)Ts(t). ,us,
cTu(t) − λTs(t)≤ − ρ(Tu(t) + Ts(t)) � − ρ(t − t0). ,en,
we have

‖δ(t)‖≤ δ t0( 􏼁
����

����e
− ρ t− t0( ), t≥ t0, (29)

which implies that the consensus is reached asymptotically
and the exponential convergence rate is ρ. □

Remark 2

(1) Compared with the work in [18], a novel distributed
event-triggered consensus protocol with switching
topologies is proposed in this paper. Our control
protocol does not require continuous communica-
tion among agents and a sufficient condition on
consensus is presented under the assumption that
the switching topologies are ergodic.

(2) Compared with the works in [26, 27, 34], the update
time instants of the controller are determined by
both triggering time instants and switching time
instants. Furthermore, the Zeno-behavior of the
sampling time sequences of the controller can be
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excluded directly and the in�mum of the sampling
interval can be bigger than a given positive constant.

4. Simulations

In this section, a numerical example is given to illustrate the
feasibility and e�ectiveness of the theoretical results.

Consider the multiagent systems with �ve agents, where
the communication topologies are described by Figure 1.
Obviously, G1,G2,G3 are connected and G4,G5 are dis-
connected. For each communication topology, the corre-
sponding Laplacian is given as follows, respectively:

L1 �

2 − 1 0 0 − 1
− 1 2 − 1 0 0

0 − 1 2 − 1 0

0 0 − 1 1 0

− 1 0 0 0 1





,

L2 �

2 − 1 0 0 − 1
− 1 1 0 0 0

0 0 1 − 1 0

0 0 − 1 2 − 1
− 1 0 0 − 1 2





,

L3 �

1 − 1 0 0 − 1
0 1 − 1 0 0

0 − 1 2 − 1 0

0 0 − 1 2 − 1
− 1 0 0 − 1 2





,

L4 �

1 − 1 0 0 0

− 1 2 − 1 0 0

0 − 1 2 − 1 0

0 0 − 1 1 0

0 0 0 0 0





,

L5 �

1 0 0 0 − 1
0 0 0 0 0

0 − 1 2 − 1 0

0 0 − 1 1 0

− 1 0 0 0 1





.

(30)

�en, we can get min1≤p≤v λp2{ } � 0.382, maxv+1≤p≤|Λ|
‖Lp‖{ } � 3.4142, and min1≤p≤v λp2 /(

�
n

√
||Lp||2 +

�
n

√
‖Lp‖{

λp2 )} ≈ 0.0118. We assume β � 0.01< 0.0118, λ � 0.3< 0.382,
and c � 3.5> 3.4142, which satis�es the parameter re-
quirements of �eorem 1. Let ς � 0.5 and the dwell time is a
random number which is greater than ς. In order to
guarantee that

inf
t>t0

Ts(t)
Tu(t)
>
c

λ
, (31)

we assume that the total activated time for connected graphs
is about 93 percent of the total time. Hence, the consensus
can be achieved by �eorem 1.

�e initial states are denoted by x(0) � [1, 2, 3, 4, 5]T.
�e state responses xi(t) and the controllers ui(t) are
depicted in Figures 2 and 3, respectively. �e switching
sequence is depicted in Figure 4. �e triggering time se-
quences for each agent are shown in Figure 5.

2 5
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(a)
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2 5

43

(b)

1

2 5

43

(c)

1

2 5

43

(d)

1

2 5

43

(e)

Figure 1: Switching topologies: Gp, p � 1, 2, 3, 4, 5. (a) G1, (b) G2,
(c) G3, (d) G4, and (e) G5.
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Figure 2: State for each agent.
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5. Conclusions

Based on the inequality technique and stability theory of
differential equations, the event-triggered average consensus
of multiagent systems with switching topologies is studied. A
sufficient condition for achieving average consensus is ob-
tained under the assumption that switching signal is ergodic
and the total period over which connected topologies is
sufficiently large. Moreover, the designed control protocol
can exclude Zeno-behavior directly. It should be noted that
the main results are derived only for a first-order multiagent
system and an undirected graph. More general linear system
models and directed graph scenarios will be addressed in
future study.
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