
Research Article
A Novel Regret Theory-Based Decision-Making Method
Combined with the Intuitionistic Fuzzy Canberra Distance

Haiping Ren ,1 Yunxiao Gao,2 and Tonghua Yang3

1Teaching Department of Basic Subjects, Jiangxi University of Science and Technology, Nanchang 330013, China
2School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
3School of Vocational Education and Technology, Jiangxi Agricultural University, Nanchang 330045, China

Correspondence should be addressed to Haiping Ren; chinarhp@163.com

Received 17 August 2020; Revised 10 September 2020; Accepted 24 September 2020; Published 22 October 2020

Academic Editor: Stefania Tomasiello

Copyright © 2020 Haiping Ren et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In practical decision-making, the behavior factors of decision makers often affect the final decision-making results. Regret theory
is an important behavioral decision theory. Based on the regret theory, a novel decision-making method is proposed for the
multiattribute decision-making problem with incomplete attribute weight information, and the attribute values are expressed by
Atanassov intuitionistic fuzzy numbers. At first, a new distance of intuitionistic fuzzy sets is put forward based on the traditional
Canberra distance. (en, we utilize it for the definition of the regret value (rejoice) for the attribute value of each alternative with
the corresponding values of the positive point (negative point). (e objective of this method is to maximize the comprehensive
perceived utility of the alternative set by the decision maker. (e optimal attribute weight vector is solved, and the optimal
comprehensive perceived utility value of each alternative is obtained. Finally, according to the optimal comprehensive perceived
utility value, the rank order of all alternatives is concluded.

1. Introduction

Since Professor Zadeh introduced the concept of fuzzy set in
1965, it has been successfully applied in many fields such as
intelligent control, military engineering, economic predic-
tion, and decision-making [1–5]. Zadeh’s fuzzy sets have
been proved to be an effective tool to deal with fuzzy and
imprecise problems [6, 7]. However, in the process of solving
some decision-making problems, due to the limitation of the
time, energy, or incomplete knowledge of decision makers,
decision makers often hesitate, which makes the evaluation
results show three aspects: affirmation, negation, and hes-
itation. Traditional fuzzy sets cannot describe such problems
very well, so Professor Atanassov [8] extended fuzzy sets in
1986 and introduced the concept of intuitionistic fuzzy set
(IFS). By introducing the parameter of nonmembership
degree, IFS can express the information of affirmation and
negation at the same time; furthermore, it can describe the
fuzzy concept of “not this or that,” and then it can describe
the hesitation and uncertainty of the decision maker’s

judgment [9, 10]. Because of this, it can depict the fuzzy
essence of the objective world more delicately than Zadeh’s
fuzzy set in the processing mode. In recent years, the re-
search on the IFS theory has attracted great attention of
scholars and has been applied to the fields of economic
decision-making [11, 12], medical diagnosis [13, 14], image
processing [15, 16], pattern recognition [17, 18], fault tree
analysis [19, 20], and so on. Some other extensions of
Zadeh’s fuzzy set such as picture fuzzy set [6] and rough set
[21] all have received great attention and have many suc-
cessful applications in practice.

Most of the existing intuitionistic fuzzyMADMmethods
are based on the expected utility theory, which assumes that
decision makers are completely rational. However, decision
makers often have subjective preferences, such as psycho-
logical and behavioral factors whenmaking decision. So, it is
important to consider the subjective preferences of decision
makers in the decision process. As an important behavioral
decision-making theory, regret theory was firstly proposed
by Bell [22] and Loomes and Sugden [23]. In recent years,
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the research and application of the regret theory have
attracted many scholars’ attention [24–27]. Regret theory
holds that decision makers are concerned about the possible
results if they choose other schemes while considering the
results of schemes. If they find that they can get better results
by choosing other schemes, they will regret them psycho-
logically. Otherwise, they will be happy. (erefore, when
making a decision, the decision maker will estimate the
regret or rejoice that the decision may produce in advance
and try to avoid choosing the plan of expected regret; that is
to say, the decision maker is regret-averse. In this way, the
perceived utility value of the decision maker includes two
parts: the utility value of the current result and the perceived
utility value after comparing with other possible results,
“regret-rejoice” value. Chorus [28] and Qu et al. [29] pointed
out that the regret theory has some advantages over the
cumulative prospect theory in application. For example, in
decision-making, reference points need not be given, and
few parameters in the calculation formula were involved in
decision-making, which makes the calculation simpler [30].
In the decision-making model, regret theory replaces the
expected utility theory, and it is in line with the objective
reality of human beings [31].

Many information measures are proposed for fuzzy
sets, such as entropy, similarity, and distance [32]. In the
classical regret theory, the deviation involving two
numbers can be directly measured in accordance with the
absolute value of the difference between two numbers. To
measure the difference between two IFSs, we are required
to define the distance between two IFSs. Although many
intuitionistic fuzzy distance measures have been con-
structed, some existing distance measures have counter-
intuitionistic special cases, so it is very important to
develop new improved intuitionistic fuzzy distance
measures. Canberra distance, as a classical distance
measure, has been widely applied in image processing,
pattern recognition, and other fields based on the exact
number. Taking into account this distance measure, this
paper develops a novel intuitionistic fuzzy distance based
on the Canberra distance and further applies it to develop
a new intuitionistic fuzzy decision-making method
combined with the regret theory.

(e structure of this paper is as follows: Section 2 first
introduces the concept of IFS and then provides some
preliminaries of the regret theory. Section 3 puts forward a
new intuitionistic fuzzy distance measure based on the
traditional Canberra distance. Section 4 develops the
intuitionistic fuzzy multiattribute decision-making
(MADM) method based on the regret theory combined with
the proposed intuitionistic fuzzy Canberra distance. Section
5 provides an example, which explains the new method
through the example analysis. Finally, Section 6 is the
conclusion of this paper.

2. Preliminaries

Some basic concepts and properties of IFSs and regret theory
are reviewed in this section.

Definition 1 (see [8]). Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal
set. A set U is called an IFS in X if
U � < xi, μU(xi), ]U(xi)> | xi ∈ X􏼈 􏼉. Here, μU(xi) and
]U(xi) are the membership degree and nonmembership
degree of xi, respectively. (ey satisfy μU(xi), ]U(xi),
μU(xi) + ]U(xi) ∈ [0, 1] for ∀xi ∈ X. Let
πU(xi) � 1 − μU(xi) − ]U(xi); then, πU(xi) is called the
hesitancy degree of xi. Sometimes, IFS
U � < xi, μU(xi), ]U(xi)> | xi ∈ X􏼈 􏼉 is also expressed as
U � < xi, μU(xi), ]U(xi), πU(xi)> | xi ∈ X􏼈 􏼉.

Remark 1. Grzegorzewski [33] introduced the concept of
intuitionistic fuzzy number (IFN) as an extension of the IFS
in the continuous case, and intuitionistic fuzzy numbers
have many applications in the engineering field [34]. In
order to avoid confusion and for convenience, if there is only
one element in X, we call U an Atanassov intuitionistic fuzzy
number (AIFN). Each AIFN has a physical interpretation,
for example, if A�<0.6, 0.2, 0.2>, then μA � 0.6, ]A � 0.2,
and πA � 0.2, which can be interpreted as “the vote for
resolution is 6 in favor, 2 against, and 2 abstention.”

In actual decision-making process, most of the decision
makers are not so rational, so the decision maker’s behavior
factors need to be considered when making a decision. (e
prospect theory and regret theory are put forward in this
context. In the increasingly complex, modern, political, and
economic environment, decision makers need to consider
not only the results obtained after choosing a certain scheme
but also the possible decision results after assuming that
other alternatives are chosen. In the regret theory, the
perceived utility function is composed of two parts: the
utility function of current decision-making results and the
regret-rejoice function compared with other decision-
making results. Let a and b, respectively, represent the results
that can be obtained by selecting scheme A and scheme B.
(en, the perceived utility of decision makers for scheme A
is

u(a, b) � υ(a) + R(υ(a) − υ(b)). (1)

Among them, υ(θ) represents the utility value of scheme
θ and R(υ(a) − υ(b))is called regret-rejoice value. If
R(υ(a) − υ(b)) is positive, then it is called a rejoice value,
which indicates the extent to which the decision maker is
glad to choose the scheme or give up the scheme. If R(υ(a) −

υ(b)) is negative, then it is called a regret value, which
indicates the extent to which the decision maker regrets to
choose the scheme or give up the scheme. Obviously, the
regret gratification function R(·) should be monotonically
increasing and concave, i.e., it satisfies R′(·)> 0, R″(·)< 0,
and R(0) � 0. Loomes and Sugden [23] pointed out that
regret-rejoice function R(·)can be expressed as follows:

R(Δυ) � 1 − exp(−δΔυ). (2)

Here, δ > 0 is the regret avoidance coefficient of the
decision maker, and the greater δ related to, the larger the
regret avoidance degree of the decision maker. Δυ is the
difference between the utility value of any two schemes.
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Figure 1 shows the image of the regret-rejoice function with
different values.

Let Ai(i � 1, 2, . . . , m) be i-th alternatives, and ai is the
result of alternative Ai. According to the regret theory, in
decision analysis, when the positive ideal point is taken as
the reference point, the decision-making evaluation value
will not be greater than the positive ideal point, and at this
time, the decision maker will regret. When the negative ideal
point is taken as the reference point, the decision-making
evaluation value will not be less than the negative ideal point,
and at this time, the decision maker is happy. Note that xij is
the attribute evaluation value of scheme Ai under the
evaluation attribute oj given by the decision maker; then,
according to Loomes and Sugden [23], the regret value of
each attribute evaluation value xij of scheme Ai is related to
the corresponding attribute valuex+

j of the positive ideal
point, and the joy value of each attribute evaluation value xij

of scheme Ai is related to the corresponding attribute value
x−

j of the negative ideal point. (e gratification values can be
expressed as

R
1
ij � 1 − exp δ xij − x

+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

R
2
ij � 1 − exp −δ xij − x

−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

(3)

where δ > 0 is the regret avoidance coefficient of decision
makers.

A large number of psychological studies have shown that
regret, as a negative emotion, has a stronger effect on utility
than rejoice. (erefore, the decision maker’s comprehensive
regret-rejoice value for the evaluation value of scheme Ai

under the evaluation attribute oj is

Rij � R
1
ij + R

2
ij � 2 − exp δ xij − x

+
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 − exp −δ xij − x
−
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.

(4)

According to Loomes and Sugden [23], power function
υ(x) � xα, 0< α< 1, is used as a utility function of the at-
tribute value in this paper. (e greater the degree of risk
aversion of decision makers is, the smaller α is. α is called the
risk aversion coefficient of decision makers. It can be proved
that if Δυ0 > 0, there is |R(−δΔυ0)|>R(Δυ0). (is shows that
compared with Δυ0, decision maker’s psychological per-
ception is more sensitive to −Δυ0, that is, decision makers
are regret-averse.

3. A New Distance Based on the
Canberra Distance

In this section, we will propose a new distance measure
between two IFSs based on the Canberra distance. (e

Canberra distance of two real vectors x � (x1, x2, . . . , xn)

and y � (y1, y2, . . . , yn)is defined as follows (Perlibakas
[35]):

d(x, y) � 􏽘
n

i�1

xi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (5)

As an important information measure, Canberra dis-
tance has been successfully applied in image processing,
medicine, and other fields [36–38]. Due to the fact that the
denominator is zero, the numerical value is meaningless.
(en, we propose a revised version of the Canberra distance
measure as follows:

􏽘
n

i�1
d(x, y) � 􏽘

n

i�1

xi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 + xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (6)

Note that constant 2 can be changed as any other positive
numbers.

Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set. (en, for two
given IFSs, A � < xi, μA(xi), vA(xi), πA(xi)> | xi ∈ X􏼈 􏼉and
B � < xi, μB(xi), vB(xi), πB(xi)> | xi ∈ X􏼈 􏼉, and the new
intuitionistic fuzzy information measure based on Canberra
distance d(A, B) is constructed as follows:

d(A, B) �
1
n

􏽘

n

i�1

μA xi( 􏼁 − μB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 + μA xi( 􏼁 − μB xi( 􏼁
+

vA xi( 􏼁 + vB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 + vA xi( 􏼁 + vB xi( 􏼁
+

πA xi( 􏼁 + πB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 + πA xi( 􏼁 + πB xi( 􏼁
􏼢 􏼣. (7)
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Figure 1: Regret-rejoice function, RΔυ.
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Next, we will prove d(A, B) is a valid distance measure.
In this section, let R∗ be a set of nonnegative real numbers.

Lemma 1. Let a, b, c ∈ R∗ and a≤ b≤ c. 6en,

(i)
|a − c|

2 + a + c
≥

|a − b|

2 + a + b
,

(ii)
|a − c|

2 + a + c
≥

|b − c|

2 + b + c
,

(iii)
|a − c|

2 + a + c
≤

|a − b|

2 + a + b
+

|b − c|

2 + b + c
.

(8)

Lemma 2. Let a, b, c ∈ R∗ and d1(a, b) � (|a − b|)/
(2 + a + b); then,

d1(a, b)≤ d1(b, c) + d1(a, c). (9)

Proof. For the case 0≤ a≤ b≤ c, according to Lemma 1, we
have

(i) d1(a,c)≥d1(a,b); then, d1(a,b)≤d1(a,c) + d1(b,c)

(ii) d1(a,c)≥d1(b,c); then, d1(b,c)≤d1(a,c) + d1(a,b)

(iii) d1(a, c)≤d1(a, b) + d1(b, c)

(at is, d1(·, ·) satisfies trigonometric inequality. And we
can easily prove that d1(·, ·)satisfies trigonometric inequality
in other cases using a similar reasoning process. (en, the
conclusion is proved. □

Theorem 1. Let A � <xi, μA(xi), vA(xi)> | xi ∈ X􏼈 􏼉 and
B � < xi, μB(xi), vB(xi)> | xi ∈ X􏼈 􏼉 be two IFSs in
X � (x1, x2, . . . , xn). 6en, d(A, B) defined in (7) is a valid
distance measure between A and B. 6at is, d(A, B) satisfies
the following properties:

(i) d(A, B)≥ 0
(ii) d(A, B) � d(B, A)

(iii) d(A, B)≤d(B, C) + d(A, C), for any IFSs A, B,
and C

Proof
(i) Obviously, d(A, B)≥ 0.
(ii) d(B, A) � (1/n) 􏽘

n

i�1
[(|μB(xi) − μA(xi)|/2 + μB(xi) +

μA(xi)) + (|]B(xi) − ]A(xi)|/2 + ]B(xi) + ]A(xi)) +

(|πB(xi) − πA(xi)|/2 + πB(xi) + πA(xi))] �

(1/n) 􏽘
n

i�1
[(|μA(xi) − μB(xi)|/2 + μA(xi) + μB(xi)) +

(|]A(xi) − ]B(xi)|/2 + ]A(xi) + ]B(xi)) + (|πA

(xi) − πB(xi)|/2 + πA(xi) + πB(xi))] � d(A, B).

(iii) If A, B, andC are three IFSs, A � < xi,􏼈 μA(xi),

vA(xi)> | xi ∈ X}, B � <xi, μB(xi), vB(xi)>􏼈

| xi ∈ X}, and C � <xi, μC(xi), ]C(xi)> | xi ∈ X􏼈 􏼉,
then by (i) of Lemma 2, we have

d1 μA xi( 􏼁 + μB xi( 􏼁( 􏼁≤ d1 μB xi( 􏼁 + μC xi( 􏼁( 􏼁 + d1 μA xi( 􏼁 + μC xi( 􏼁( 􏼁,

d1 vA xi( 􏼁 + vB xi( 􏼁( 􏼁≤ d1 vB xi( 􏼁 + vC xi( 􏼁( 􏼁 + d1 vA xi( 􏼁 + vC xi( 􏼁( 􏼁,

d1 πA xi( 􏼁 + πB xi( 􏼁( 􏼁≤ d1 πB xi( 􏼁 + πC xi( 􏼁( 􏼁 + d1 πA xi( 􏼁 + πC xi( 􏼁( 􏼁,

(10)

while

d(A, B) �
1
n

􏽘

n

i�1
d1 μA xi( 􏼁 + μB xi( 􏼁( 􏼁 + d1 vA xi( 􏼁 + vB xi( 􏼁( 􏼁 + d1 πA xi( 􏼁 + πB xi( 􏼁( 􏼁􏼂 􏼃. (11)

Consequently, d(A, B)≤ d(B, C) + d(A, C)

(en, we complete the proof of (eorem 1.
If we consider the important degree of xi (i � 1, 2, . . . , n)

and let wi (i � 1, 2, . . . , n) be the important degree of

xi, (i � 1, 2, . . . , n), which satisfies wi ∈ [0, 1] and
􏽐

n
i�1 wi � 1, then we can get a weighted distance dW(A, B)

between A and B as follows:

dW(A, B) � 􏽘
n

i�1
wi

μA xi( 􏼁 − μB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 + μA xi( 􏼁 − μB xi( 􏼁
+

vA xi( 􏼁 + vB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 + vA xi( 􏼁 + vB xi( 􏼁
+

πA xi( 􏼁 + πB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 + πA xi( 􏼁 + πB xi( 􏼁
􏼢 􏼣. (12)

□
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Remark 2. If wi � 1/n, (i � 1, 2, . . . , n), then
dW(A, B) � d(A, B). Obviously, dW(A, B) is also a valid
distance, and the proof process is similar to d(A, B) in
(eorem 1.

4. A New Regret Theory-Based Decision-
Making Method

In this section, we will put forward a new intuitionistic fuzzy
MADM method based on the regret theory combined with
the above proposed distance. (e detail decision process is
shown in Figure 2.

For an intuitionistic fuzzy MADM problem, for the
convenience of description, the following symbols represent
the set or quantity in the decision:

X � x1, x2, . . . , xn􏼈 􏼉: the set of m alternatives (m≥ 2).
O � o1, o2, . . . , on􏼈 􏼉: the set of n attributes (n≥ 2),
where oj represents the jth attribute.
w � (w1, w2, . . . , wn)T: the vector of attributes’ weights.
(is is because in the decision-making process, dif-
ferent attributes usually have different importance.
Here, wj is the weight information of attribute
oj (j � 1, 2, . . . , n), satisfying wj ≥ 0 (j � 1, 2, . . . , n)

and 􏽐
n
j�1 wj � 1. When the attribute weight informa-

tion is partially known, the set of mathematical ex-
pressions that record the known partial weight
information is denoted by H.
xij � < μij, vij > : the evaluation value of alternative xi

given by the decision maker under attribute oj. (e
numbers μij and vij show the degree of satisfaction and
dissatisfaction of the decision maker with the value of
the alternative xi under the index oj, respectively. (ey
satisfy 0≤ μij ≤ 1, 0≤ vij ≤ 1, and 0≤ μij + vij ≤ 1.

Now, we can get an intuitionistic fuzzy decision-making
matrix 􏽥X � (xij)m×n. It is required to determine the order of
alternatives and choose the optimal alternative.

Now, we propose a new decision-making method based
on the regret theory. (e decision maker’s comprehensive
regret-rejoice value of the evaluation value xij � < μij, vij >
of scheme xi under the evaluation attribute oj is

Rij � R
1
ij + R

2
ij � 2− exp δd xij,x

+
j􏼐 􏼑􏽨 􏽩 − exp −δd xij,x

−
j􏼐 􏼑􏽨 􏽩.

(13)

In this paper, function υij(xij) � S(xij)
α, 0< α< 1, is

used as a utility function of the attribute value, and S(x) is
the score function of the AIFN. (en, the decision maker’s
perception utility function of the corresponding attribute
value xij of scheme xi can be expressed as

Fij � υij + Rij � 2 + S xij􏼐 􏼑
α

− exp δ d xij, x
+
j􏼐 􏼑􏽨 􏽩

− exp −δ d xij, x
−
j􏼐 􏼑􏽨 􏽩.

(14)

Next, we discuss the method to determine the attribute
weight of intuitionistic fuzzy MADM. Let H be the set of
known weight information. For each scheme xi, its com-
prehensive perceived utility function is

F xi( 􏼁 � 􏽘
n

j�1
wjFij

� 􏽘
n

j�1
wj 2 + S xij􏼐 􏼑

α
− exp δ d xij, x

+
j􏼐 􏼑􏽨 􏽩􏽮

− exp −δ d xij, x
−
j􏼐 􏼑􏽨 􏽩􏽯.

(15)

(e weight should be determined so that the greater the
comprehensive perceived utility, the better the scheme xi is.
(erefore, the following optimization model can be estab-
lished, and its objective function is

maxF � F x1( 􏼁, F x2( 􏼁, . . . , F xm( 􏼁( 􏼁. (16)

According to the fact that “the greater the compre-
hensive perceived utility, the better the scheme” and the fair
competition among the schemes aimed at the maximization
of the comprehensive perceived utility of the decision maker
to the scheme set, the optimization model for solving the
attribute weight is established as follows:

maxV � 􏽘
m

i�1
F xi( 􏼁

� 􏽘
m

i�1
􏽘

n

j�1
wj 2 + S xij􏼐 􏼑

α
− exp δ d xij, x

+
j􏼐 􏼑􏽨 􏽩􏽮

− exp −δ d xij, x
−
j􏼐 􏼑􏽨 􏽩􏽯,

s.t.

w ∈ H,

􏽐
n

j�1
wj � 1,

wj ≥ 0, j � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

(e optimal weight vector w∗ � (w∗1 , w∗2 , . . . , w∗m )T can
be obtained by solving the above model with MATLAB or
LINGO software.

(us, it can be seen that the optimal comprehensive
perceived utility value of the decision maker to scheme xi is

Hi � 􏽘

n

j�1
w
∗
j 2 + S xij􏼐 􏼑

α
− exp δ d xij, x

+
j􏼐 􏼑􏽨 􏽩􏽮

− exp −δ d xij, x
−
j􏼐 􏼑􏽨 􏽩􏽯.

(18)

Finally, according to the comparison of the optimal
comprehensive perceived utility value, the ranking results of
all schemes can be obtained. (e larger the value Hi is, the
better the corresponding alternative xi is.

Next, the calculation steps of the MADM method based
on the regret theory are given as follows:

Step 1: calculate the score Sij � μij − vij of attribute
value xij � < uij, vij > , and get the score matrix
S � (Sij)m×n.
Step 2: determine the positive and negative ideal point.
(e positive ideal point is defined as x+ �

(x+
1 , x+

2 , . . . , x+
n ), where x+

j � < 1, 0> , j � 1, 2, . . . , n
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(e negative ideal point is defined as x− �

(x−
1 , x−

2 , . . . , x−
n ), where x−

j � < 1, 0> , j � 1, 2, . . . , n

Step 3: calculate the distances d(xij, x+
j ) and d(xij, x−

j ),
where d(A, B) represents the intuitionistic fuzzy
Canberra distance between A � < μA, vA > and
B � < μB, vB > . (en,

d xij, x
+
j􏼐 􏼑 �

1 − μij

3 + μij

+
]ij

2 + ]ij

+
1 − μij − ]ij

3 − μij − ]ij

,

d xij, x
−
j􏼐 􏼑 �

μij

2 + μij

+
1 − ]ij

3 + ]ij

+
1 − μij − ]ij

3 − μij − ]ij

.

(19)

Step 4: according to equation (14), calculate the per-
ceived utility function value Fij of attribute value xij

corresponding to each alternative.
Step 5: establish optimization model (17), and calculate
the optimal weight vectorw∗ with the help ofMATLAB
software.
Step 6: the optimal weight obtained from Step 5 is
substituted into equation (18), and the comprehensive
perceived utility value of each alternative is obtained.
(e merits and demerits of the scheme are determined
according to the comprehensive perceived utility value
Hi. (e higher the value of Hi, the better the corre-
sponding alternative xi.

5. Numerical Example

(e effectiveness and practicability of this method are il-
lustrated by an example of assembly parts’ supplier selection

in Xu [39]. With the economic globalization and the con-
tinuous expansion of enterprise scale, the problem of sup-
plier selection has become an important management
decision-making problem that all large enterprises need to
seriously consider. Let a manufacturing company prepare to
find the best supplier in the world for purchasing the most
critical parts in the assembly process.

After the primary selection, there are five alternative
suppliers xi(i � 1, 2, 3, 4, 5). Now, the company will evaluate
the suppliers according to the following five evaluation
indicators (attributes): product price (o1), product quality
(o2), service performance (o3), supplier’s situation (o4), and
risk factors (o5). After experts’ discussion, the evaluation
values of each attribute of the candidate suppliers are finally
obtained. Suppose the manufacturing company invites N

experts to make the judgment. (ey are expected to answer
“Yes” or “No” or “I do not know” to the question whether
alternative xi satisfies attribute oj. Let QY(i, j) and QN(i, j)

denote the sum of “Yes” and “No,” respectively. (en, the
degrees to which alternative Ai satisfies and does not satisfy
attribute oj can be calculated as

μij �
QY(i, j)

N
,

vij �
QN(i, j)

N
.

(20)

(en, the evaluation values are expressed by AIFNs, as
shown in Table 1.

It is assumed that the attribute weight information is
partially known, and the attribute weight satisfies

H � w � w1, w2, . . . , w5( 􏼁
T

􏼌􏼌􏼌􏼌􏼌 w1 ≤ 0.3, 0.1≤w2 ≤ 0.2, 0.2≤w3 ≤ 0.5, 0.1≤w4 ≤ 0.3w3􏼚

− w1 ≤ 0.1, w4 ≥w1, w5 ≤ 0.4, w3 − w2 ≥w5 − w4􏼉.

(22)

Description of the fuzzy MADM model (consider attribute and alternative)

Describe attribute values by AIFNs 

Construct the new distance measure

Compute the comprehensive
perceived utility value of

each alternative

Construct the optimization
model by regret theory

Solve attributes’
weights

Rank all alternatives

Figure 2: (e calculation process of the intuitionistic fuzzy MADM model.
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Next, we use the proposed decision-making method to
sort the five suppliers and choose the best desirable supplier.

(ese suppliers are sorted according to
Hi(i � 1, 2, 3, 4, 5) from large to small. (e result is
x4≻x5≻x1≻x3≻x2, and supplier x4 is the best choice.

Step 1: calculate the score Sij � μij − vij of attribute
xij � < μij, vij > . (en, we get the score matrix
S � (Sij)5×5, and the calculation result is shown in
Table 2.
Step 2: determine the positive and negative ideal point.
(e positive ideal point is defined as

x
+

� x
+
1 , x

+
2 , . . . , x

+
5( 􏼁, (23)

where x+
j � < 1, 0> , j � 1, 2, . . . , 5.

(e negative ideal point is defined as

x
−

� x
−
1 , x

−
2 , . . . , x

−
5( 􏼁, (24)

where x−
j � < 0, 1> , j � 1, 2, . . . , 5.

Step 3: calculate the Canberra distances d(xij, x+
j ) and

d(xij, x−
j ), and the results are shown in Tables 3 and 4.

Step 4: the perceived utility function Fij of attribute xij

corresponding to each alternative is calculated. In this
paper, α � 0.88 and δ � 0.3 are used for calculation, and
the calculation results are shown in Table 5.
Step 5: according to equation (17), the following linear
programming model is established:

maxV � 1.8739w1 + 2.2942w2 + 1.5653w3

+ 2.2187w4 + 2.3540w5,

s.t.

w1 ≤ 0.3,

0.1≤w2 ≤ 0.2,

0.2≤w3 ≤ 0.5,

0.1≤w4 ≤ 0.3,

w3 − w1 ≤ 0,

w4 ≥w1,

w5 ≤ 0.4,

w3 − w2 ≥w5 − w4,

w1 + w2 + w3 + w4 + w5 � 1,

w1, w2, . . . , w5 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Solving model (25), we get the optimal attribute weight
vector w∗ � (0.1, 0.1, 0.2, 0.25, 0.35)T.
Step 6: calculate the comprehensive perceived utility
value of each alternative, and get

Table 1: Attribute evaluation value of each alternative supplier o1.

Suppliers
Evaluation attribute

o1 o2 o3 o4 o5

x1 <0.449, 0.370> <0.565, 0.162> <0.705, 0.232> <0.730, 0.170> <0.646, 0.354>
x2 <0.719, 0.188> <0.630, 0.232> <0.448, 0.378> <0.557, 0.160> <0.597, 0.192>
x3 <0.546, 0.192> <0.727, 0.182> <0.641, 0.322> <0.399, 0.200> <0.658, 0.192>
x4 <0.520, 0.337> <0.630, 0.100> <0.539, 0.271> <0.679, 0.188> <0.708, 0.198>
x5 <0.727, 0.128> <0.520, 0.299> <0.619, 0.318> <0.618, 0.229> <0.609, 0.120>

Table 2: Score matrix of attribute values of each alternative under
each attribute.

Suppliers
Evaluation attribute

o1 o2 o3 o4 o5

x1 0.0790 0.4030 0.4730 0.5600 0.2920
x2 0.5310 0.3980 0.0700 0.3970 0.4050
x3 0.3540 0.5450 0.3190 0.1990 0.4660
x4 0.1830 0.5300 0.2680 0.4910 0.5100
x5 0.5990 0.2210 0.3010 0.3900 0.4890

Table 3: Distance set between attribute values of each scheme and
corresponding values of PIS.

x+
1 x+

2 x+
3 x+

4 x+
5

x1 0.3989 0.3171 0.2141 0.1983 0.2475
x2 0.2059 0.2704 0.3991 0.3226 0.2951
x3 0.3314 0.2002 0.2554 0.4347 0.2509
x4 0.3473 0.2685 0.3364 0.2355 0.2137
x5 0.2010 0.3494 0.2730 0.2786 0.2843

Table 4: Distance set between attribute values of each scheme and
corresponding values of NIS.

x+
1 x+

2 x+
3 x+

4 x+
5

x1 0.4533 0.6054 0.5288 0.5768 0.4367
x2 0.5636 0.5417 0.4472 0.6076 0.5784
x3 0.5834 0.5672 0.4650 0.5833 0.5705
x4 0.4718 0.6488 0.5219 0.5705 0.5571
x5 0.6130 0.5018 0.4724 0.5458 0.6348

Table 5: Perceived utility function values of attribute values cor-
responding to each alternative.

Suppliers
Evaluation attribute

o1 o2 o3 o4 o5

x1 0.0739 0.3923 0.5591 0.6703 0.2657
x2 0.6186 0.4826 0.0060 0.3975 0.4545
x3 0.3341 0.6254 0.4041 0.1804 0.5028
x4 0.1167 0.5838 0.3110 0.6002 0.5441
x5 0.7307 0.2101 0.2850 0.3702 0.5868
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H1 � 0.4190,

H2 � 0.3698,

H3 � 0.3979,

H4 � 0.4728,

H5 � 0.4490.

(26)

According to the result of Xu [39], the ranking order is
x5≻x4≻x1≻x2≻x3, which is different from the result of this
paper. (is is because the optimization model established by
the score function in Xu [39] does not consider the influence
of the degree of hesitation on the ranking of IFSs.

Most of the existing intuitionistic fuzzyMADMmethods
are based on the expected utility theory assuming that de-
cisionmakers are completely rational. However, in the actual
MADM process, decision makers often have subjective risk
preferences, such as psychological and behavioral factors for
alternatives. So, it is important to consider the risk attitude
of decision makers in the decision process. In this article, a
new regret theory-based decision-making method is pro-
posed for the MADM problem in which attribute values are
expressed by AIFNs.

(e advantage and limitation of the proposed decision-
making method can be summarized as follows:

(1) (e comprehensive perceived utility value con-
structed in this paper not only considers the score
function but also considers the decision maker’s
regret gratification value; therefore, it is more in line
with the objective reality

(2) How to determine the most suitable values of pa-
rameters in the regret theory is its limitation

(e novelty of this paper is the proposition of a new
decision-making method based on the regret theory, which
can better reflect the psychological and behavioral factors of
the decision maker than many existing decision-making
methods. (is paper also develops a new weighting method
based on the intuitionistic fuzzy Canberra distance.

6. Conclusion

For the MADM problem in which attribute values are
expressed by AIFNs, this paper develops a new decision-
making method based on the regret theory combined with
an extension of the Canberra distance measure. (e main
contributions of this article are as follows:

(1) Regret theory can describe humans’ psychological
behavior under uncertain conditions more truth-
fully, and it can explain the phenomena that expected
utility theory cannot. Our decision-making method
considers the psychological factors of decision
makers based on the regret theory, which can be
more in line with the reality.

(2) (is article first constructs a new distance of IFSs
based on the traditional Canberra distance. (en, a
new weighting method is put forward by establishing
an optimization model, which is a model of the

maximum optimal comprehensive perceived utility
value under given weighting information. (e new
method enriches and develops the weight attribute
determination method.

(3) A numerical example of supplier selection is utilized
to show the effectiveness and feasibility of the pro-
posed method. (e proposed MADM method based
on the regret theory has advantages of simple cal-
culation process and easy software implementation.

In future, we will apply the proposed MADMmethod to
solve other decision-making problems, such as the risk
evaluation, system optimization, and material selection.
Furthermore, we will develop the new intuitionistic fuzzy
distance for the application of clustering analysis and image
processing.
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