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Deep convolutional neural networks have been successfully applied to face detection recently. Despite making remarkable
progress, most of the existing detection methods only localize each face using a bounding box, which cannot segment each face
from the background image simultaneously. To overcome this drawback, we present a face detection and segmentation method
based on improved Mask R-CNN, named G-Mask, which incorporates face detection and segmentation into one framework
aiming to obtain more fine-grained information of face. Specifically, in this proposed method, ResNet-101 is utilized to extract
features, RPN is used to generate Rols, and RoIAlign faithfully preserves the exact spatial locations to generate binary mask
through Fully Convolution Network (FCN). Furthermore, Generalized Intersection over Union (GIoU) is used as the bounding
box loss function to improve the detection accuracy. Compared with Faster R-CNN, Mask R-CNN, and Multitask Cascade CNN,
the proposed G-Mask method has achieved promising results on FDDB, AFW, and WIDER FACE benchmarks.

1. Introduction

Face detection is a key link of subsequent face-related ap-
plications, such as face recognition [1], facial expression
recognition [2], and face hallucination [3], because its effect
directly affects the subsequent applications performance.
Therefore, face detection has become a research hotspot in
the field of pattern recognition and computer vision and has
been widely studied in the past two decades.

Large amounts of approaches have been proposed for
face detection. The early research on face detection [4-9]
mainly focused on the design of handcraft feature and used
traditional machine learning algorithms to train effective
classifiers for detection and recognition. Such approaches
are limited in that the efficient feature design is complex and
the detection accuracy is relatively low. In recent years, face
detection methods based on deep convolutional neural
network [10-13] have been widely studied, which are more
robust and efficient than handcraft feature methods. Besides,
a series of efficient object detection frameworks are used for

face detection to improve detection performance [14-18],
including R-CNN [19], Fast R-CNN [20], and Faster R-CNN
[21]. These methods mainly implement face detection and
the location of the face bounding box, which may have some
drawbacks such as the extracted face features have back-
ground noise, spatial quantization is rough and cannot be
accurately positioned. These drawbacks will directly affect
the follow-up subsequent face-related applications, such as
face recognition, facial expression recognition, and face
alignment [22]. Therefore, it is necessary to study a face
detection and segmentation method.

Mask R-CNN [23], an improved object detection model
based on Faster R-CNN, has an impressive performance on
various object detection and segmentation benchmarks such
as COCO challenges [24] and Cityscapes dataset [25]. Unlike
traditional R-CNN series methods, Mask R-CNN adds a
mask branch for predicting segmentation masks on each
Region of Interest (Rol), which can fulfil both detection and
segmentation tasks. In order to fulfil both face detection and
segmentation tasks from the image to overcome the


mailto:zhaohuimin@gpnu.edu.cn
mailto:jujianlv@gpnu.edu.cn
https://orcid.org/0000-0001-6153-3722
https://orcid.org/0000-0002-6877-2002
https://orcid.org/0000-0001-7294-4172
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9242917

drawbacks of the existing methods, a face detection and
segmentation method based on improved Mask R-CNN (G-
Mask) is proposed in this paper. In particular, our scheme
introduces Generalized Intersection over Union (GIoU) [26]
as the loss function for bounding box regression to improve
detection accuracy of face detection. The main contributions
of this paper are as follows:

(1) A new dataset was created (more details are de-
scribed in Section 4.1), which annotated 5115 images
randomly selected from the FDDB [27] and
ChokePoint datasets [28].

(2) A face detection and segmentation method based on
improved Mask R-CNN was proposed, which can
detect faces correctly while also precisely segmenting
each face in an image. Furthermore, the proposed
method improves the detection performance by
introducing GIoU as a bounding box loss function.
The experimental results verify that our proposed
G-Mask method achieves promising performance on
several mainstream benchmarks, including the
FDDB, AFW [29], and WIDER FACE [30].

The remainder of this paper is organized as follows.
Section 2 briefly reviews the related work. The G-Mask
framework for face detection and segmentation is described
in detail in Section 3. Section 4 presents the experiment and
discussion of the proposed method. In the last section, the
work is summarized and the direction of future work is
proposed.

2. Related Work

Face detection as one of the important research directions of
computer vision has been extensively studied in recent years.
From the development process of face detection, we can
simply classify previous work as handcraft feature based and
neural networks based methods.

2.1. Handcraft Feature Based Methods. With the appearance
of the first real-time face detection method called Viola-
Jones [4] in 2004, face detection has begun to be applied in
practice. The well-known Viola-Jones can perform real-time
detection using Haar feature and cascaded structure, but it
also has some drawbacks, such as large feature size and low
recognition rate for complex situations. To address these
concerns, a lot of new handcraft features are proposed, such
as HOG [5], SIFT [6], SUFT [7], and LBP [8], which have
achieved outstanding results. Apart from the above
methods, one of the significant advances was Deformable
Part Model (DPM), proposed by Felzenszwalb et al. [9]. In
the DPM model, the face is represented as a set of de-
formable parts, and the improved HOG feature and SVM are
used for detection, achieving remarkable performance. In
general, the advantages of handcraft features are that the
model is intuitive and extensible, and the disadvantage is
that the detection accuracy is limited in the face of multi-
objective tasks.

Discrete Dynamics in Nature and Society

2.2. Neural Networks Based Methods. As early as 1994,
Vaillant et al. [10] first proposed using neural network to
detect faces. In this work, Convolutional Neural Networks
(CNN) is used to classify whether each pixel is part of a face
and then determine the location of the face through another
CNN. After that, the researchers did a lot of research based
on this work. In recent years, the deep learning approaches
has significantly promoted the development of the computer
vision technology, including face detection. Li et al. [11]
proposed a cascade CNN network architecture for rapid face
detection, which is a multiresolution network structure that
can quickly eliminate background regions in the low-res-
olution stage and carefully evaluate challenging candidates
in the last high resolution stage. Ranjan et al. [12] proposed a
deformation part model based on normalized features
extracted by deep convolutional neural network. Yang et al.
[13] proposed a method called Convolutional Channel
Feature (CCF) by combining the advantages of both filtered
channel features and CNN, which has a lower computational
cost and storage cost than the general end-to-end CNN
method.

Recently, witnessing the significant advancement of
object detection using region-based methods, researchers
have gradually applied the R-CNN series of methods to face
detection. Qin et al. [14] proposed a joint training scheme for
CNN cascade, Region Proposal Network (RPN), and Fast
R-CNN. In [15], Jiang et al. trained the Faster R-CNN model
by using WIDER dataset and verified performance on the
FDDB and IJB-A benchmarks. Sun et al. [16] improve the
Faster R-CNN framework through a series of strategies such
as multiscale training, hard negative mining, and feature
concatenation. Wu et al. [17] proposed a different scales face
detection method based on Faster R-CNN for the challenge
of small-scale face detection. Liu et al. [18] proposed a
cascaded backbone branches fully convolutional neural
network (BB-FCN) and used facial landmark localization
results to guide R-CNN-based face detection. The neural
networks based methods are already the mainstream of face
detection because of its high efficiency and stability. In this
work, we propose a G-Mask scheme, which achieves fairly
progress in face detection task compared to the original
architecture.

3. Improved Mask R-CNN

3.1. Network Architecture. The proposed method is extended
from the Mask R-CNN [23] framework, which is the state-
of-the-art object detection scheme and demonstrated im-
pressive performance on various object detection bench-
marks. As stated in Figure 1, the proposed G-Mask method
consists of two branches, one for face detection and the other
for face and background image segmentation. In this work,
the ResNet-101 backbone is used to extract the facial features
of the input image, and the Region of Interest (Rol) is rapidly
generated on the feature map through the Region Proposal
Network (RPN). We also use the Region of Interest Align
(RoIAlign) to faithfully preserve exact spatial locations and
output the feature map to a fixed size. At the end of the
network, the bounding box is located and classified in the
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FiGURE 1: Network architecture of the G-Mask.

detection branch, and the corresponding face mask is
generated on the image in the segmentation branch through
the Fully Convolution Network (FCN) [31]. In the following,
we will introduce the key steps of our network in detail.

3.2. Region Proposal Network. For images with human faces
in our daily life, there are generally some face objects with
different scales and aspect ratios. Therefore, in our approach,
Region Proposal Network (RPN) generates Rols by sliding
windows on the feature map through anchors with different
scales and different aspect ratios. Details are shown in
Figure 2. The largest rectangle in the figure represents the
feature map extracted by the convolutional neural network,
and the dotted line indicates that the anchor is the standard
anchor. Assume that the standard anchor size is 64 pixels,
and the three anchors it contained represent three anchors
with aspect ratiosof 1:1,1:2,and 2: 1. The dot-dash line and
the solid line represent the anchors of 32 and 128 pixels,
respectively. Similarly, each of them also has three aspect
ratios anchors. For traditional RPN, the above three scales
and three aspect ratios are used to slide on the feature map to
generate Rols. In this paper, we use 5 scales (162, 322, 642,
128%, and 256%) and 3 aspect ratios (1:1, 1:2, and 2:1),
leading to 15 anchors at each location, which was more
effective in detecting objects of different scales.

3.3. RolAlign Layer. G-Mask, unlike the general face de-
tection methods, has a segmentation operation, which re-
quires more refined spatial quantization for feature
extraction. In the traditional region-based approaches,
RoIPool is the standard operation for extracting small
feature map from Rols, which have two quantization op-
erations that result in misalignments between the Rol and
the extracted features. For traditional detection methods,
this may not affect classification and localization, while for
our approach, it has a great impact on prediction of pixel-
accurate masks, as well as for small object detection.

In response to the above problem, we introduced the
RolAlign layer, following the scheme of [23]. As shown in
Figure 3, suppose the feature map is divided into 2 x 2 bins.

Fixed size output

. L] '
""""" “7777 7 Pooling
777777777 L J 0737” LJ L] ””5”””””

FiGure 3: Bilinear interpolation in RolIAlign, where the dashed
background grid represents the feature map, the solid grid rep-
resents an Rol (with 2x2 bins in this example), and the dots
represent the four sample points in each bin.

It can be seen that the RolAlign layer cancels the harsh
quantization operations on the feature map and uses bilinear
interpolation to preserve the floating-number coordinates,
thereby avoiding misalignments between the Rol and the



extracted features. The bilinear interpolation function has
two steps, which are defined as follows:

Interpolate on the x-axis direction as follows:
X —x

(R ) = f(Qll) f(Q21) R, = (x,yl),
(1)
F(Ry) = f(le) — S (Qa) Ro=(v)
(2)

Interpolate on the y-axis direction as follows:

V2= y=n
P) = f(x,y) =~ 22— f(R R)),
FP)=f(xy) yz—ylf( 1)+y2_y1f( 2 (3)

where f (x, y) is the value of the sampling point P, f(Q,,),
f(Q3), f(Qy), and f(Q,,) are the values of the four
nearby grid points Q= (x,¥1), Q= (x5, ¥,),
Q,; = (x5, ¥1),and Q,, = (x5, ¥,),and f (R,), f (R,) are the
value obtained by interpolating in the x-axis direction.

3.4. Mask Branch. The mask branch realizes the seg-
mentation of face object and background image in
G-Mask model, which predicts the segmentation mask in
a pixel to pixel manner by applying Full Convolutional
Network (FCN) [31] to each Rol. The FCN scheme is one
of the solutions for instance segmentation, which orig-
inates from CNN but is also different from general CNN.
For the traditional CNN network architecture, in order to
obtain the feature vector of fixed dimensions, the con-
volutional layer is generally connected with several full
connection layers, and finally the output is a numerical
description of the input, which is generally applicable to
tasks such as image recognition and classification, object
detection, and positioning. The FCN framework is similar
to the traditional CNN network, which also includes the
convolutional layer and the pooling layer. In particular,
the FCN uses the deconvolution to up-sample the feature
map in the end convolution layer so that the output image
size can be restored to the original image size, and finally
uses the Softmax classifier to predict the category of each
pixel.

3.5. Generalized Intersection over Union. Bounding box re-
gression, as one of the fundamental components of many
computer vision tasks, deserves further study by researchers
[32]. However, unlike the architecture and feature extraction
strategy improvement researches, which have made great
progress in recent years [33], the research of bounding box
regression has lagged behind somewhat. The Generalized
Intersection over Union (GIoU) [26], as the latest metric and
bounding box regression method, demonstrates state-of-
the-art results on various object detection benchmarks by
incorporating with the general object detection frameworks.
For traditional IoU, there are two weaknesses when it is used
as a metric or a bounding box regression loss: (a) the IoU
value is zero when two objects do not overlap, making it
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difficult to optimize the nonoverlapping bounding boxes; (b)
the IoU value may be the same when two objects intersect in
different orientations, so the IoU function does not reflect
how the two objects overlap. To overcome these drawbacks,
GIoU not only focuses on the situation where two objects
overlap but also considers the situation of nonoverlapping.
The details of the GIoU metric are shown in Figure 4.
Suppose B, = (x?, 9%, x2, y) and B, = = (x7, y7,x3, yJ) are
the coordinates of an object’s predlcted bounding box and
the ground-truth bounding box, where x, > x, and y, > y,
in Bp and By; then, the area of them is

Ay =(xf =) x (5 = 5T), (4)
Ay = (x5 =) x(y3 - y)) (5)

The coordinates and area of intersection I of B, and B,
can be calculated as

X = max(xf, x?), ©)
x; = min(xg, xg),
y) = max(y?, y7), -
y, = min(y5, y9),

DY (v =), if x> x, yh >y
Az{(xz x) x (vy = yh), i xh>xq, 5> 04 (8)

i .
0, otherwise.

Similarly, the smallest enclosing box B, can be found
through

x{ = min(xf, x{), o)

x5 = max(xf, xg),
y; = min(yf, y7), (10

¥y =max(y1, y7),

and the area of B, can be computed as
Ac = (x5 = %) x (2 = 20)- (11)

The ToU between Bp and B, is defined as

IoU = # (12)

Ayt A, A

Therefore, GIoU can be calculated by the definition of

(A 4y A1)

A (13)

GIoU = IoU —

(4

3.6. Loss Function. The proposed G-Mask model consists of
two stages, which are the same as the general region-based
model. In the first stage, RPN proposes the candidate
bounding boxes of the object face. The second stage, follow
the Fast R-CNN architecture, extracts features from each
candidate box and then performs classification and
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FiGuRre 4: Illustration of GIoU metric. The solid line indicates the
prediction box and ground truth box, the dotted line indicates the
smallest enclosing box, and the shaded portion indicates the in-
tersection of the prediction box and the ground truth box.

bounding box location. In addition, like the Mask R-CNN,
we added a mask branch parallel to the classification branch
and the bounding box location branch. Therefore, we define
a multitasking objective function, which includes classifi-
cation loss L, bounding box location loss L, and seg-
mentation loss L ,q. Our loss function for each image is
defined as

L=1L5 +Li,+L; (14)

‘mask *

In (14), the classification loss Ly, and segmentation loss
L.« are defined the same as in Mask R-CNN. For the
bounding box loss, we found that GIoU can better respond
to face detection tasks through several experiments com-
pared with the traditional bounding box regression method.
Therefore, in this paper, we introduced GIoU as a bounding
box loss function. In more detail, the classification loss is
defined as in

éls ({pl _—ZLcls(pz’pz) (15)

where N is the minibatch size, i is the index of an anchor
in a minibatch, and p; is the prediction probability of
whether anchor i is a face target. The ground-truth label
p =1 if the anchor is positive, and p; =0 when the
anchor is negative. The classification loss Ly, of each
anchor is log loss of whether an object is a face, which is
defined as

Lys(pi» pi*) = -[pilog p; + (1 = pi* )log (1 - p;)]. ~ (16)

For bounding box loss, we introduce GIoU as the loss
function, and the definition of GIoU metric is described in
(13), so the loss bounding box function is defined as follows:

=1-GIoU. (17)

box

For segmentation box loss, we adopt the average binary
cross-entropy loss, which is defined in

. 1 - _
Lmask:_W Z [yijlogyfj-l—(l_yi]')log(l_yfj)]’ (18)

1<i,j<m

where y;; is the label value of a cell (4, j) for the region of size
m x m and ¥, is the predicted value of the k-th class of this
cell. L% . is only defined on a specific mask, which is related
to the ground-truth class k, and other mask outputs do not
affect the loss.

4. Experiments

4.1. Experimental Setup. Unlike object detection and generic
face detection, there are no off-the-shelf face datasets with
masks annotation that can be employed to train our model
[34]. Therefore, the first step of our work is to create a new
dataset with mask annotations. In order to enhance the
reliability of the samples, we selected 5115 samples from
FDDB and ChokePoint datasets and annotated them with
masks labels. After the annotation work, we trained the
G-Mask model on this dataset.

For implementation, we adopt Keras [35] framework to
train the G-Mask model in Ubuntu 16.04. ResNet-101 [36] is
used as the backbone network architecture in our work. In
the training phase, the G-Mask model is train on afore-
mentioned dataset for 150,000 iterations (where the epoch is
50 and the steps of per epoch are 3000) with the learning rate
set to 0.001 and the weight decay rate set to 0.0001. We
randomly sample one image per batch for training [37], in
which the short side of each image was resized to 800 and the
long side was resized to 1024. In the RPN part, Rols is
generated by sliding the window on the feature map through
anchors of different scales and different aspect ratios. It will
have 2000 Rols kept after nonmaximum suppression, and
the Rols will only be considered as foreground if its IoU with
the ground truth is greater than 0.5. The testing phase
settings are the same as the training phase, and the region
proposal is considered to be a face only if the confidence
score is greater than 0.7. The training and testing process is
carried out on the same server, which is a Xeon E5 CPU of
128GB flash memory and NVIDIA GeForce GTX
1080Ti GPU.

4.2. Experimental Results. In this work, G-Mask model not
only realized the bounding box localization of the face target
but also separated the face information from the background
image by binary mask, so that more detailed face infor-
mation could be obtained through the above process. The
comparison experiment was carried out on three popular
face benchmark datasets, including FDDB, AFW, and
WIDER FACE.
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Ficure 5: Comparisons of face detection with other methods on FDDB benchmark.

FiGure 6: Different detection results of Mask R-CNN and G-Mask in the complex scene of FDDB dataset. (a) Mask R-CNN model and

(b) G-Mask model.

The FDDB [27] dataset is a well-known face detection
evaluation dataset and benchmark, which contains 2845
images of 5171 human faces. In this dataset, the faces of each
image come from different scenes, which is quite chal-
lenging. We compared several methods on the FDDB
dataset, including Faster R-CNN [15], Mask R-CNN [23],
Pico [38], Viola-Jones [39], and Koestinger [40]. For ef-
fective comparison, the training data of the G-Mask, Mask
R-CNN, and Faster R-CNN models are the same, which is
the dataset constructed in this work. We compared the true
positive rates at 1500 false positives, and the results are
shown in Figure 5. It can be seen from Figure 5 that G-Mask

performs better than Faster R-CNN when there are more
than 160 false positives. When there are more than 280 false
positives, the performance of G-Mask is better than that of
Mask R-CNN. Furthermore, our method can achieve
88.80% true positive rate in 1500 false positives, which
exceeded all the comparison methods. The comparison
results of the FDDB dataset show that our proposed
G-Mask method has achieved promising results, demon-
strating that our method can segment face information
while detecting effectively. Some detection results of the
Mask R-CNN and G-Mask models in the complex scenario
of FDDB dataset are shown in Figure 6. It is obvious that
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FIGURE 9: More results of G-Mask method.

the G-Mask model performs better in the multiscale face The AFW dataset [29] is a face dataset and benchmark
task, which demonstrates the effectiveness of the proposed  established by using Flickr image, which contains 205 images
method in face detection. with 473 labeled faces. The precision-recall curve of our method
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TaBLE 1: Running time of different region-based methods.

Running time (s)

Method

FDDB AFW ChokePoint
R-CNN 14.75 15.32 14.51
Fast R-CNN 3.12 3.08 2.84
Faster R-CNN 0.30 0.32 0.28
Mask R-CNN 0.32 0.35 0.33
G-Mask 0.35 0.42 0.33

on the AFW benchmark is shown in Figure 7, and it can be seen
that the G-Mask method achieved 95.97% average precision
(AP). Although our dataset has a different label format from the
AFW benchmark, as well as the moderately sized training
dataset, we also demonstrate the generalization of our method.

WIDER FACE [30], one of the largest and most chal-
lenging face detection datasets in the open source data, has
32,203 images and 393,703 labeled faces. In this dataset,
various changes in the face size, pose, and occlusion have
brought great challenges to face detection, and the dataset is
divided into easy, medium, and hard subsets according to
the difficulty level. To further demonstrate the detection
performance of our proposed method, we trained the
G-Mask model on WIDER FACE dataset and verified it on
the validation dataset. The proposed method is compared
with several major methods including MSCNN [42], CMS-
RCNN [43], ScaleFace [44], Multitask Cascade CNN [45],
and Faceness-WIDER [46]. The precision-recall curves of
G-Mask method on the WIDER FACE benchmark are
shown in Figure 8. It can be seen that our method obtained
0.902 AP in the easy subset, 0.854 AP in the medium subset,
and 0.662 AP in the hard subset, which exceeded most of the
comparison methods. Compared with the state-of-the-art
MSCNN method, the AP value of the proposed method is
only 0.014 lower in the easy subset and 0.049 lower in the
medium subset. There are some gaps between G-Mask and
MSCNN methods on hard subset. The reason may be that
the MSCNN method uses a series of strategies for small-scale
faces detection and thus they can deal with more challenging
cases. Nevertheless, the G-Mask method still achieves
promising performance, which demonstrates the effective-
ness of the G-Mask method.

We further demonstrate more qualitative results of
G-Mask method in Figure 9. It can be observed that the
proposed method can detect faces correctly while also
precisely segmenting each face in an image.

We also compared the running time of different region-
based methods in the a series of dataset such as FDDB,
AFW, and ChokePoint. The WIDER FACE dataset was not
used for testing because the running time of the hard and
easy subset on the WIDER FACE was quite different. We
randomly selected 100 images from each of the above
datasets to test and calculate their average time, and the
results are reported in Table 1. We can clearly see that
Faster R-CNN has the shortest running time because of its
relatively simple structure, while the proposed method has
a running time similar to Mask R-CNN. Compared with
Faster RCNN method, G-Mask adds a segmentation
branch, which leads to an increase in computational

complexity. However, the G-Mask method can achieve
higher accuracy with less time consumption compared with
other region-based methods and can also obtain more
detailed face information through segmentation branches
while accurately locating.

5. Conclusions

In this paper, a G-Mask method was proposed for face
detection and segmentation. The approach can extract
features by ResNet-101, generate Rols by RPN, preserve the
precise spatial position by RolAlign, and generate binary
masks through the full convolutional network (FCN). In
doing so, the proposed framework is able to detect faces
correctly while also precisely segmenting each face in an
image. Experimental results with self-built face dataset as
well as public available datasets have verified that our
proposed G-Mask method achieves promising performance.
For the future work, we will consider improving the speed of
the proposed method.
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