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*e problem of cluster consensus with multiple leaders is called multitracking. In this article, a sort of multitracking of first-order
multiagent systems with adaptive coupling strength is studied by the application of adaptive strategy, and the delayed relation
between various leaders and clusters is considered. To reach the clusteredmultitracking goal, a novel pinning-like control protocol
with adaptive approach is designed according to the properties of network topology. In addition, the structure of the networked
system is a weakly connected digraph. Some conditions are derived to ensure that the nodes in the same cluster reach the
consensus via tracking their leader, while leaders will keep a delayed relation with the settled leader node as time goes on to form
the required delay consensus.

1. Introduction

Amultiagent system (MAS) is a networked system consisted
of multiple interconnected computerized agents. Consensus
is a sort of distributed coordination problem of MASs, and
one basic aim for the research is to design reasonable control
strategies so that all agents can achieve a common status
value. In the systemmodel related with consensus, the agents
are required to communicate with each other based on the
graph of the networked system so that they can cooperate
effectively to finish some desired tasks.

As one of the interdisciplinary research topics related to
the field of applied mathematics, control theory, and
computer science, consensus problem has attracted much
attention of both researchers and engineers thanks to its
wide application in the coordination problem of aerial ve-
hicles, satellite clusters, sensor networks, etc. In the past
decades, consensus problems have been explored from
various aspects in the existing research works [1–14], and
during this period, synchronization problems of complex
networks, which share similar control strategies with con-
sensus problems, have also been widely investigated [15–34].
*e study methods for the two coordination problems are
essentially the same.

Cluster consensus, as a sort of extended consensus
problems, means that all agents in one cluster achieve the
same target status while there exists no consensus for agents
among different clusters. As the scales and complexities of
complex systems increase, cluster consensus problem ex-
hibits more flexibility in practical applications, and it has a
more general concept than the original global consensus. In
fact, many multitasking issues need to be solved by parti-
tioning all the nodes into different clusters. It is familiar that
the clustered consensus phenomenon is very common in
practical circumstances, such as formation of group opin-
ions andmultispecies foraging.*e case of cluster consensus
with multileaders is usually called as multitracking, for
which the main aim is to make the reasonable controller
design so that the position or velocity status of nodes in each
cluster will be consistent with that of the leader.

Over the past decade, the study of coordination control
related to clustered structure has caused wide attention, and
an amount of research works on clustered networks have
been done from various aspects [2, 4–7, 9, 10,
13–15, 17–22, 31–33].

In [15], some simple and useful criteria are derived by
constructing an effective control scheme and adjusting
automatically the adaptive coupling strength. In [17],
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the article investigated the cluster synchronization with
time-varying coupling strengths and delayed dynamical
systems by applying pinning scheme. Ma et al. [9] in-
vestigated the second-order group consensus through
pinning control and leader-following approach, and the
pinning scheme is established by the structural properties
of the graph.

Based on the rationality of the existence of time delays in
the coordination system, many study works on clustered
networked systems with time delays have been done
[2, 15, 17, 22]. Ma et al. [2] have proposed the notion of
cluster-delay consensus. In [2], the authors find a method to
deal with problem on the delayed relations between different
clusters through the tracking process of the leader nodes. In
real situation, the notion of cluster-delay consensus may
imply that the nodes in different clusters should arrive at the
same position at different times, which means the possible
congestion can be avoided in the MASs.

As we know, the studies on cluster consensus models
which considered the possible existence of communication
links among the multiple leader nodes are relatively rare.

In real systems, the graph structure may be very com-
plicated and has the group pattern because of the accom-
plishment of multitasks which have some exact delayed
relations of final states. For instance, in the traffic system, to
avoid congestion and make roads orderly, time delays can be
designed among different sorts of vehicles.

It is familiar that an adaptive controller is a controller
that modifies its properties to adapt to changes in the dy-
namics properties of disturbances, and the adaptive control
([15, 16, 18, 35, 36]) strategy which acts on the coupling
strengths of networks is very effective in enhancing the
stability of consensus problem. In the study of clustered
coordinate control problem, many researchers use adaptive
approach to synchronize the complex network or to make
the MAS reach consensus.

*rough the above observations and the advantages of
adaptive control, an issue arises naturally: How can this sort
of multitracking problem be solved if the adaptive couplings
and the adaptive control method are involved, and what sort
of control strategy can be suitably designed for reaching the
consensus? For solving this problem, we establish multi-
tracking models with adaptive coupling strength, and this
sort of cluster consensus will be realized by designing
suitable adaptive control strategies.

Specifically, the novelties of this research are listed as
follows:

(i) *is article studies a novel multitrackingmodel with
adaptive coupling strength, and the delayed relation
among the states of agents in different clusters is
embodied through the tracking process for the
leading subsystem

(ii) Under the clustered digraph, a new pinning-like
control strategy combined with adaptive approach
is designed

(iii) Compared with similar problems on cluster con-
sensus, two kinds of time delays and two sorts of

adaptive coupling strengths are considered in this
paper

In this paper, the intrinsic dynamics of all followers and
leader nodes satisfy a Lipschitz-like condition. Lyapunov
method, matrix theory, and graph theory are used for de-
riving the results which can solve the multitracking problem.

*e rest part is organized as follows. Model description
and some preliminaries are given in Section 2. Section 3
includes the main results. Section 4 gives the numerical
simulations to verify the theoretical results, and Section 5 has
made the final conclusions.

Notation: throughout this article, R represents the set of
real numbers. Let Rn denotes the n-dimensional Euclidean
space and RM×N denotes the M × N real matrices. ON×N

denotes the zero matrix, and In is the n-dimensional identity
matrix. For a real matrix A ∈ RN×N, let AT be its transpose
and denote its symmetric matrix as As � (A + AT)/2, and
λ2(A) denotes the maximum eigenvalue of A. *e norm of a
vector is denoted by ‖x‖ � (xTx)1/2, for x ∈ Rn. For a real
symmetric matrix F, denote F< 0(F> 0), if F is negative
(positive) definite. For any two nonempty sets X and Y,
X∖Y denotes the complementary set ofY respect toX. ⊗
is the Kronecker product.

2. Model Description

In this research, the graph structure of aMAS is denoted by a
digraph B � V ,E,A{ }, where the vertex set
V � v1, v2, . . . , vN  denotes the agents, E⊆V × V is the edge
set, and A � [aij]N is the weighted adjacency matrix which
denotes the linking structure of the MAS. A directed edge of
B denoted by (vi, vj) means that there is a directed in-
formation link from vi to vj, which can be understood as vj

can receive information from vi. *e elements of A are
defined as follows: aij > 0, if (vj, vi) ∈ E; aij � 0, if
(vj, vi) ∉ E.

*e digraph is supposed to be simple [37] and weakly
connected. *e in-degree of node vi is defined as
degin(vi) � 

N
j�1,j≠ i aij. *e Laplacian matrix of B is

denoted by L � (lij) ∈ RN×N and is defined as lij � −aij, i≠ j.
lii � 

N
j�1,j≠ i aij, which ensures that 

N
j�1 lij � 0.

Let us consider a first-order multiagent network con-
sisting of N followers and m leader nodes. *e dynamics of
the follower with time-varying delay is modeled by

_xi(t) � f xi(t), xi(t − ς(t))(  + c(t) 
j≠ i

aij xj(t) − xi(t) 

+ ui(t), i � 1, 2, . . . , N,

(1)

where xi(t) ∈ Rn is the state of the ith node, ui(t) ∈ Rn is the
control input, and f(xi(t), xi(t − ς(t))) ∈ Rn is the intrinsic
nonlinear dynamics of the ith agent. c(t)> 0 is the time-
varying coupling strength. ς(t)> 0 is the inherent time-
varying delay.

Suppose the networked system has m clusters with
2≤m<N, and each cluster has one leader. Let Vr be the
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node set of the rth cluster, thus V � v1, v2, . . . , vN  �

V1 ∪V2 ∪ . . . ∪Vm and Vr ∩V s � ∅ (r, s � 1, 2, . . . ,

m; r≠ s). Let i be the subscript of the cluster that the ith
vertex belongs, i.e., vi ∈ Vi

. Let the leader set be
V∗ � v∗1 , v∗2 , . . . , v∗m . *e followers of the rth leader are the
nodes in Vr, r ∈ 1, 2, . . . , m{ }. Let Vr⊆Vr be subset of nodes
which can receive information from other clusters, i.e., for
any vertex vi ∈ Vr, there exists at least one node vj ∈ V∖Vp

such that aij ≠ 0.
*e leaders of clusters for system (1) are described by the

following equation:
_hw(t) � f hw(t), hw(t − ς(t))(  − cw hw(t) − h1 t − ςw( ( ,

w � 1, 2, . . . , m,

(2)

where hw(t) is the state of v∗k , cw > 0 is the coupling coef-
ficient between v∗w and v∗1 , and ςw is the time delay between
the v∗w and v∗1 , ς1 � 0 and ςw > 0, w � 2, . . . , m.

Remark 1. We can deduce from (2) that the linking
structure of the term −cw(hw(t) − h1(t − ςw)) implies a star
coupled digraph, which has v∗1 as its center vertex and v∗w as
its leaf vertex. *e multitracking model can be interpreted as
adding pinning communication links between agents of the
star subnetwork and the pinned nodes of the clustered
subnetwork (see Figure 1)

*e main goal of the research is to impose suitable
control effects ui(t) on subsystem (1) such that it can keep
pace with the subsystems (2) with pinning-like adaptive
approach. In the meantime, subnetwork (2) is designed to
reach the desired delayed consensus to be defined later. For

getting the main conclusions, the following definition and
assumptions are necessary.

Definition 1. *e MAS with delayed inherent dynamics (1)
and (2) is said to reach the delayed cluster consensus, if the
solutions of (1) and (2) satisfy limt⟶∞‖xi(t) − hi

(t)‖ � 0
and limt⟶∞‖hw(t) − h1(t − ςw)‖ � 0.

Remark 2. One can see from the dynamics that the
movement of v∗1 is determined by its own dynamic behavior.
In fact, the MAS with (1) and (2) can be interpreted as an
entire system consisting of two subsystems. *e entire
network is designed to achieve the delayed cluster consensus
via applying adaptive control strategies.

Assumption 1. *ere exist two positive constants θ and η,
such that

(ϕ(t) − φ(t))
T
(f(ϕ(t), ϕ(t − ς(t))) − f(φ(t),φ(t − ς(t))))

≤ θ(ϕ(t) − φ(t))
T
(ϕ(t) − φ(t)) + η(ϕ(t − ς(t)) − φ(t − ς(t)))

T
(ϕ(t − ς(t)) − φ(t − ς(t))),

(3)

for any φ(t), ϕ(t) ∈ Rn, where ς(t) is the time-varying delay
of intrinsic dynamic.

Assumption 2. *e inequalities 0< ς(t)≤ ς and 0< _ς(t)

≤ ϵ< 1 hold for the time-varying delay ς(t), where ς and ϵ
are constants.

Lemma 1 (see [9]). Based on the notations of Section 2, if
node vi ∈ Vi

∖Vi
, then 

N
j�1 lijhj

(t − ςj
) � 0.

Lemma 2 (see [38]). For matrices A,B,C, and D with
suitable dimensions, the following equations hold:

(i) (A + B)⊗C � A⊗C + B⊗C
(ii) (A⊗B)T � AT ⊗BT

Lemma 3 (see [11]). Let ϑ(·): [t0 − ς, +∞)⟶ [0, +∞) be a
continuous function and ϑ

.

(t)≤ − cϑ(t) + dϑ(t) holds for

t≥ t0, where ϑ(t) � sup−ς≤ζ≤0(ϑ(t + ζ)). If c>d> 0, then one
has

ϑ(t)≤ ϑ t0( exp −ϵ t − t0(  , t≥ t0, (4)

where ϵ> 0 satisfies the equation: ϵ − c + dexp ϵς{ } � 0.

3. Main Results

Since lij � −aij, i≠ j, and lii � 
N
j�1,j≠ i aij, (1) can be re-

written by

_xi(t) � f xi(t), xi(t − ς(t))(  − c(t) 
vj∈V

lijxj(t) + ui(t),

vi ∈ V .

(5)

*e consensus error in each cluster is as follows:

ξi(t) � xi(t) − hi
(t). (6)

*en the error system with (1) and (2) can be obtained:

1

23
Cluster1

Cluster2 Cluster3

4

6
5

7

8
9

Figure 1: *e graph of a multitracking model. *e kth leader is
denoted by triangle dot.*e i th agent is labelled with i and denoted
by circle dot, i � 1, 2, . . . , 12; k � 1, 2, 3.
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_ξi(t) � f xi(t), xi(t − ς(t))(  − f hi
(t), hi

(t − ς(t)) 

− c(t) 
N

j�1
lijξj(t) − c(t) 

N

j�1
lijhj

(t)

+ ci
hi

(t) − h1 t − ςi   + ui(t).

(7)

By the network structure and Lemma 1, the control input
ui(t) can be constructed as follows:

ui(t) �

−ci
hi

(t) − h1 t − ςi   + c(t) 
N

j�1
lijhj

(t) − c(t)diξi(t), vi ∈ Vi
,

−ci
hi

(t) − h1 t − ςi   − c(t)diξi(t), vi ∈ Vi
∖Vi
∧deg vi( in � 0,

−ci
hi

(t) − h1 t − ςi  , otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where c(t)> 0 is the adaptive coupling strength, di > 0 is the
feedback control gain, and the adaptive updating law is as
follows:

_c(t) � α
N

i�1
ξTi (t)ξi(t), (9)

where α> 0 is the adaptive gain.
For simplicity, the nodes in Vi

can be classified as
V i
1 � Vi

, V i
2 � vi|vi ∈ Vi

∖Vi
, deg(vi)in � 0 , and V i

3 � Vi
∖

(V i
1 ∪V

i
2). Let D � diag d1, d2, . . . , dN  with di > 0 for

vi ∈ (V i
1 ∪V

i
2) and di � 0 for vi ∈ V i

3.

Remark 3. By the form of controller (8), one can see that in
the kth cluster (k � 2, 3, . . . , m), each of the three types of
nodes has been controlled by individual scheme, i.e., to the
nodes vi ∈ (V i

1 ∪V
i
2), the first term is used for counteracting

the interaction between the leaders v∗k and v∗1 , while the third
term −c(t)diξi(t) is a feedback term exert on the ith node,
and it is applied to make the nodes reach the consensus intra
one cluster. *e second term applied to the nodes in vi ∈ Vi
is used to balance the interactions among clusters.

By (7) and (8), the error system with adaptive coupling
strength has the following description:

_ξi(t) � f xi(t), xi(t − ς(t))(  − f hi
(t), hi

(t − ς(t))  − c(t) 

N

j�1
lijξj(t) − c(t)diξi(t), vi ∈ Vi

. (10)

*us one can acquire the following theorem.

Theorem 1. Based on Assumptions 1 and 2, if the following
conditions hold:

(i) (θ − βc∗ + η/(1 − ε))< 0 and (βIN − D − L) is neg-
ative definite

(ii) λ< − a2

Den systems (1) and (2) with protocol (8) and adaptive
updating law (9) can solve the multitracking problem, i.e., the
delayed cluster consensus can be achieved.

Proof. Consider the following Lyapunov functional
candidate:

V(t) �
1
2



N

i�1
ξTi (t)ξi(t) +

η
(1 − ϵ)



N

i�1


t

t−ς(t)
ξTi (s)ξi(s)ds +

β c(t) − c
∗

 
2

2α
, (11)

where β and c∗ are positive constants.
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Denote ξ(t) � (ξT1(t), ξT2(t), . . . , ξTN(t))T, then under
Assumptions 1 and 2, by Lemma 1, the time derivative of
V(t) along the trajectories of (10) can be derived as follows:

V
.

(t) � 
N

i�1
ξTi (t) f xi(t), xi(t − ς(t))(  − f hi

(t), hi
(t − ς(t))  

− c(t) 

N

i�1


N

j�1
lijξ

T
i (t)ξj(t) − c(t) 

vi∈Vi

diξ
T
i (t)ξi(t) +

η
(1 − ϵ)



N

i�1
ξTi (t)ξi(t)

−
(1 − _ς(t)η)

(1 − ϵ)


N

i�1
ξTi (t − ς(t))ξi(t − ς(t))  + β c(t) − c

∗
( c

.

(t)

≤ θ
N

i�1
ξTi (t)ξi(t) + η

N

i�1
ξTi (t − ς(t))ξi(t − ς(t))

− c(t)ξT(t) L⊗ In( ξ(t) − c(t) 

vi∈Vi

diξ
T
i (t)ξi(t) +

η
(1 − ϵ)



N

i�1
ξTi (t)ξi(t)

−
(1 − _ς(t))η

(1 − ϵ)


N

i�1
ξTi (t − ς(t))ξi(t − ς(t)) 

+ β c(t) − c
∗

  

N

i�1
diξ

T
i (t)ξi(t)

� θξT(t)ξ(t) + ηξT(t − ς(t))ξ(t − ς(t)) − c(t)ξT(t) L⊗ In( ξ(t)

+
η

(1 − ϵ)
ξT(t)ξ(t) −

(1 − _ς(t))η
(1 − ϵ)

ξT(t − ς(t))ξ(t − ς(t)) 

+ βc(t)ξT(t) D⊗ In( ξ(t) − βc
∗ξT(t) IN ⊗ In( ξ(t)

− c(t)ξT(t) D⊗ In( ξ(t)

≤ θξT(t)ξ(t) − c(t)ξT(t) L⊗ In( ξ(t) +
η

(1 − ε)
ξT(t)ξ(t) − βc

∗ξT(t) IN ⊗ In( ξ(t)

+ βc(t)ξT(t) IN ⊗ In( ξ(t) − c(t)ξT(t) D⊗ In( ξ(t)

≤ ξT(t) θ − βc
∗

+
η

(1 − ϵ)
 IN ⊗ In + c(t) βIN − D − L( ⊗ In ξ(t).

(12)

One can acquire that (βIN − D − Q) is negative definite
for an appropriately small β and a sufficiently large c∗ can
ensure (θ − βc∗ + η/(1 − ϵ))< 0 holds, therefore, V

.

(t)≤ 0,
which further implies that limt⟶∞‖xi(t) − hi

(t)‖ � 0,
(i � 1, 2, . . . , N) holds for the solutions of (1) and (2) with
any initial values.

On the other aspect, for achieving the delayed consensus
among leader nodes, the error for system (2) is denoted by

ϱw(t) � hw(t) − h1 t − ςw( . (13)

*en the error system is denoted by

Discrete Dynamics in Nature and Society 5



ϱ
.

w(t) � f hw(t), hw(t − ς(t))(  − f h1 t − ςw( , h1 t − ςw − ς(t)( (  − cwϱw(t), w � 2, . . . , m. (14)

*e Lyapunov function candidate is established as
follows:

V
∗
(t) �

1
2



m

w�2
ϱTw(t)ϱw(t). (15)

Denote ϱ∗(t) � (ϱT2(t), . . . , ϱTm(t))T; then system (2) can
reach the LDC by the following derivation:

V
∗

.

(t) � 
m

w�2
ϱTw(t) f hw(t), hw(t − ς(t))(  − f h1 t − ςw( , h1(t − ς(t)) − ςw(  

− 
m

w�2
cwϱ

T
w(t)ϱw(t)≤ a1 

m

w�2
ϱTk (t)ϱk(t) − 

m

w�2
cwϱ

T
w(t)ϱw(t) + a2 

m

w�2
ϱw(t − ς(t))( 

Tϱw(t − ς(t))

≤ ϱ∗T(t) a1IN −Θ( ⊗ In ϱ∗(t) + 2a2 sup
0≤ς(t)≤ς

V
∗
(t − ς(t))( 

≤ 2λV∗(t) + 2a2 sup
0≤ς(t)≤ς

V
∗
(t − ς(t))( ,

(16)

where λ � λmax(a1IN − Θ) and Θ � diag(α2, . . . , αm).
*erefore, by Lemma 3 and the condition λ< − a2, we have

V
∗
(t)≤ sup

0≤ς(0)≤ς
V
∗
(−ς(0))( exp −ϵt{ },

where ϵ satisfies ϵ + 2λ + 2a2exp ϵς{ } � 0 and ϵ > 0.

(17)

*en one can derive that the delayed consensus among
leaders can be achieved in this situation, and therefore, the
delayed cluster consensus can be reached under controller
(8); furthermore, the uncertain parameters c(t) adapt itself
to some certain values, i.e., c(t)⟶ c∗; thus, the multi-
tracking problem under the adaptive approach is solved, and
this completes the proof. □

Remark 4. In view of subsystem (2), if cw is time varying and
it is described by the form cw(t) � pwq(t), in which q(t) is
the coupling strength and pw is the corresponding coupling
weights. Set the adaptive updating law as the form:
_q(t) � δ

m
w�2 pwϱTw(t)ϱw(t), where δ > 0 is the adaptive

gain, and thus the second theorem can be obtained.

Theorem 2. Suppose Assumptions 1 and 2 hold, based on
Remark 4, if q(t) satisfies the following updating law:

_q(t) � δ 
m

w�2
pwϱ

T
w(t)ϱw(t), (18)

and if the following conditions hold:

(i) (θ − βc∗ + η/(1 − ϵ))< 0 and (βIN − D − L) is neg-
ative definite

(ii) ((a1 + ρ/(1 − ε))Im−1 − q∗Ξ) is negative definite

Den systems (1) and (2) under controller (8) with adaptive
updating law (9) can solve the multitracking problem.

Proof. *e proof of the first part is similar to that of *e-
orem 1, and to the leading system, we condiser the following
Lyapunov functional candidate:

V
∗
(t) �

1
2



m

w�2
ϱTw(t)ϱw(t) +

1
2δ

q(t) − q
∗

( 
2

+
ρ

(1 − ε)


m

i�2


t

t−τ(t)
ϱTi (s)ϱi(s)ds,

(19)

where the constant q∗ is positive. Denote
ϱ∗(t) � (ϱT2(t), . . . , ϱTm(t))T,Ξ � diag(q2, q3, . . . , qm), and
choose ρ≥ a2, and then we have
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V
∗

.

(t)≤ a1 

m

w�2
ϱTw(t)ϱw(t) + a2 

m

w�2
ϱw(t − ς(t))( 

Tϱw(t − ς(t)) − 
m

w�2
pwq(t)ϱTw(t)ϱw(t)

+ 

m

w�2
pwq(t)ϱTw(t)ϱw(t) − q

∗


m

w�2
pwϱ

T
w(t)ϱw(t) +

ρ
(1 − ε)



m

w�2
ϱTw(t)ϱw(t) −

(1 − _ς(t))ρ
(1 − ε)

,



m

w�2
ϱw(t − ς(t))( 

Tϱw(t − ς(t))≤ a1 

m

w�2
ϱTw(t)ϱw(t) − q

∗


m

w�2
pwϱ

T
w(t)ϱw(t)

+
ρ

(1 − ε)


m

w�2
ϱTw(t)ϱw(t) � ϱ∗Tw (t) a1 +

ρ
(1 − ε)

 Im−1 − q
∗Ξ ⊗ In ϱ∗w(t).

(20)

Some sufficiently large q∗ can be chosen so that ((a1 +

ρ/(1 − ε))Im−1 − q∗Ξ) is negative definite, then V∗
.

(t)≤ 0,
therefore, the delayed consensus among leaders can be
achieved, and therefore, the multitracking problem can be
solved, that is, the delayed cluster consensus can be reached.
Further, c(t)⟶ c∗ and q(t)⟶ q∗, and the proof is
completed. □

Remark 5. Since the connected undirected graph does not
exist vertex with zero in-degree, the control protocol (8) for
the network with undirected graph can be simplified as
follows:

ui(t) �

−ci
(t) hi

(t) − h1 t − ςi   + c(t) 
N

j�1
lijhj

(t) − c(t)diξi(t), vi ∈ Vi
,

−ci
(t) hi

(t) − h1 t − ςi  , vi ∈ Vi
∖Vi

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

Under (21), a corollary similar to the previous theorem
can be derived, and it is omitted here.

Remark 6. MAS-related problems have been widely analyzed
in many fields, such as robotic systems [39], sensor networks
[40], and neural networks [41]. Since different networks may
contain the same or similar graph structures, the study of one
network may shed light on other related networks. One may
consider some classical graph structures of the networks, such
as neural network, to study the similarity and do some en-
lightening works in the future research.

4. Numerical Examples

In this part, simulation examples are given to check the
correctness of the theorem. Consider a MAS composed of
three clusters with 9 nodes, and the corresponding graph is
shown in Figure 1.

*e nodes are labelled with an ascending sequence from
1 to 9. *e purple arrows describe the pinning control that
the kth leader put on the nodes with specific topological
properties (k � 1, 2, 3). *e blue edges denote the interac-
tions among clusters, and the black edges represent the

communication links inside each cluster. *rough (8) and
Figure 1, we know that the red vertexes (labelled by 3,5,7,9)
belong to Vi

1, the yellow vertexes (2,4,6,8) belong to Vi
3, and

the green vertex (labelled by 1) belongs to Vi
2. It is assumed

that the dimensional dynamical system of each agent is one-
dimensional.

Example 1. *e nonlinear function f is described by
f((xi(t)), xi(t − ς(t))) � 0.5sin(xi) − 0.5cos(xi(t − ς(t))),
where xi(t), xi(t − ς(t)) ∈ R, and ς(t) � 0.25tanh(t). *e
elements lij of graph Laplacian in (5) are chosen as follows:
l21 � −1, l22 � 2, l23 � −1, l31 � −1, l33 � 2, l34 � −1, l44 � 1,

l45 � −1, l55 � 2, l56 � −1, l59 � −1, l64 � −1, l66 � 1, l71 � −1,

l76 � 1, l86 � − 1, l87 � 2, l88 � −1, l93 � −1, l99 � 1, and if the
subscripts of lij are not involved above, then set lij � 0.

*e parameters in the adaptive controller (8) with
updating law (9) are selected as follows: c1 � 0, c2 � 2, c3 �

1; ς1 � 0, ς2 � 0.5, ς3 � 1; d1 � 2, d3 � 1.5, d5 � 2, d7 � 1,

d9 � 0.5, and α � 0.05.
In view of Assumption 1, let β � 0.2, then (IN − D −

L)< 0 holds, set θ � 0.3, η � 0.7, and ϵ � 0.3, one has
(θ − c∗ + η/(1 − ε))< 0, choose a1 � 0.2, a2 � 0.1, and thus,
the conditions of *eorem 1 can be satisfied. *e states
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of all nodes are shown in Figures 2–4, and their initial
conditions are as follows: x1(0) � −1.5, x2
(0) � 1.75, x3(0) � 3.5, x4(0) � −0.5, x5(0) � −2.5, x6(0) �

0.8, x7(0) � 1.5, x8(0) � −0.8, x9(0) � 1.2; h1(0) �

0.8, h2(0) � −1.2, and h3(0) � 0.6. *e state changes of
leaders are shown in Figure 5. *e initial value of c(t) is
chosen as c(0) � 0.1, the orbit of coupling strength c(t) is
shown in Figure 6, one can see that c(t) adaptively adjusts
with c(t)⟶ 2, the two error states of the two subnetworks,
i.e., ξi(t) and ξw(t) both convergence to zero, and the
delayed cluster consensus is indeed achieved.

Example 2. *is example shares the same nonlinear function
f with Example 1. Choose the same Laplacian matrix
L �(lij)9×9 with the previous example, and set the initial values
as h1(0) � 0.8, h2(0) � −1.2, h3(0) � 0.6; c1 � 0, c2(0) �

0.02, c3(0) � 0.05; x1 (0) � −1.5, x2(0) � 1.75, x3(0) � 3.5,

x4(0) � −0.5, x5(0) � −2.5, x6(0) � 0.8, x7(0) � 1.5, x8 (0)

� −0.8, x9(0) � 1.2; ς(0) � 0; c(0) � 0.1, q(0) � 0.01 . Let the
parameters in the control protocol be ς1 � 0, ς2 � 0.5, ς3 � 1,

d1 � 2, d3 � 1.5, d5 � 2, d7 � 1, d9 � 0.5; α � 0.05, δ � 0.1;

p1 � 1, p2 � 0.5, p3 � 0.2; in view of Assumptions 1 and 2, set
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Figure 2: State trajectories of cluster 1.
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a1 � 0.2, a2 � 0.15, ρ � 0.2, and ε � 0.25, and thus, the
conditions of*eorem 2 can be satisfied.*e description of the
state changes of all nodes is shown in Figures 7–10.*e change
curves of the adaptive couplings c(t) and ck(t) are shown in
Figure 11, and one can see that c(t), ck(t) adapt themselves to
certain values.

It can be seen that the simulation verifies the effec-
tiveness well, and the newly defined multitracking problem
is indeed solved.

5. Conclusion

In this work, a type of multitracking problem with adaptive
coupling strength named delayed cluster consensus has been
investigated. By considering the graph properties of the
clustered network, a new pinning-like control scheme with
adaptive approach has been designed. Some sufficient cri-
teria for solving the multitracking problem have been ob-
tained. *ere still exist lots of works on the similar
multitracking problem with MAS deserving further study,
for example, multitracking issue with higher order system,
multitracking with impulsive control, multitracking with
switching topology, etc., and some of the problems might be
done in one’s future research.
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