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)is paper studies single-machine due-window assignment scheduling problems with truncated learning effect and resource
allocation simultaneously. Linear and convex resource allocation functions under common due-window (CONW) assignment are
considered. )e goal is to find the optimal due-window starting (finishing) time, resource allocations and job sequence that
minimize a weighted sum function of earliness and tardiness, due window starting time, due window size, and total resource
consumption cost, where the weight is position-dependent weight. Optimality properties and polynomial time algorithms are
proposed to solve these problems.

1. Introduction

Scheduling models and problems with learning effects (see
Biskup [1]; Lu et al. [2]; Azzouz et al. [3]; Wang et al. [4])
and/or resource allocations (see Shabtay and Steiner [5];
Yang et al. [6]) have become popular topics for scheduling
researchers in recent years. Scheduling with learning effects
and resource allocations simultaneously was introduced by
Wang et al. [7], who focused on single-machine scheduling
problems. Lu et al. [8] studied single-machine due-date
assignment scheduling with learning effects and resource
allocations. )ey proved that several problems can be solved
in polynomial time. Wang and Wang [9] and Li et al. [10]
considered common and slack due-window assignment
problems with learning effects and resource allocations.
Wang andWang [11] considered single-machine scheduling
problems with learning effects and convex resource allo-
cation function. For the scheduling criterion (the total re-
source compression criterion) minimization subject to the
constraint that the total resource compression criterion (the
scheduling criterion) is less than or equal to a fixed constant,
they proved that the problems can be solved in polynomial
time.Wang et al. [12] and Liu and Jiang [13] considered due-

date assignment scheduling with job-dependent learning
effects and resource allocation. Liu and Jiang [14] considered
flow shop due-date assignment scheduling with resource
allocation and learning effect. Shi and Wang [15] considered
flow shop due-window assignment scheduling with resource
allocation and learning effect.

In recent years, many researchers focused on the study of
scheduling with due-window, where a time interval is as-
sumed, such that jobs completed within this interval are not
penalized (Janiak et al. [16] andWang et al. [17]). Wang et al.
[18] considered the single-machine due-window scheduling
problems with position-dependent weights. For the
weighted sum of earliness and tardiness, due window
starting time, and due window size, where the weight only
dependent on its position in a sequence (i.e., a position-
dependent weight), they proved that the problems can be
solved in polynomial time. In this study, we continue the
work of Wang et al. [18], i.e., we consider the due-window
assignment scheduling problems with learning effect and
resource allocation in the single-machine environment. )e
goal is to find the optimal due-window starting (finishing)
time, resource allocations, and job sequence such that a sum
of scheduling cost (including weighted sum function of
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earliness and tardiness, due window starting time, due
window size, where the weight is position-dependent
weight) and total resource consumption cost is minimized.
)e contributions of this paper are given as follows. (1) )e
structural properties of single-machine scheduling problems
are derived. (2) For the linear resource allocation, we proved
that the sum of scheduling cost and total resource con-
sumption cost can be solved in polynomial time. For the
convex resource allocation, three versions of scheduling cost
and total resource consumption cost can be solved in
polynomial time respectively. (3) It is further extended the
model to the case with slack due-window (SLKW) assign-
ment model.

)e rest of the article is organized as follows: In Section
2, we introduce the problem. In Sections 3 and 4, we provide
some properties to optimally solve these problems under
linear and convex resource allocation. In Section 5, we
conclude the paper.

2. Problem Formulation

We study a scheduling problem consisting of a set of n

independent jobs N � J1, J2, . . . , Jn􏼈 􏼉 that need to be pro-
cessed on a single machine. For the linear resource allo-
cation, the actual processing time of job Jj is

P
A
j � 􏽥pj max r

αj , δ􏼈 􏼉 − βjuj, (1)

where 􏽥pj is the basic processing time of job Jj (i.e., the
processing time without any resource allocation and trun-
cated learning effect), αj ≤ 0 is the job-dependent learning
rate (Mosheiov and Sidney [19]) of job Jj, 0< δ < 1 is a
truncation parameter (Wang et al. [20]), βj is the com-
pression rate of job Jj, and ujis the amount of resource
allocated to job Jj and satisfies
0≤ uj ≤ uj ≤ ((􏽥pj max rαj , δ{ })/βj).

For the convex resource allocation, the actual processing
time of job Jj is

P
A
j �

􏽥pj max rαj , δ{ }

uj

􏼠 􏼡

η

, (2)

where η> 0 is a constant, i.e., PA
j is a convex decreasing

function of resource uj.
Let [d1, d2]be the common due-window for all jobs,

where d1 ≥ 0(d2, d1 ≤d2) denotes the starting (finishing)
time of the common due window. )e length of the due-
window is D � d2 − d1. Both d1 and d2are decision variables
in this paper. )e goal of this paper is to find jointly the
optimal due-window location, the optimal resource

allocation and sequence π such that the following objective
function is minimized:

Z d1, d2, π( 􏼁 � 􏽘
n

j�1
wjL[j] + w0d1 + wn+1D + 􏽘

n

j�1
v[j]u[j],

(3)

where [j] denotes the job scheduled in jth position, wj(j �

0, 1, 2, . . . , n, n + 1) denotes a position- dependent weight,
L[j] is the earliness-tardiness of job J[j], and

L[j] �

d1 − C[j], for d1 >C[j],

0, for d1 ≤C[j] ≤d2,

C[j] − d2, for C[j] >d2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where C[j] is the completion time of job J[j], j � 1, 2, . . . , n.
Using the three-field classification, the problem can be
denoted as 1|CONW, PA

j | 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D +

􏽐
n
j�1 v[j]u[j], where PA

j ∈ 􏽥pj max rαj , δ{ } − βjuj, ((􏽥pj max􏽮

rαj , δ{ })/uj)
η} (Graham et al. [21]), where CONW denotes

the common due-window assignment. Wang et al. [18]
considered single-machine scheduling problems with
CONW and slack due-window (SLKW) assignments
problems 1|CONW| 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D and

1|SLKW| 􏽐
n
j�1 wjL[j] + w0q′ + wn+1D; for the SLKW model,

[dj
′, dj
″] is the due-window of job Jj such that dj

′ ≤ dj
″, where

dj
′ � PA

j + q′, dj
″ � PA

j + q″, j � 1, 2, . . . , n lim
x⟶∞

, q′ and q″
are decision variables and D � q″ − q′. Wang et al. [18]
proved that these both problems can be solved in O(n log n)

time, respectively.

3. Linear Resource Allocation

Lemma 1 [Wang et al. [18]]. For any given sequence π, there
exists an optimal sequence in which d1 � C[k] for some k and
d2 � C[l] for some l, l≥ k, where 􏽐

k− 1
i�0 wi ≤wn+1 ≤􏽐

k− 1
i�0 wi, and

􏽐
n
i�l+1 wi ≤wn+1 ≤ 􏽐

n
i�l wi.

Lemma 2. .e objective function of the problem
1|CONW, PA

j | 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]u[j]

can be written as

􏽘

n

j�1
wjL[j] + w0d1 + wn+1D + 􏽘

n

j�1
v[j]u[j] � 􏽘

n

j�1
ξjP

A
[j] + 􏽘

n

j�1
v[j]u[j],

(5)

where

ξj � 􏽐
j− 1

h�0
wh, for j � 1, 2, . . . , k; wn+1, for j � k + 1, k + 2, . . . , l; 􏽘

j− 1

h�0
wh, for j � l + 1, l + 2, . . . , n.

⎧⎨

⎩ (6)
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Proof. From Lemma 1, we have

Z d1, d2, π( 􏼁 � w0C[k] + 􏽘
k− 1

j�1
wj C[k] − C[j]􏼐 􏼑 + 􏽘

n

j�l+1
wj C[j] − C[l]􏼐 􏼑 + wn+1 C[l] − C[k]􏼐 􏼑 + 􏽘

n

j�1
v[j]u[j]

� w0 􏽘

k

j�1
P

A
[j] + 􏽘

k− 1

j�1
wj 􏽘

k

h�j+1
P

A
[h]

⎛⎝ ⎞⎠ + 􏽘
n

j�l+1
wj 􏽘

l

h�j+1
P

A
[h]

⎛⎝ ⎞⎠ + wn+1 􏽘

l

h�k+1
P

A
[h]

⎛⎝ ⎞⎠ + 􏽘
n

j�1
v[j]u[j]

� 􏽘
k

j�1
P

A
[j] 􏽘

j− 1

h�0
wh

⎛⎝ ⎞⎠ + 􏽘
n

j�l+1
P

A
[j] 􏽘

n

h�j

wh
⎛⎝ ⎞⎠ + wn+1 􏽘

l

j�k+1
P

A
[j]

⎛⎝ ⎞⎠ + 􏽘
n

j�1
v[j]u[j]

� 􏽘
n

j�1
ξjP

A
[j] + 􏽘

n

j�1
v[j]u[j],

(7)

where ξj (j � 1, 2, . . . , n) are given by (6).
From Lemma 2, we have

Z d1, d2, π( 􏼁 � 􏽘

n

j�1
wjL[j] + w0d1 + wn+1D + 􏽘

n

j�1
v[j]u[j]

� 􏽘
n

j�1
ξj

􏽥p[j] max r
αj , δ􏼈 􏼉 − β[j]u[j]􏼐 􏼑 + 􏽘

n

j�1
v[j]u[j]

� 􏽘
n

j�1
ξj

􏽥p[j] max r
α[j] , δ􏼈 􏼉 + 􏽘

n

j�1
v[j] − ξjβ[j]􏼐 􏼑u[j].

(8)

From (8), for a given sequence, the optimal resource
allocation u∗[j] with v[j] − ξjβ[j] < 0 should be u[j]; otherwise,
u∗[j] � 0, i.e., the optimal resource allocation of job J[j] is

u
∗
[j] �

0, if , v[j] − ξjβ[j] ≥ 0,

u[j], if , v[j] − ξjβ[j] < 0.

⎧⎨

⎩ (9)

For a given sequence, from (8), we can obtain the op-
timal resource allocation. In order to determine the optimal

sequence, let xjr � 1 if job Jj(j � 1, 2, . . . , n) is scheduled at
position r (r � 1, 2, . . . , n), and xjr � 0, otherwise. )en, the
problem 1|CONW, PA

j � 􏽥pj max rαj , δ{ } − βju| 􏽐
n
j�1 wjL[j] +

w0d1 + wn+1D + 􏽐
n
j�1 v[j]u[j] can be solved by the following

assignment problem:

Min 􏽘
n

r�1
􏽘

n

j�1
Ψjrxjr, (10)

S.T. 􏽘
n

r�1
xjr � 1, j � 1, 2, . . . , n, (11)

􏽘

n

j�1
xjr � 1, r � 1, 2, . . . , n, (12)

xjr � 0 or 1, j � 1, 2, . . . , n, (13)

where

Ψjr �
ξr

􏽥pj max r
αj , δ􏼈 􏼉, if vj − ξrβj ≥ 0, j, r � 1, 2, . . . , n,

ξr
􏽥pj max r

αj , δ􏼈 􏼉 + vj − ξrβj􏼐 􏼑uj, if v[j] − ξrβj < 0, j, r � 1, 2, . . . , n.

⎧⎪⎨

⎪⎩
(14)

And ξr (r � 1, 2, . . . , n) are given by (6).
Based on the above analysis, the problem 1|CONW,

PA
j � 􏽥pj max rαj , δ{ } − βju| 􏽐

n
j�1wjL[j] +w0d1 + wn+1D + 􏽐

n
j�1

v[j]u[j] can be optimally solved by the following
algorithm. □

Algorithm 1

Step 1. Calculate the indices k and l according to
Lemma 1.
Step 2. Calculate the values Ψjr by using (14).
Step 3. Solve the assignment problem (10)–(13) to
determine the optimal job sequence.

Step 4. Calculate the optimal resource allocation by (7).
Step 5. Calculate d1 � C[k], d2 � C[l].

Theorem 1. .e problem 1|CONW, PA
j � 􏽥pj max rαj , δ{ }−

βju| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]u[j] can be

solved by Algorithm 1 in O(n3) time.

Proof. )e correctness of Algorithm 1 follows from the
above analysis. )e time complexity of Step 1 is O(n) time,
Step 2 is O(n2) time, Step 3 is O(n3) time, Step 4 is O(n), and
5 is O(n) time. )us, the overall computational complexity
of Algorithm 1 is O(n3).
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In order to illustrate Algorithm 1 for 1|CONW, PA
j �

􏽥pj max rαj , δ{ }− βju| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]

u[j], we present the following example. □

Example 1. Data: n � 7, δ � 0.6, w0 � 19, w1 � 20, w2 � 12,

w3 � 7,w4 � 14, w5 � 24,w6 � 22, w7 � 15,w8 � 22, and the
other corresponding parameters shown in Table 1.

Solution:

Step 1. According to Lemma 1, k� 1,l� 6.
Step 2. From (5), ξ1 � 19 , ξ2 � ξ3 � ξ4 � ξ5 � ξ6 � 22,

ξ7 � 15, and the values Ψjr are given in Table 2.
Step 3. Stemming from the assignment problem
(8)–(11), the optimal job sequence is π � (J4, J7, J2, J6,

J1, J5, J3).
Step 4. From (7), the optimal resource allocation is
u4 � 1, u7 � 5, u2 � 3, u6 � 4, u1 � 5, u5 � 2, u3 � 0.
Step 5. Calculate d1 � C[1] � C4 � 7, d2 � C[6] � C5 �

22.67617, and 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 wj

L[j] � 886.8757.

4. Convex Resource Allocation

4.1. Problem 1|CONW, PA
j � (􏽥pj max rαj , δ{ }/uj)| 􏽐

n
j�1 wjL[j]

+ w0d1 + wn+1D + 􏽐
n
j�1 v[j]u[j]. From Lemma 2 and

PA
j � ((􏽥pj max rαj , δ{ })/uj)

η, we have

􏽘

n

j�1
wjL[j] + w0d1 + wn+1D + 􏽘

n

j�1
v[j]u[j]

� 􏽘
n

j�1
ξj

􏽥pj max rαj , δ{ }

uj

􏼠 􏼡

η

+ 􏽘
n

j�1
v[j]u[j],

(15)

where ξj (j � 1, 2, . . . , n) are given by (6).
By taking the first derivative of the objective given by (15)

with respect to u[j], equating it to zero and solving it for J[j],
we have (16).

Lemma 3. For a given sequence, the optimal resource allo-
cation of the problem 1|CONW, PA

j � (􏽥pj max rαj , δ{ }/uj)|

􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]u[j] is

u
∗
[j] �

ηξj

v[j]

􏼠 􏼡

(1/η+1)

× 􏽥p[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)
. (16)

By substituting (16) into (15), we have

􏽘

n

j�1
ξjP

A
[j] + 􏽘

n

j�1
v[j]u[j] � η(− η/η+1)

+ η(1/η+1)
􏼐 􏼑

􏽘

n

j�1
v[j]

􏽥p[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)
ξj􏼐 􏼑

(1/η+1)
.

(17)

Let

Ψjr � η(− η/η+1)
+ η(1/η+1)

􏼐 􏼑 vj
􏽥pj max r

αj , δ􏼈 􏼉􏼐 􏼑
(η/η+1)

ξr( 􏼁
(1/η+1)

,

(18)

where ξr (r � 1, 2, . . . , n) are given by (6).
As in Section 3, for the problem 1|CONW, PA

j �

(􏽥pj max rαj , δ{ }/uj)| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]

u[j], we can propose the following algorithm:

Algorithm 2

Step 1. Calculate the indices k and l according to
Lemma 1.
Step 2. Calculate the values Ψjr by using (18).
Step 3. Solve the assignment problem (10)–(13) to
determine the optimal job sequence.
Step 4. Calculate the optimal resource allocation by
(16).
Step 5. Calculate d1 � C[k], d2 � C[l].

Theorem 2. Algorithm 2 solves the problem 1|CONW, PA
j �

(􏽥pj max rαj , δ{ }/uj)| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]

u[j] in O(n3) time.
In order to illustrate Algorithm 2 for 1|CONW, PA

j �

(􏽥pj max rαj , δ{ }/uj)| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D + 􏽐

n
j�1 v[j]

u[j], we present the following example.

Example 2. Consider n � 7, δ � 0.6, η � 2, w0 � 9, w1 � 8,
w2 � 12, w3 � 7, w4 � 14, w5 � 24, w6 � 5, w7 � 15, w8 � 22,
and the other corresponding parameters shown in Table 3.

Solution:

Step 1. According to Lemma 1, k� 2,l� 5.
Step 2. From (5), ξ1 � 9, ξ2 � 17, ξ3 � ξ4 � ξ5 � 22,
ξ6 � 20, ξ7 � 15, and the valuesΨjr are given in Table 4.
Step 3. Stemming from the assignment problem
(8)–(11), the optimal job sequence is π � (J2, J1, J3,

J7, J6, J5, J4).
Step 4. From (14), the optimal resource allocation is
u2 � 10.91533, u1 � 10.71178, u3 � 11.53352, u7 �

5.841858, u6 � 9.501238, u5 � 9.251873, u4 � 5.013141.

Table 1: Data for Example 1.

Jj J1 J2 J3 J4 J5 J6 J7

􏽥pj 23 17 19 10 18 16 9
αj − 0.32 − 0.24 − 0.33 − 0.25 − 0.28 − 0.3 − 0.29
βj 2 3 1 3 4 2 1
vj 3 14 30 9 6 15 20
uj 5 3 6 1 2 4 5
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Step 5. Calculate d1 � C[2] � C1 � 3.370785, d2 �

C[5] � C6 � 6.0368777, and 􏽐
n
j�1 wjL[j] + w0d1+

wn+1D + 􏽐
n
j�1 v[j]u[j] � 440.6014.

4.2. Problem 1|CONW, PA
j � ((􏽥pj max rαj , δ{ })/uj)

η, 􏽐
n
j�1

v[j]u[j] ≤U| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D. In this section, we

aim to minimize the following cost function 􏽐
n
j�1 wjL[j] +

w0d1 + wn+1D subject to 􏽐
n
j�1 v[j]u[j] ≤U, 1|CONW, PA

j �

((􏽥pj max rαj , δ{ })/uj)
η, 􏽐

n
j�1 v[j]u[j] ≤U| 􏽐

n
j�1 wjL[j] + w0d1+

wn+1D where U is a limitation on the total resource con-
sumption cost. Obviously, in an optimal solution for the
problem 1|CONW, PA

j � ((􏽥pj max rαj , δ{ })/uj)
η, 􏽐

n
j�1 v[j]u[j]

≤U| 􏽐
n
j�1 wjL[j] + w0d1 + wn+1D the constraint will be

satisfied as 􏽐
n
j�1 v[j]u[j] � U.

Lemma 4. For a given sequence, the optimal resource allo-
cation of the problem 1|CONW, PA

j � ((􏽥pj max rαj , δ{ })/uj)
η,

􏽐
n
j�1 v[j]u[j] ≤U| 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D is

u
∗
[j] �

ξj􏼐 􏼑
(1/η+1)

v[j]􏼐 􏼑
(− 1/η+1)

􏽥p[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)

􏽘

n

j�1
ξj􏼐 􏼑

(1/η+1)
􏽥p[j] max j

α[j] , δ􏼈 􏼉􏼐 􏼑
(η/η+1)

× U, j � 1, 2, . . . , n,

(19)

where ξj (j � 1, 2, . . . , n) are given by (6).

Proof. For a given sequence π � (J[1], J[2], . . . , J[n]), the
Lagrange function is

L(u, λ) � 􏽘
n

j�1
ξjP

A
[j] + λ 􏽘

n

j�1
v[j]u[j] − U) � 􏽘

n

j�1
ξj

􏽥p[j] max jα[j] , δ􏼈 􏼉

u[j]

􏼠 􏼡

η

+ λ 􏽘
n

j�1
v[j]u[j] − U),⎛⎝⎛⎝ (20)

where λ is the Lagrangian multiplier. Deriving (20) with
respect to u[j] and λ, we have

zL(u, λ)

zu[j]

� λv[j] − ηξj ×
􏽥pj max j

α[j] , δ􏼈 􏼉􏼐 􏼑
η

u[j]􏼐 􏼑
η+1 � 0. (21)

It follows that

u
∗
[j] �

ηξj
􏽥p[j] max j

α[j] , δ􏼈 􏼉􏼐 􏼑
η

􏼐 􏼑
(1/η+1)

λv[j]􏼐 􏼑
(1/η+1)

. (22)

Table 2: Values Ψjr for Example 1.

(j/r) 1 2 3 4 5 6 7

Ψjr�

1 262.0000 200.3414 151.0178 119.7068 98.60000 98.60000 72.00000
2 194.0000 160.6827 131.3178 112.1496 98.16679 87.28498 66.85148
3 361.0000 332.5343 290.8883 264.5431 250.8000 250.8000 171.0000
4 142.0000 127.9972 110.1639 98.56349 90.12287 83.56748 56.21822
5 202.0000 162.1420 127.1396 104.6077 88.33854 75.77993 54.00000
6 212.0000 169.9128 137.1665 116.2334 101.1959 95.20000 84.00000
7 171.0000 151.9446 133.9793 122.4548 114.1549 108.8000 81.00000

Bold numbers are the optimal solution.

Table 3: Data for Example 2.

Jj J1 J2 J3 J4 J5 J6 J7

􏽥pj 13 17 12 10 18 16 9
αj − 0.32 − 0.24 − 0.33 − 0.25 − 0.28 − 0.3 − 0.29
vj 3 4 2 9 6 5 8

Table 4: Values Ψjr for Example 2.

(j/r) 1 2 3 4 5 6 7

Ψjr�

1 45.20903 48.20302 48.17622 45.30844 43.32309 41.96834 38.13077
2 65.49197 72.45895 74.00176 70.67272 68.19401 64.16226 56.87507
3 32.70817 34.71350 34.60055 32.47854 31.34372 30.36358 27.58714
4 78.94848 86.94426 88.55579 84.40999 81.32839 76.42716 67.67740
5 89.15204 96.82953 97.82774 92.71289 88.93040 83.26686 75.19374
6 72.98642 78.54253 78.92439 74.51153 71.25929 67.75459 61.55913
7 68.03574 73.55408 74.11175 70.10229 67.14231 63.15878 57.38356

Bold numbers are the optimal solution.
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From 􏽐
n
j�1 v[j]u[j] � U, we have

λ(1/η+1)
�

􏽐 ηξj􏼐 􏼑
(1/η+1)

􏽥p[j]v[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)

U
. (23)

Finally, inserting (23) into (22), we have (19).
By substituting the values u∗[j] given in (19) into

􏽐
n
j�1 ξjP

A
[j] � 􏽐

n
j�1 ξj((􏽥p[j] max jα[j] , δ􏼈 􏼉/u[j]))

η, we have

􏽘

n

j�1
ξjP

A
[j] � U

− η
􏽘

n

j�1
v[j]

􏽥p[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)
ξj􏼐 􏼑

(1/η+1)⎛⎝ ⎞⎠

η+1

. (24)

Similarly to Section 4.1, we have the following. □

Theorem 3. Problem 1|CONW, PA
j � (((􏽥pj max rαj , δ{ })/

uj))
η, 􏽐

n
j�1 v[j]u[j] ≤U| 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D can be

solved in O(n3) time.

4.3. Problem 1|CONW, PA
j � ((􏽥pj max rαj , δ{ })/uj)

η, 􏽐
n
j�1 wj

L[j] + w0d1 + wn+1D≤V| 􏽐
n
j�1 v[j]u[j]. In this section, the

inverse version’ of 1|CONW, PA
j � ((􏽥pj max rαj , δ{ }/uj))

η,

􏽐
n
j�1 v[j]u[j] ≤U| 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D will be con-

sidered, i.e., the problem of minimizing 􏽐
n
j�1 v[j]u[j] subject

to􏽐
n
j�1 wjL[j] + w0d1 + wn+1D≤V, where V is a given real

number.
Similarly to Section 4.2, we have.

Lemma 5. For a given sequence, the optimal resource allo-
cation of the problem1|CONW, PA

j � ((􏽥pj max rαj , δ{ })/uj)
η,

􏽐
n
j�1 wjL[j] + w0d1 + wn+1D≤V| 􏽐

n
j�1 v[j]u[j] is

u
∗
[j] � V

− (1/η) ξj􏼐 􏼑
(1/η+1)

v[j]􏼐 􏼑
(− 1/η+1)

􏽥p[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)
􏽘

n

j�1
ξj􏼐 􏼑

(1/η+1)
􏽥p[j]v[j] max j

α[j] , δ􏼈 􏼉􏼐 􏼑
(η/η+1)⎛⎝ ⎞⎠

(1/η)

, (25)

where ξj (j � 1, 2, . . . , n) are given by (6).
By substituting the values u∗[j] given in (25) into

􏽐
n
j�1 v[j]u[j], we have

􏽘
n

j�1
v[j]u[j] � V

− (1/η)
􏽘
n

j�1
v[j]

􏽥p[j] max j
α[j] , δ􏼈 􏼉􏼐 􏼑

(η/η+1)
ξj􏼐 􏼑

(1/η+1)⎛⎝ ⎞⎠

(1/η)+1

.

(26)

Similarly to Section 4.2, we have.

Theorem 4. Problem 1|CONW, PA
j � ((􏽥pj max rαj , δ{ })/

uj)
η, 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D≤V| 􏽐

n
j�1 v[j]u[j] can be

solved in O(n3) time.

Remark. Obviously, the CONWmodel can be extended to the
slack due-window (SLKW) assignment model. )e objective
function 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D can be replaced by

􏽘

n

j�1
wjL[j] + w0q′ + wn+1D, (27)

where

L[j] �

d[j]
′ − C[j], for d[j]

′ >C[j],

0, for d1 ≤C[j] ≤d2,

C[j] − d[j]
″ , for C[j] >d[j]

″ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

and D � dj
″ − dj
′ � q″ − q′.

5. Conclusions

)is paper considered the single-machine due-window as-
signment scheduling problems with learning effect and re-
source allocation. For the linear and convex resource
allocations, we showed that some different models are pol-
ynomially solvable, respectively. Future researchmay focus on
the flow shop scheduling problems with learning effect and
resource allocation or study the Pareto-optimal solutions with
respect to the criterion 􏽐

n
j�1 wjL[j] + w0d1 + wn+1D and the

resource compression cost 􏽐
n
j�1 v[j]u[j].
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