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Stochastic Lotka–Volterra model driven by small α-stable noises is used to describe population dynamics perturbed by random
environment. However, parameters in the model are always unknown. )e contrast function is given to obtain least squares
estimators.)e consistency and the rate of convergence of the least squares estimators are proved, and the asymptotic distribution
of the estimators are derived by Markov inequality, Cauchy–Schwarz inequality, and Gronwall’s inequality. Some numerical
examples are provided to verify the effectiveness of the estimators.

1. Introduction

Stochastic differential equations are basic tools for modeling
random phenomena in the financial field. Due to the
widespread application of the stochastic differential equa-
tions in the field of financial economics, it has attracted a
large number of scholars to devote themselves to research in
this field [1–3]. However, the parameters in stochastic model
are always unknown. In the past few decades, the parameter
estimation problem for economical models has been studied
by many authors. For example, Yu and Phillips [4] utilized
the Gaussian method to estimate the parameters of con-
tinuous time short-term interest rate models. Faff and Gray
[5] discussed the estimation and comparison of short-rate
models by the generalised method of moments. Rossi [6]
applied particle filters and maximum likelihood estimation
to solve the parameter estimation for Cox–Ingersoll–Ross
model. Wei et al. [7] utilized the Gaussian estimation
method to investigate the parameter estimation for dis-
cretely observed Cox–Ingersoll–Ross model. However, it is
well known that many financial processes exhibit discon-
tinuous sample paths and heavy tailed properties (e.g.,
certain moments are infinite). )ese features cannot be
captured by Brownian motion [8, 9]. )erefore, it is natural
to replace the driving Brownian motion by Lévy noises. In
recent years, with the development of Lévy process theory

and its application in the fields of engineering systems,
economic systems, andmanagement systems, it has attracted
great attention from scholars. )erefore, some authors
considered parameter estimation for stochastic differential
equations driven by Lévy noises. For example, Li and Ma
[10] discussed the asymptotic properties of estimators in a
stable Cox–Ingersoll–Ross model. Long [11] analyzed the
least squares estimator for discretely observed
2Ornstein–Uhlenbeck processes with small Lévy noises.
)en, Long et al. [8] tackled the least squares estimators for
discretely observed stochastic processes driven by small Lévy
noises. Singh et al. [12] utilized a randomized response
model under Poisson distribution to estimate a rare sensitive
attribute in two-stage sampling. Wei [13] used least squares
estimation to discuss the discretely observed CoxCInger-
sollCRoss model driven by small symmetrical stable noises
and studied the consistency and asymptotic distribution of
the estimators. )ere have been many applications of small
noise asymptotics to mathematical finance [14, 15]. From a
practical point of view in parametric inference, it is more
realistic and interesting to consider asymptotic estimation
for diffusion processes with small noise based on discrete
observations.

Lotka–Volterra model is often used to model population
growth of a single species. However, systems are more or less
influenced by random factors. )us, stochastic
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Lotka–Volterra equation, being a reasonable and popular
approach to model population dynamics perturbed by
random environment, has recently been studied by many
authors both from a mathematical perspective and in the
context of real biological dynamics [16–19] to explain the
change of biodiversity also over time [20–23]. For example,
Mao et al. [24] investigated a multidimensional stochastic
Lotka–Volterra system driven by one-dimensional standard
Brownian motion. )ey revealed that the environmental
noise could suppress population explosion. Later, Mao [25]
discussed a finite second moment of the stationary distri-
bution under Brownian noise, which is very important in
application. Bao et al. [26] and Bao and Yuan [27] con-
sidered a competitive Lotka–Volterra population model
with Lévy jumps. Zhao et al. [28] studied the parameter
estimation for stochastic Lotka–Volterra model by using the
maximum likelihood method from continuous time ob-
servations. However, due to the limitation of instrument
precision, it is impossible to observe the system from
continuous time. Moreover, few literatures considered the
consistency and asymptotic distribution of parameter esti-
mators for stochastic Lotka–Volterra driven by α-stable
noises. We consider the parameter estimation problem for

discretely observed stochastic Lotka–Volterra model with
small α-stable noises.)e contrast function is given to obtain
the least squares estimators. )e consistency and asymptotic
distribution of the estimators are discussed by Markov in-
equality, Cauchy–Schwarz inequality, and Gronwall’s
inequality.

)e structure is that the stochastic Lotka–Volterra model
driven by small α-stable noises is introduced and the con-
trast function is given to obtain the least squares estimators
in Section 2. In Section 3, the consistency of the estimators is
proved and the asymptotic distribution of the estimators is
studied. In Section 4, some simulations are made. )e
conclusion is given in Section 5.

2. Problem Formulation and Preliminaries

(Ω,F,P) is a basic probability space equipped with a right
continuous and increasing family of σ-algebras (Ft)t≥ 0 and
Z � (Zt, t≥ 0) is a strictly symmetric α-stable Lévy motion.

A random variable η is said to have a stable distribution
with index of stability α ∈ (0, 2], scale parameter σ ∈ (0,∞),
skewness parameter β ∈ [−1, 1], and location parameter
μ ∈ (−∞,∞) if it has the following characteristic function:

ϕη u( ) � Eexp iuη􏼈 􏼉 �

exp −σα|u|
α 1 − iβsgn(u)tan

απ
2

􏼒 􏼓 + iμu􏼚 􏼛, if α≠ 1,

exp −σ|u| 1 + iβ
2
π
sgn(u)log|u|􏼒 􏼓 + iμu􏼚 􏼛, if α � 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

We denote η ∼ Sα(σ, β, μ). When μ � 0, we say η is
strictly α-stable; if in addition β � 0, we call η symmetrical
α-stable. )roughout this article, α-stable motion is strictly
symmetrical and α ∈ (1, 2).

We study the parametric estimation problem for sto-
chastic Lotka–Volterra model driven by small α-stable
noises described by the following stochastic differential
equation:

dXt � Xt θ − βXt( 􏼁dt + εXtdZt, t ∈ [0, 1],

X0 � x0,
(2)

where θ and β are unknown parameters, ε ∈ (0, 1].

Since the stochastic Lotka–Volterra model is driven by
small α-stable noises and due to the complexity of the
α-stable noises, it is difficult to obtain the likelihood func-
tion. )us, the maximum likelihood estimation cannot be
used. )erefore, the contrast function is given to obtain least
squares estimators.

Consider the following contrast function:

ρn,ε(θ, β) � 􏽘
n

i�1

Xti
− Xti−1

− Xti−1
α − βXti−1

􏼐 􏼑Δti− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

ε2X2
ti−1
Δti−1

, (3)

where Δti−1 � ti − ti−1 � 1/n.
We obtain the estimators:

􏽢θn,ε �
n􏽐

n
i�1 Xti

− Xti−1
􏼐 􏼑􏽐

n
i�1Xti−1

+ n
2
􏽐

n
i�1X

2
ti−1

− n􏽐
n
i�1Xti

/Xti−1
􏽐

n
i�1X

2
ti−1

􏽐
n
i�1Xti−1

􏼐 􏼑
2

− n􏽐
n
i�1X

2
ti−1

,

􏽢βn,ε �
n
2
􏽐

n
i�1 Xti

− Xti−1
􏼐 􏼑 + n

2
􏽐

n
i�1Xti−1

− n􏽐
n
i�1Xti

/Xti−1
􏽐

n
i�1Xti−1

􏽐
n
i�1Xti−1

􏼐 􏼑
2

− n􏽐
n
i�1X

2
ti−1

.

(4)
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)e work will be carried out under the following
assumptions.

Assumption 1. θ and β are positive true values of the
parameters.

Assumption 2. sup0≤t≤1E|Xt|
2 <∞.

3. Main Results and Proofs

X0 � (X0
t , t≥ 0) is the solution to the underlying ordinary

differential equation under the true value of the parameters:

dX
0
t � X

0
t θ − βX

0
t􏼐 􏼑dt, X

0
0 � x0. (5)

Discretizing equation (2), we obtain

Xti
− Xti−1

� θ􏽚
ti

ti−1

Xsds − β􏽚
ti

ti−1

X
2
sds + ε􏽚

ti

ti−1

XsdZs.

(6)

)en, a more explicit decomposition for 􏽢θn,ε and 􏽢βn,ε can
be given

􏽢θn,ε �
θ􏽐

n
i�1 􏽒

ti

ti−1
Xsds1/n􏽐

n
i�1Xti−1

− θ􏽐
n
i�1 􏽒

ti

ti−1
Xs/Xti−1

ds1/n􏽐
n
i�1X

2
ti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
β􏽐

n
i�1 􏽒

ti

ti−1
X

2
s /Xti−1

ds1/n􏽐
n
i�1X

2
ti−1

− β􏽐
n
i�1 􏽒

ti

ti−1
X

2
sds1/n􏽐

n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
ε􏽐n

i�1 􏽒
ti

ti−1
XsdZs1/n􏽐

n
i�1Xti−1

− ε􏽐n
i�1 􏽒

ti

ti−1
Xs/Xti−1

dZs1/n􏽐
n
i�1X

2
ti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

,

􏽢βn,ε �
θ􏽐

n
i�1 􏽒

ti

ti−1
Xsds − θ􏽐

n
i�1 􏽒

ti

ti−1
Xs/Xti−1

ds1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
β􏽐

n
i�1 􏽒

ti

ti−1
X

2
s /Xti−1

ds1/n􏽐
n
i�1Xti−1

− β􏽐
n
i�1 􏽒

ti

ti−1
X

2
sds

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
ε􏽐n

i�1 􏽒
ti

ti−1
XsdZs − ε􏽐n

i�1 􏽒
ti

ti−1
Xs/Xti−1

dZs1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

.

(7)

Before giving the theorems, we need to establish some
preliminary results.

Lemma 1 (see [29]). Z is a strictly α-stable Lévy process and
ϕ ∈ Lα

a.s.. 0en,

􏽚
t

0
ϕ(s)dZs � Z′ ∘ 􏽚

t

0
ϕα

+(s)ds − Z′′ ∘ 􏽚
t

0
ϕα−(s)ds, a.s.

(8)

If Z is symmetric, that is, β � 0, then, there exists some
α-stable Lévy process Z′�dZ, such that

􏽚
t

0
ϕ(s)dZs � Z′°􏽚

t

0
|ϕ(s)|αds, a.s. (9)

Lemma 2. When ε⟶ 0 and n⟶∞, we have

sup
0≤t≤1

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⟶

P
0. (10)

Proof. Integrating on both sides of equation (2) and (8), we
have

Xt − X
0
t � θ􏽚

t

0
Xs − X

0
s􏼐 􏼑ds − β􏽚

t

0
X

2
s − X

0
s􏼐 􏼑

2
􏼒 􏼓ds

+ ε􏽚
t

0
XsdZs.

(11)

By using the Cauchy–Schwarz inequality, we obtain
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Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
≤ 3θ2 􏽚

t

0
Xs − X

0
s􏼐 􏼑ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 3β2 􏽚
t

0
X

2
s − X

0
s􏼐 􏼑

2
􏼒 􏼓ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 3ε2 􏽚
t

0
XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 3tθ2 􏽚
t

0
Xs − X

0
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
ds + 12tβ2K2

􏽚
t

0
Xs − X

0
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
ds + 3ε2 􏽚

t

0
XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 3t θ2 + 4β2K2
􏼐 􏼑 􏽚

t

0
Xs − X

0
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
ds + 3ε2 􏽚

t

0
XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 3t θ2 + 4β2K2
􏼐 􏼑 􏽚

t

0
Xs − X

0
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
ds + 3ε2 sup

0≤t≤1
􏽚

t

0
XsdZs

2
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(12)

where K is the upper bound of Xt.
According to Gronwall’s inequality, we have

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
≤ 3ε2e3t2 θ2+4β2K2( ) sup

0≤t≤1
􏽚

t

0
XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

. (13)

Squaring on both sides of equation (17),

sup
0≤t≤1

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

�
3

√
εe3/2 θ2+4β2K2( ) sup

0≤t≤1
􏽚

t

0
XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (14)

By the Markov inequality, for any given δ > 0, when
ε⟶ 0, we have

P
�
3

√
εe3/2 θ2+4β2K2( ) sup

0≤t≤1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚

t

0
XsdZs‖> δ􏼠 􏼡

≤ δ− 1 �
3

√
εe3/2 θ2+4β2K2( )E sup

0≤t≤1
􏽚

t

0
XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣

≤Cδ− 1 �
3

√
εe3/2 θ2+4β2K2( )E 􏽚

1

0
X

α
s ds􏼠 􏼡

1/α
⎡⎣ ⎤⎦

≤Cδ− 1 �
3

√
εe3/2 θ2+4β2K2( )K⟶ 0,

(15)

namely,

sup
0≤t≤1

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⟶

P
0. (16)

)e proof is complete. □

Lemma 3. When ε⟶ 0 and n⟶∞, we have

1
n

􏽘

n

i�1
X

2
ti−1
⟶P 􏽚

1

0
X

0
t􏼐 􏼑

2
dt. (17)

Proof. As

1
n

􏽘

n

i�1
X

2
ti−1

�
1
n

􏽘

n

i�1
X

0
ti− 1

􏼐 􏼑
2

+
1
n

􏽘

n

i�1
X

2
ti−1

− X
0
ti− 1

􏼐 􏼑
2

􏼒 􏼓, (18)

we obtain

1
n

􏽘

n

i�1
X

0
ti− 1

􏼐 􏼑
2
⟶P 􏽚

1

0
X

0
t􏼐 􏼑

2
dt. (19)

According to Lemma 2, when ε⟶ 0 and n⟶∞, we
have

1
n

􏽘

n

i�1
X

2
ti−1

− X
0
ti− 1

􏼐 􏼑
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
1
n

􏽘

n

i�1
Xti−1

+ X
0
ti−1

Xti−1

����� t − nX
0
ti−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 2K sup
0≤t≤1

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⟶

P
0.

(20)

According to equations (23) and (24), we obtain

1
n

􏽘

n

i�1
X

2
ti−1
⟶P 􏽚

1

0
X

0
t􏼐 􏼑

2
dt. (21)

)e proof is complete.
Applying the same methods used in Lemma 3, we have

1
n

􏽘

n

i�1
Xti−1
⟶P 􏽚

1

0
X

0
tdt. (22)

In the following theorem, the consistency of the least
squares estimators is proved. □

Theorem 1. When ε⟶ 0, n⟶∞, and εn1− 1/α⟶ 0,
the least squares estimators 􏽢θn,ε and 􏽢βn,ε are consistent,
namely,

􏽢θn,ε⟶
P

θ, 􏽢βn,ε⟶
P

β. (23)

Proof. According to Lemma 3, we have

1
n

􏽘

n

i�1
Xti−1

⎛⎝ ⎞⎠

2

−
1
n

􏽘

n

i�1
X

2
ti−1
⟶P 􏽚

1

0
X

0
tdt􏼠 􏼡

2

− 􏽚
1

0
X

0
t􏼐 􏼑

2
dt.

(24)

When ε⟶ 0 and n⟶∞, we obtain

θ􏽘
n

i�1
􏽚

ti

ti−1

Xsds
1
n

􏽘

n

i�1
Xti−1
⟶P θ􏽚

1

0
Xtdt 􏽚

1

0
X

0
tdt, θ􏽘

n

i�1
􏽚

ti

ti−1

Xs

Xti−1

ds
1
n

􏽘

n

i�1
X

2
ti−1
⟶P θ􏽚

1

0

Xt

X
0
t

dt 􏽚
1

0
X

0
t􏼐 􏼑

2
dt. (25)
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According to Lemma 2, we have

θ􏽘
n

i�1
􏽚

ti

ti−1

Xsds
1
n

􏽘

n

i�1
Xti−1

− θ􏽘
n

i�1
􏽚

ti

ti−1

Xs

Xti−1

ds
1
n

􏽘

n

i�1
X

2
ti−1
⟶P θ 􏽚

1

0
X

0
tdt􏼠 􏼡

2

− 􏽚
1

0
X

0
t􏼐 􏼑

2
dt⎛⎝ ⎞⎠. (26)

From equations (28) and (29), we obtain

β􏽘
n

i�1
􏽚

ti

ti−1

X
2
s

Xti−1

ds
1
n

􏽘
n

i�1
X

2
ti−1

− β􏽘
n

i�1
􏽚

ti

ti−1

X
2
sds

1
n

􏽘
n

i�1
Xti−1
⟶P 0. (27)

By the Markov inequality, we have

P ε􏽘
n

i�1
􏽚

ti

ti−1

XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> δ⎛⎝ ⎞⎠≤ δ−1ε􏽘

n

i�1
E 􏽚

ti

ti−1

XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Cδ−1ε􏽘

n

i�1
E 􏽚

ti

ti− 1

X
α
s ds􏼠 􏼡

1/α

≤CKδ−1εn1− 1/α⟶ 0,

(28)

where C is constant.
As ε⟶ 0, n⟶∞, and εn1−1/α⟶ 0, we obtain

ε􏽘
n

i�1
􏽚

ti

ti−1

XsdZs⟶
P

0. (29)

According to Lemma 2, we obtain

ε􏽘
n

i�1
􏽚

ti

ti−1

Xs

Xti−1

dZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε􏽘

n

i�1

1
Xti−1

���������
􏽚

ti

ti−1

���
Xs

􏽰
dZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε􏽘

n

i�1

1
X

0
ti−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

1
Xti−1

−
1

X
0
ti−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ 􏽚
ti

ti−1

XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ε􏽘
n

i�1

1
X

0
ti−1

􏽚
ti

ti−1

XsdZs +ε sup
0≤t≤1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
Xt

−
1

X
0
t

���������

���������
􏽚

ti

ti−1

XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(30)

By the Markov inequality, we have

P |ε􏽘
n

i�1
|

1
X

0
ti−1

􏽚
ti

ti−1

XsdZs

��������

��������
> δ⎛⎝ ⎞⎠≤ δ− 1ε􏽘

n

i�1

1
X

0
ti−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
E 􏽚

ti

ti−1

XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤Cδ− 1ε􏽘
n

i�1

1
X

0
ti−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
E 􏽚

ti

ti− 1

X
α
s ds􏼠 􏼡

1/α

≤CKδ− 1εn1− 1/α1
n

􏽘

n

i�1

1
X

0
ti−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⟶P 0.

(31)

As ε⟶ 0, n⟶∞, and εn1− 1/α⟶ 0, we obtain

ε􏽘
n

i�1

1
X

0
ti−1

����������
􏽚

ti

ti−1

���
Xs

􏽰
dZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⟶P 0. (32)

According to Lemma 2, when ε⟶ 0 and n⟶∞,

ε sup
0≤t≤1

1
Xt

−
1

X
0
t

���������
􏽚

ti

ti−1

XsdZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⟶P 0. (33)

From equations (37) and (38), we have

ε􏽘
n

i�1
􏽚

ti

ti−1

Xs

Xti−1

dZs⟶
P

0. (34)

According to equations (27), (30), (31), (33), and (39),
when ε⟶ 0, n⟶∞, and εn1− 1/α⟶ 0,

􏽢θn,ε⟶
P

θ. (35)
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Using the same methods in )eorem 1, we obtain

θ􏽘
n

i�1
􏽚

ti

ti−1

Xsds − θ􏽘
n

i�1
􏽚

ti

ti−1

Xs

Xti−1

ds
1
n

􏽘

n

i�1
Xti−1
⟶P 0, (36)

β􏽘
n

i�1
􏽚

ti

ti−1

X
2
s

Xti−1

ds
1
n

􏽘

n

i�1
Xti−1

− β􏽘
n

i�1
􏽚

ti

ti−1

X
2
sds⟶P β 􏽚

1

0
X

0
tdt􏼠 􏼡

2

− 􏽚
1

0
X

0
t􏼐 􏼑

2
dt⎛⎝ ⎞⎠. (37)

Together with the results that

ε􏽘
n

i�1
􏽚

ti

ti−1

XsdZs⟶
P

0, (38)

ε􏽘
n

i�1
􏽚

ti

ti−1

Xs

Xti−1

dZs

1
n

􏽘

n

i�1
Xti−1
⟶P 0, (39)

when ε⟶ 0, n⟶∞, and εn1− 1/α⟶ 0, we have

􏽢βn,ε⟶
P

β. (40)

)e proof is complete. □

Theorem 2. When ε⟶ 0, n⟶∞, and nε⟶∞,

ε− 1 􏽢θn,ε − θ􏼐 􏼑⟶
d

􏽒
1
0 X0

t( 􏼁
αdt􏼒 􏼓

1/α
􏽒
1
0 X

0
tdt − 􏽒

1
0 X

0
t􏼐 􏼑

2
dt􏼠 􏼡

􏽒
1
0 X0

tdt􏼒 􏼓
2

− 􏽒
1
0 X

0
t􏼐 􏼑

2
dt

Sα(1, 0, 0), ε− 1 􏽢βn,ε − β􏼐 􏼑⟶
d

􏽒
1
0 X0

t( 􏼁
αdt􏼒 􏼓

1/α
− 􏽒

1
0 X

0
tdt􏼠 􏼡

􏽒
1
0 X0

tdt􏼒 􏼓
2

− 􏽒
1
0 X

0
t􏼐 􏼑

2
dt

Sα(1, 0, 0).

(41)

Proof. According to the explicit decomposition for 􏽢θn,ε, we
have

ε− 1 􏽢θn,ε − θ􏼐 􏼑 �
ε− 1θ 􏽐

n
i�1 􏽒

ti

ti−1
Xsds − 1/n􏽐

n
i�1Xti−1

􏼒 􏼓1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
ε− 1θ 1 − 􏽐

n
i�1 􏽒

ti

ti−1
Xs/Xti−1

ds􏼒 􏼓1/n􏽐
n
i�1X

2
ti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
ε− 1β􏽐

n
i�1 􏽒

ti

ti−1
X

2
s /Xti−1

ds1/n􏽐
n
i�1X

2
ti−1

− ε− 1β􏽐
n
i�1 􏽒

ti

ti−1
X

2
sds1/n􏽐

n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
􏽐

n
i�1 􏽒

ti

ti−1
XsdZs1/n􏽐

n
i�1Xti−1

− 􏽐
n
i�1 􏽒

ti

ti−1
Xs/Xti−1

dZs1/n􏽐
n
i�1X

2
ti−1

1/n􏽐
n
i�1Xti−1

2
− 1/n􏽐

n
i�1X

2
ti−1

.􏼐

(42)

From Lemma 2, when ε⟶ 0, n⟶∞, and nε⟶∞,
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􏽘

n

i�1
􏽚

ti

ti−1

Xsds −
1
n

􏽘

n

i�1
Xti−1
⟶P 0,

ε− 1
n

− 1
􏽘

n

i�1
Xti−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε− 1

n
− 1

􏽘

n

i�1
Xti−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ε− 1
n

− 1
􏽘

n

i�1
Xti−1

− X
0
ti−1

+ X
0
ti−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ ε− 1
n

− 1
􏽘

n

i�1
Xti−1

− X
0
ti−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + X
0
ti−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ ε− 1
n

− 1 sup
0≤t≤1

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + X

0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⟶

P
0.

(43)

From equations (45) and (46), we have

ε− 1θ 􏽐
n
i�1 􏽒

ti

ti−1
Xsds − 1/n􏽐

n
i�1Xti−1

􏼒 􏼓1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

⟶P 0,

ε− 1θ 1 − 􏽐
n
i�1 􏽒

ti

ti−1
Xs/Xti−1

ds􏼒 􏼓1/n􏽐
n
i�1X

2
ti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

⟶P 0,

(44)

ε− 1β􏽐
n
i�1 􏽒

ti

ti−1
X

2
s /Xti−1

ds1/n􏽐
n
i�1X

2
ti−1

− ε− 1β􏽐
n
i�1 􏽒

ti

ti−1
X

2
sds1/n􏽐

n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

⟶P 0. (45)

According to Lemma 2, we obtain

􏽘

n

i�1
􏽚

ti

ti−1

XsdZs � 􏽘
n

i�1
􏽚

ti

ti−1

X
0
sdZs + 􏽘

n

i�1
􏽚

ti

ti−1

Xs − X
0
s􏼐 􏼑dZs.

(46)

Using the Markov inequality and Holder’s inequality, for
any given δ > 0, we have

P 􏽘
n

i�1
􏽚

ti

ti−1

Xs − X
0
s􏼐 􏼑dZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> δ⎛⎝ ⎞⎠≤ δ− 1

􏽘

n

i�1
E 􏽚

ti

ti−1

Xs − X
0
s􏼐 􏼑dZs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

≤Cδ− 1
􏽘

n

i�1
E 􏽚

ti

ti− 1

Xs − X
0
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α
ds􏼠 􏼡

1/α
⎛⎝ ⎞⎠≤Cδ− 1

􏽘

n

i�1
E sup

0≤t≤1
Xt − X

0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌n

− 1/α
􏼠 􏼡

1/2

≤Cδ− 1
n
1− 1/α

E sup
0≤t≤1

Xt − X
0
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡⟶ 0,

(47)

as ε⟶ 0, n⟶∞, and n1− 1/α⟶ 0.
Moreover,

􏽘

n

i�1
􏽚

ti

ti−1

X
0
sdZs � 􏽚

1

0
􏽘

n

i�1
X

0
s1 ti−1 ,ti( ](s)dZs

� Z′°􏽚
1

0
􏽘

n

i�1
X0
s 1 ti− 1 ,ti( ] s( )􏼒 􏼓

α
ds,

(48)

where Z′ �d Z.

According to Lemma 1, we have

􏽚
1

0
􏽘

n

i�1
X

0
s1 ti− 1 ,ti( ](s)􏼒 􏼓

α
ds⟶ 􏽚

1

0
X

0
s􏼐 􏼑

α
ds, (49)

Z′°􏽚
1

0
􏽘

n

i�1
X0
s 1 ti− 1 ,ti( ](s)􏼒 􏼓

α
ds⟶a.s.

Z′°􏽚
1

0
X0
s􏼐 􏼑

α
ds. (50)

From equations (53) and (54),
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􏽘

n

i�1
􏽚

ti

ti−1

X
0
sdZs⟶

d
􏽚
1

0
X

0
t􏼐 􏼑

α
􏼠 􏼡

1/α

Sα(1, 0, 0). (51)
According to equations (45)–(51) and (55), we have

ε− 1 􏽢θn,ε − θ􏼐 􏼑⟶
d

􏽒
1
0 X0

t( 􏼁
αdt􏼒 􏼓

1/α
􏽒
1
0 X

0
tdt − 􏽒

1
0 X

0
t􏼐 􏼑

2
dt􏼠 􏼡

􏽒
1
0 X0

tdt􏼒 􏼓
2

− 􏽒
1
0 X

0
t􏼐 􏼑

2
dt

Sα(1, 0, 0). (52)

From equation (8), we obtain

ε− 1 􏽢βn,ε − β􏼐 􏼑 �
ε− 1θ􏽐

n
i�1 􏽒

ti

ti−1
Xsds − ε− 1θ􏽐

n
i�1 􏽒

ti

ti−1
Xs/Xti−1

ds1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
ε− 1β􏽐

n
i�1 􏽒

ti

ti−1
X

2
s /Xti−1

ds1/n􏽐
n
i�1Xti−1

− ε− 1β􏽐
n
i�1 􏽒

ti

ti−1
X

2
sds

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

+
􏽐

n
i�1 􏽒

ti

ti−1
XsdZs − 􏽐

n
i�1 􏽒

ti

ti−1
Xs/Xti−1

dZs1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

− ε− 1β.

(53)

According to equations (25)–(27) and (55), we have

ε− 1θ􏽐
n
i�1 􏽒

ti

ti−1
Xsds − ε− 1θ􏽐

n
i�1 􏽒

ti

ti−1
Xs/Xti−1

ds1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

⟶P 0, (54)

ε− 1β􏽐
n
i�1 􏽒

ti

ti−1
X

2
s /Xti−1

ds1/n􏽐
n
i�1Xti−1

− ε− 1β􏽐
n
i�1 􏽒

ti

ti−1
X

2
sds

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

− ε− 1β⟶P 0, (55)

􏽐
n
i�1 􏽒

ti

ti−1
XsdZs − 􏽐

n
i�1 􏽒

ti

ti−1
Xs/Xti−1

dZs1/n􏽐
n
i�1Xti−1

1/n􏽐
n
i�1Xti−1

􏼐 􏼑
2

− 1/n􏽐
n
i�1X

2
ti−1

⟶d
􏽒
1
0 X0

t( 􏼁
αdt􏼒 􏼓

1/α
− 􏽒

1
0 X

0
tdt􏼠 􏼡

􏽒
1
0 X0

tdt􏼒 􏼓
2

− 􏽒
1
0 X

0
t􏼐 􏼑

2
dt

Sα(1, 0, 0). (56)

From equations (54)–(56), we have

ε− 1 􏽢βn,ε − β􏼐 􏼑⟶
d

􏽒
1
0 X0

t( 􏼁
αdt􏼒 􏼓

1/α
− 􏽒

1
0 X

0
tdt􏼠 􏼡

􏽒
1
0 X0

tdt􏼒 􏼓
2

− 􏽒
1
0 X

0
t􏼐 􏼑

2
dt

Sα(1, 0, 0).

(57)

)e proof is complete. □

4. Simulation

In this experiment, we generate a discrete sample
(Xti−1

)i�1,...,n and compute 􏽢θn,ε and 􏽢βn,ε from the sample. Let
x0 � 0.2. For every given true value of the parameters-(θ, β),

8 Discrete Dynamics in Nature and Society



Table 1: Least squares estimator simulation results of θ and β.

True value Average value Absolute error
(θ, β) Size n 􏽢θn,ε

􏽢βn,ε |􏽢θn,ε − θ| |􏽢βn,ε − β|

(1, 2)
1000 1.1526 2.1368 0.1526 0.1368
3000 1.0379 2.0151 0.0379 0.0151
5000 1.0010 2.0007 0.0010 0.0007

(3, 4)
1000 3.1643 4.1538 0.1643 0.1538
3000 3.0236 4.0320 0.0236 0.0320
5000 3.0012 4.0014 0.0012 0.0014

Table 2: Least squares estimator simulation results of θ and β.

True value Average value Absolute error
(θ, β) Size n 􏽢θn,ε

􏽢βn,ε |􏽢θn,ε − θ| |􏽢βn,ε − β|

(1, 2)
10,000 1.1041 2.0925 0.1041 0.0925
30,000 1.0053 2.0087 0.0053 0.0087
50,000 1.0005 2.0007 0.0005 0.0007

(3, 4)
10,000 3.1154 4.1025 0.1154 0.1025
30,000 3.0127 4.0089 0.0127 0.0089
50,000 3.0009 4.0003 0.0009 0.0003
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Figure 1: )e simulation of the estimator 􏽢θn,ε with θ � 1.
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Figure 2: )e simulation of the estimator 􏽢βn,ε with β � 2.
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the size of the sample is represented as“Size n” and given in
the first column of the table. In Table 1, ε � 0.1, the size is
increasing from 1000 to 5000. In Table 2, ε � 0.01, the size is
increasing from 10,000 to 50,000. )e tables list the value of
“􏽢θn,ε”, “􏽢βn,ε,” and the absolute errors of least squares
estimators.

Two tables illustrate that when n is large enough and ε is
small enough, the obtained estimators are very close to the
true parameter value. )erefore, the methods used in this
paper are effective and the obtained estimators are good.

In Figure 1, θ � 1; when ε � 0.1, the size is increasing
from 1000 to 5000; when ε � 0.01, the size is increasing from
10,000 to 50,000. In Figure 2, β � 2; when ε � 0.1, the size is
increasing from 1000 to 5000; when ε � 0.01, the size is
increasing from 10,000 to 50,000. Two figures illustrate that
when n is large enough and ε is small enough, the obtained
estimators are very close to the true parameter value.

5. Conclusion

)e parameter estimation problem for discretely observed
stochastic Lotka–Volterramodel driven by small α-stable noises
has been studied.)e contrast function has been given to obtain
the least squares estimators. )e consistency and asymptotic
distribution of the least squares estimators have been discussed
by using the Markov inequality, Cauchy–Schwarz inequality,
and Gronwall’s inequality. Further research topics will include
parameter and state estimation for partially observed stochastic
system driven by α-stable noises.
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noise sources,” Physical Review E, vol. 61, pp. 11–21, 2010.

[18] J. Tong, Z. Zhang, and J. Bao, “)e stationary distribution of
the facultative population model with A degenerate noise,”
Statistics & Probability Letters, vol. 83, no. 2, pp. 655–664,
2013.

[19] Z. Zhang, X. Zhang, and J. Tong, “Exponential ergodicity for
population dynamics driven byα-stable processes,” Statistics
& Probability Letters, vol. 125, pp. 149–159, 2017.

[20] R.M. S. Costa, T. van Andel, P. Pavone, and S. Pulvirenti, “)e
pre-Linnaean herbarium of Paolo Boccone (1633–1704) kept
in Leiden ()e Netherlands) and its connections with the
imprinted one in Paris,” Plant Biosystems–An International
Journal Dealing with All Aspects of Plant Biology, vol. 152,
no. 3, pp. 489–500, 2018.

[21] G. Ferrauto, R. M. S. Costa, P. Pavone, and G. L. Cantarella,
“Human impact assessment on the Sicilian agroecosystems
through the evaluation of melliferous areas,” Annals of Bot-
any, vol. 3, 2013.

[22] A. Duro, V. Piccione, M. A. Ragusa, and V. Veneziano, “New
enviromentally sensitive patch index-ESPI-for MEDALUS

10 Discrete Dynamics in Nature and Society



protocol,” AIP Conference Proceedings, vol. 1637, pp. 305–312,
2014.

[23] A. Cuspilici, P. Monforte, and M. A. Ragusa, “Study of
Saharan dust influence on PM 10measures in Sicily from 2013
to 2015,” Ecological Indicators, vol. 76, pp. 297–303, 2017.

[24] X. Mao, G. Marion, and E. Renshaw, “Environmental
brownian noise suppresses explosions in population dy-
namics,” Stochastic Processes and 0eir Applications, vol. 97,
no. 1, pp. 95–110, 2002.

[25] X. Mao, “Stationary distribution of stochastic population
systems,” Systems & Control Letters, vol. 60, no. 6,
pp. 398–405, 2011.

[26] J. Bao, X. Mao, G. Yin, and C. Yuan, “Competitive lotka-
volterra population dynamics with jumps,” Nonlinear Anal-
ysis: 0eory, Methods & Applications, vol. 74, no. 17,
pp. 6601–6616, 2011.

[27] J. Bao and C. Yuan, “Stochastic population dynamics driven
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