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Due to information asymmetry, adverse selection exists largely in the multiagent market. Aiming at these problems, we develop
two models: pure adverse selection model and mixed adverse selection and moral hazard model. We make the assumption that a
type of agent is discrete and effort level is continuous in the models. With these models, we investigate the characters that make an
optimal contract as well as the conditions under which the utility of a principal and agents can be optimized. As a result, we show
that, in the pure adverse selection model, the conditions to reach the optimal utility of a principal and individual agents are that a
principal needs to design different contracts for different types of agents, and an individual agent chooses the corresponding type
of contracts. For the mixed model, we show that incentive constraint for agents plays a very important role. In fact, we find that
whether a principal provides high-type contract or a separating equilibrium contract depends on the probability of existence of
low-type agents in the market. In general, if a separating equilibrium contract is issued, then information asymmetry will cause the
utility of the high-type agents to be less than that of the case in full information.

1. Introduction

In modern economy and financial market, information
asymmetry can cause adverse selection problems between a
principal and agents. 0is means that a principal is not able
to know which type of an agent is before (or after) a contract
is signed (in this paper, we use the level of production costs
or the level of investment income) to represent the type of
agents. 0e agents with high production costs are defined
low-type (L-type) agents, and the agents with low produc-
tion costs are defined as high-type (H-type) agents. If a
principal makes the contract based on an average level of
agent types in the market, then L-type agents intend to sign
contracts, while H-type agents are unwilling to sign con-
tracts, and they probably choose to withdraw from the labor
market.0is eventually reduces the number ofH-type agents
in the labor market and increases the chances that a principal
gets L-type agents. Because of this, the beneficial measure
taken by a principal is to reduce the contract. As a conse-
quence, more H-agents will leave the labor market.

Aiming at the economic phenomena, Akerlof [1] first
studied the adverse selection problem. By investigating the

old car market, he concluded that information asymmetry
between buyers and sellers may lead to adverse selection
problems. After Akerlof, more scholars, such as Green and
Kahn [2], Grossman and Hart [3], and Hart [4] added
adverse selection to the labor contract problem and studied
the impact of information asymmetry between workers and
enterprises on their relationship from a macroview. 0ey
mainly discussed the problem of overemployment and
underemployment caused by information asymmetry.
Demski and Sappington [5] and Mcafee and Mcmillan [6]
analyzed the optimal incentive problem in teams under
asymmetric information: adverse selection andmoral hazard
were studied from a microview. 0ey showed that workers’
contracts are affected by the type of their coworkers even in
the case that workers work independently.

0e research of the above scholars is carried out in a
static environment. It is clear that to consider dynamic
contracts in continuous time is more realistic. Cvitanic et al.
[7] extended Sannikov’s [8] model to the case of adverse
selection. 0ey obtain the optimal contracts for both good
managers and bad managers and find that agents exiting
from the labor market may be optimal at varying levels of the

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 9317019, 17 pages
https://doi.org/10.1155/2020/9317019

mailto:814149468@qq.com
https://orcid.org/0000-0003-3836-4750
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9317019


managers’ continuation values. Since then, Cvitanic and
Zhang [9] studied several adverse selection models under
continuous time. 0eir research shows that if an agent only
controls the drift rate and the effort cost is quadratic, an
optimal contract is a function of the final output (usually
nonlinear); if an agent also controls the volatility, an optimal
contract is nonincentive stochastic return. Compared with
the adverse selection in static environment, the problem in
continuous time is more complex and so needs more
mathematical theory involved.

On the contrary, as the asymmetry of postevent in-
formation is likely to lead to moral hazard, the moral
hazard problem is also widespread in the labor market. In
recent years, scholars started to pay attention to the mixed
problem of moral hazard and adverse selection in the labor
market since it is more in line with the practice of the labor
market. For example, Sung [10] adds the adverse selection
problem to the pure moral hazard model (the most famous
continuous-time principal-agent model, see [11–13]) in a
continuous time and studies a mixed model of risk aversion
agent controlling drift and volatility. 0e results show that
in the mixedmodel, the monotonous conditions in the pure
adverse selection problem need to be modified to ensure
the incentive compatibility of information revelation.
When this mixed model is applied for management
compensation in management project selection and capital
budget decision-making, it draws a conclusion contrary to
the traditional view. According to Sung’s research, al-
though the processes in solving principals’ problems are
similar to those in the mixed model and pure moral hazard
model, it is possible to end up with different conclusions in
mixed models.

Based on the works of Cvitanic, Sung, and other scholars,
this article studies a pure adverse selection model and a
mixed model of moral hazard adverse selection in the
continuous time frame. We assume that a principal employs
multiple agents of unknown types to jointly managemultiple
production projects (or risk projects). In this model, an
agent only knows his/her own type, but the probability
distribution of agent types is public information. In addition,
we also suppose the agents have Bayesian Nash equilibrium
behavior; that is, each agent calculates his/her own optimal
response function according to the probability distribution
of other agents and their strategy choices and then reaches
an equilibrium state.

In the pure adverse selection model, due to information
asymmetry, a principal has the motivation to provide “menu
contracts” to ensure that each agent of a certain type accepts a
contract designed for his/her type, rather than choosing types
of other agents. 0is means that a principal provides menu
contracts to satisfy agents telling the truth constraints. So, we
need to find viable contracts that meet the “tell the truth”
constraints. In this article, with Lagrange multiplier method
and Kuhn–Tucker condition, we are able to show that the
sufficient and necessary condition for telling the truth is that
the first derivative of the constraint is equal to zero.

Compared with the pure adverse selection model, the
mixed model is more complex since a principal cannot

observe the agents’ behavior. Generally, Lagrange mul-
tiplier method is no longer applicable. So, we use the
backward stochastic differential equation (BSDE) theory
and martingale representation theorem to get the deter-
ministic equivalence of the agents’ expected utility
function.

0is paper is organized as follows. We present a con-
tinuous time multiagent model in Section 2 and discuss the
optimal contracts in the case under adverse selection in
Section 3. We then discuss the design of the optimal contract
with a moral hazard problem adding to an adverse selection
problem and analyze the optimal contract for some special
cases through the numerical simulation in Section 4. We
conclude this paper in Section 5.

2. The Model

In this section, we first define the dynamics of the outcome
process. Second, we define the objective function of each
agent, as well as one of the principals.

In our paper, in order to obtain the exact solution of the
optimal contracts, without loss of generality, we consider a
model where a principal hire 2 agents to manage 2 different
risk projects. For each agent, if they accept the contract
provided by the principal, they will pay for the effort to
influence the output of the project.

2.1. !e Outcome Process. Similar to [14], we consider an
organization with a principal and two agents, indexed by
i � 1, 2. At the initial moment t � 0, the principal hires the
agents to manage two risk projects, whose value dynamics Yi

t

are given by the following equation:

dY
1
t � a11u

1,1
t + a12u

1,2
t􏼐 􏼑dt + σ1dW

1
t ,

dY
2
t � a21u

2,1
t + a22u

2,2
t􏼐 􏼑dt + σ2dW

2
t ,

(1)

where W1
t and W2

t are two independent Brownian motions
in probability space (Ω,G,Gt,P

0).
Here, Gt is the augmented filtration generated by W1

t ,
W2

t . Also, u
j,i
t , (j � 1, 2) is the effort exerted by the agent i.

0e structure of our model implies that each agent will be
assigned both projects, and each agent’s effort can affect
two projects’ returns. We consider two information
structures: full information and hidden action. Full in-
formation means that all the information in the model is
symmetric and exact, while under hidden action, the
principal can observe the outcome process Yt but cannot
observe the efforts of all agents or the uncertainty which
impact the outcomes. So, the principal cannot distinguish
the level of influence of effort and uncertainty on the output
process.

0e principals’ information flow is generated by pro-
cesses (Y1

t , Y2
t ), and we denote them by Ft. In a certain

probability space (Ω,Ft,P), we can find Ft− measurable
Brownian motions (B1

t , B2
t ), satisfying the following weak

formulation setting (as in [11]):
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dYt � 􏽘
t

dBt, (2)

where Yt � (Y1
t , Y2

t )⊤ is a two-dimensional outcome vector
at time t, Bt � (B1

t , B2
t )⊤ are two independent dimensional

Brownian motions on space (Ω,F,Ft,P), and

􏽐 �
σ1 0
0 σ2

􏼠 􏼡, and we assume that 􏽐t is bounded and

invertible. With this construction, the contracts can be
written on Bt processes. According to the analysis in [15], the
agents’ efforts can change the measure fromP to Pu with the
following dynamics:

dPu

dP
� exp 􏽚

T

0
􏽘

− 1

b t, A, ut( 􏼁􏼠 􏼡

⊤

dBt −
1
2

􏽚
T

0
􏽘

− 1

b t, A, ut( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dt⎛⎝ ⎞⎠

≜Λ 􏽚
T

0
􏽘

− 1

b t, A, ut( 􏼁
⊤dBt􏼠 􏼡,

(3)

where b(t, A, ut) �
b1(t, A, ut)

b2(t, A, ut)
􏼠 􏼡 �

a11u
1,1
t + a12u

1,2
t

a21u
2,1
t + a22u

2,2
t

􏼠 􏼡 is

a bounded and continuous function.
By Girsanov’s theorem, under Pu,

B
u
t � Bt − 􏽚

T

0
􏽘

− 1

b s, A, us( 􏼁ds, 0≤ t≤T, (4)

is a vector of Brownian motion, and we can rewrite (2) as

dYt � b t, A, ut( 􏼁dt + 􏽘dB
u
t . (5)

0at is,

dY
1
t � a11u

1,1
t + a12u

1,2
t􏼐 􏼑dt + σ1dB

u,1
t ,

dY
2
t � a21u

2,1
t + a22u

2,2
t􏼐 􏼑dt + σ2dB

u,2
t ,

(6)

where the parameters ai,j represent the productivity of agent
i on project j. 0e total output generated by the two agents is
Y1

t + Y2
t at time t.

0is is the so-called weak formulation of the hidden
action model in continuous time. All random processes
and effort processes now are adapted to Ft, which is
generated by observable processes (Y1

t , Y2
t ). Here, we

denote, by EP(u1 ,u2)

, the expectation defined on the space
(Ω,P(u1 ,u2)), and ui

t is the effort of the agent i. We are
modeling collaboration between agents in that the out-
come of each project depends on the effort levels of both
agents.

2.2. !e Objective Function of Principal. We consider a
principal who wants to hire two agents (agent 1 and agent 2);
agent 1 is endowed with an unknown ability type
θi ∈ θL, θH􏼈 􏼉, and agent 2 is endowed with an unknown
ability type ηj ∈ ηL, ηH􏼈 􏼉, where θL, θH, ηL, ηH are known to
the principal. Only the agent knows his own type (the value
of θi or ηj), and θi and ηj are independent. 0e principal
does not know θi, ηj but has the prior probability of type θL

which is p ∈ [0, 1], and the prior probability of type ηL is
q ∈ [0, 1], while the agents also have the common knowledge
prior probability of his coworker.

Next, we explain some symbols. Denote that agent 1 of
type i, l ∈ L, H{ } and agent 2 of type j, m ∈ L, H{ }.
C1(·, θi, ηj) is the contract designed for i− type agent 1 when
his coworker is j− type; similarly, C2(·, θi, ηj) is the contract
designed for j− type agent 2 with a i− type coworker.
u1

l,m(θi) � u1
l,m(θi)(t)t∈[0,T] represents that when a coworker

is m− type, i− type agent 1 chooses to provide l− type efforts;
if i � l, we say agent 1 tells the truth, and we write
u1

l,m(θl) � u1
l,m. u2

l,m(ηj) � u2
l,m(ηj)(t)t∈[0,T] represents that

when a coworker is l− type, j− type agent 2 chooses to
provide m− type efforts; if j≠m, we say agent 2 is lying, and

if j � m, we write u2
l,m(ηm) � u2

l,m. Yl,m �
Y1

l,m(T)

Y2
l,m(T)

⎛⎝ ⎞⎠ is the

output (or income) under the joint production of l− type
effort and m− type effort. Denote that EPu

is the expectation
operator under probability measure Pu.

Because the principal faces two agents who do not know
the type, there are four possible scenarios for the principal.
Based on the prior probability p and q, we defined the
principal’s expected utility function (in our paper, we use the
negative exponential utility function to represent the
principal and agents’ utility functions; this representation is
not uncommon; we can see Schattler and Sung [12], Wil-
liams [16], and so on) as follows:

U
P

YT, C( 􏼁 � − p · q · E
Pu

e
− rP YL,L− C ·,θL,ηL( )‖ ‖􏼔 􏼕 + p · (1 − q)􏼒

· E
Pu

e
− rP YL,H − C ·,θL,ηH( )‖ ‖􏼔 􏼕 +(1 − p) · q · E

Pu

· e
− rP YH,L− C ·,θH,ηL( )‖ ‖􏼔 􏼕 +(1 − p) · (1 − q) · E

Pu

· e
− rP YH,H − C ·,θH,ηH( )‖ ‖􏼔 􏼕􏼓

≕pq · U
P
LL YLL, CLL( 􏼁 + p(1 − q) · U

P
LH YLH, CLH( 􏼁

+(1 − p)q · U
P
HL YHL, CHL( 􏼁 +(1 − p)(1 − q)

· U
P
HH YHH, CHH( 􏼁,

(7)

where ‖Y − C‖ � Y1 + Y2 − C1 − C2. (in this paper, the
symbol Mn represents the sum of the n-th power of the
elements of the matrix M, meaning that ‖M‖n � 􏽐i,jmn

i,j,
n � 1, 2, . . . ,), and rP > 0 is the risk aversion of the principal.

If the agents choose a contract (C1(θl), C2(ηm)), then
they would provide effort (u1(θl), u2(ηm)) and the outcome
process would evolve as follows:

dYt � b t, A, u
1
t θl( 􏼁, u

2
t ηm( 􏼁􏼐 􏼑dt + 􏽘dB

θl ,ηm( )
t , (8)

where B
(θl ,ηm)
t is short for B

(u1(θl),u
2(ηm))

t . If we assume for each
(θl, ηm), b and 􏽐 satisfy Lipschitz condition so that SDE (8)
has a unique strong solution (the conclusion can be seen in
0eorem 5.2.1 in [10, 17]).
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2.3. !e Objective Function of Agents. Before time zero, the
principal offers a menu of contracts CT � (C1

T(θi), C2
T(ηj)).

0e menu can contain different contracts for agents with
different abilities. Once a suitable contract (C1

T(θl), C2
T(ηm))

is chosen (where θl, ηm may or may not be equal to agent 1
and agent 2 real type θi, ηj), the agents exert efforts to affect
the outcome process during a continuous time period [0, T].
At time T, the agents are compensated depending on the
contract.

We suppose that agents are constant absolute risk
aversion with risk aversion coefficient ri > 0. 0erefore, we
assume that the agents are characterized by exponential
utility functions, and the agents’ utility is composed of the
payoff and the cost of effort.

Denote that EP(u1(θ),u2(η))

(abbreviated as Eθ,η) is the ex-
pectation operator under P(u1(θ),u2(η)), where (u1(θ), u2(η))

represent the efforts provided by agent 1 and agent 2 when
their, respectively, selecting θ− type and η− type contract.

0en, we defined the utility function of agent 1 by

U
1 θl, C

1
·, θl, ηm( 􏼁, u

1 θl( 􏼁, u
2 ηm( 􏼁􏼐 􏼑

� E
θ,η

− q · e
− r1 C1 ·,θl ,ηL( )− G1

T θl ,ηL( )( ) − (1 − q)􏼔

· e
− r1 C1 ·,θl ,ηH( )− G1

T θl ,ηH( )( )􏼕

≕ q · U
1
lL C

1
lL, G

1
lL􏼐 􏼑 +(1 − q) · U

1
lH C

1
lH, G

1
lH􏼐 􏼑,

(9)

where G1
T is the cumulative disutility of effort for agent 1,

which is defined as

G
1
T θl, ηm( 􏼁 � 􏽚

T

0
g1 u

1
l,m(t)􏼐 􏼑dt �

θl

2
􏽚

T

0
u
1,1
l,m􏼐 􏼑

2
+ u

2,1
l,m􏼐 􏼑

2
􏼒 􏼓dt,

(10)

and the utility function of agent 2 is

U
2 ηm, C

2
·, θl, ηm( 􏼁, u

1 θl( 􏼁, u
2 ηm( 􏼁􏼐 􏼑

� E
θ,η

− p · e
− r2 C2 ·,θL,ηm( )− G2

T θL,ηm( )( ) − (1 − p)􏼔

· e
− r2 C2 ·,θH,ηm( )− G2

T θH,ηm( )( )]

≕p · U
2
Lm C

2
Lm, G

2
Lm􏼐 􏼑 +(1 − p) · U

2
Hm C

2
Hm, G

2
Hm􏼐 􏼑,

(11)

where

G
2
T θl, ηm( 􏼁 � 􏽚

T

0
g2 u

2
l,m(t)􏼐 􏼑dt �

ηm

2
􏽚

T

0
u
1,2
l,m􏼐 􏼑

2
+ u

2,2
l,m􏼐 􏼑

2
􏼒 􏼓dt.

(12)

According to the conclusion (0eorem 2) in Mcafee and
Mcmillan [6], the contract of each agent is affected both in his
own ability and in the other agent’s ability. 0erefore, under
the premise of accepting the contract, the utility brought by
the contract is greater than or equal to the reserved utility. For
each agent, their problem is to provide an optimal reaction
effort to maximize their expected utility function. Given a

contract and a prior probability, this situation is typically
considered as an incomplete information noncooperative
game between agents.0erefore, we should focus on Bayesian
Nash equilibrium solutions.

Mathematically, we define Bayesian Nash equilibrium
for the agents as follows.

Definition 1 (Bayesian Nash equilibrium (see, for instance,
[18, 19])). An admissible strategy combination u � (u1

(θl), u2(ηm)) is a Bayesian Nash equilibrium; if for all
u1 ∈ A1(θl) and u2 ∈ A2(ηm), we have

u
1 θl( 􏼁 ∈ argmax

u1
E
θ,η

U
1 θl, C

1
·, θl, ηm( 􏼁, u

1 θl( 􏼁, u
2 ηm( 􏼁􏼐 􏼑􏽨 􏽩,

u
2 ηm( 􏼁 ∈ argmax

u2
E
θ,η

U
2 ηm, C

2
·, θl, ηm( 􏼁, u

1 θl( 􏼁, u
2 ηm( 􏼁􏼐 􏼑􏽨 􏽩.

(13)

Shown above, if the contract can motivate agents to
choose Bayesian Nash equilibrium, then the contract can
satisfy the incentive constraint for two agents.

3. Second Best: Adverse Selection without
Moral Hazard

In this section, we consider the optimal incentive contract under
the case of adverse selection without moral hazard, i.e., in this
case, we assume that the efforts u are observed by the principal,
while θ and η are not. 0e principal’s problem is described as
follows:

Problem 1. Choose control pairs ul,m � (u1
l,m, u2

l,m) and a
menu of contracts C(·, θl, ηm) � (C1(·, θl, ηm), C2(·, θl, ηm))

to maximising UP(YT, C) subject to the following five
constraints:

(1) dYl,m(t) � b(t, A, ul,m)dt + 􏽐dBu
t , l, m ∈ L, H{ }

(2) Eθ,ηU1(θl, C1(u1
l,m(θl), θl, ηm)) ≥ Eθ,ηU1(θi, C1 (u1

l,m

(θi), θl, ηm)); i≠ l

(3) Eθ,ηU2(ηm, C2(u2
l,m(ηm), θl, ηm))≥Eθ,ηU2(ηj, C2

(u2
l,m(ηj), θl, ηm)); j≠m

(4) Eθ,ηU1(θl, C1(u1
l,m, θl, ηm))≥U1(L1(θl, ηm)) �

− e− r1L1(θl ,ηm); l, m ∈ L, H{ }

(5) Eθ,ηU2(ηm, C2(u2
l,m, θl, ηm))≥U2(L2(θl, ηm)) �

− e− r2L2(θl ,ηm); l, m ∈ L, H{ }

0e first constraint defines the dynamics of the output
processes of each type when choosing the contracts designed
for agents. 0e second and the third constraint, the truth-
telling constraint (or incentive compatibility constraint),
makes each agent optimally choose the contract designed
from him. Finally, the fourth and the fifth constraint, the
participation constraint, ensures that agents contract with
the principal, where U1(L1(θl, ηm)) and U2(L2(θl, ηm)) are
the reservation utility of agent 1 and agent 2, respectively.

According to the classic principal-agent theory, we
can transform the pure adverse selection problem into
the risk sharing problem (see [20, 21]). 0erefore, the
principal’s relaxed problem is to maximize the
Lagrangian
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U
P

YT, C( 􏼁 + λ1 · U
1 θL, C

1
u
1
L,m θL( 􏼁, θL, ηm􏼐 􏼑􏼐 􏼑 − U

1
L1 θL, ηm( 􏼁( 􏼁􏽨 􏽩 + λ2 · U

2 ηL, C
2

u
2
l,L ηL( 􏼁, θl, ηL􏼐 􏼑􏼐 􏼑􏽨

− U
2

L2 θl, ηL( 􏼁( 􏼁􏽩 + λ3 · U
1 θL, C

1
u
1
L,m θL( 􏼁, θL, ηm􏼐 􏼑􏼐 􏼑 − U

1 θL, C
1

u
1
H,m θL( 􏼁, θH, ηm􏼐 􏼑􏼐 􏼑􏽨 􏽩 + λ4

· U
1 θH, C

1
u
1
H,m θH( 􏼁, θH, ηm􏼐 􏼑􏼐 􏼑 − U

1 θH, C
1

u
1
L,m θH( 􏼁, θL, ηm􏼐 􏼑􏼐 􏼑􏽨 􏽩 + λ5 · U

2 ηL, C
2

u
2
l,L ηL( 􏼁, θl, ηL􏼐 􏼑􏼐 􏼑􏽨

− U
2 ηL, C

2
u
1
l,H ηL( 􏼁, θl, ηH􏼐 􏼑􏼐 􏼑􏽩 + λ6 · U

2 ηH, C
2

u
2
l,H ηH( 􏼁, θl, ηH􏼐 􏼑􏼐 􏼑 − U

2 ηH, C
2

u
1
l,L ηH( 􏼁, θl, ηL􏼐 􏼑􏼐 􏼑􏽨 􏽩,

(14)

where λn ≥ 0, n � 1, 2, . . . , 6, denote that

U
1 θL, C

1
u
1
H,m θL( 􏼁, θH, ηm􏼐 􏼑􏼐 􏼑 ≔ q · 􏽥U

1
HL +(1 − q) · 􏽥U

1
HH

� − q · e
− r1 C1

HL − 􏽒
T

0
θL/2( ) u1

HL( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1

HH− 􏽒
T

0
θL/2( ) u1

HH( )
2ds􏼐 􏼑

,

U
1 θH, C

1
u
1
L,m θH( 􏼁, θL, ηm􏼐 􏼑􏼐 􏼑 ≔ q · 􏽥U

1
LL +(1 − q) · 􏽥U

1
LH

� − q · e
− r1 C1

LL− 􏽒
T

0
θH/2( ) u1

LL( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1

LH − 􏽒
T

0
θH/2( ) u1

LH( )
2ds􏼐 􏼑

.

(15)

For m ∈ L, H{ }, take the first-order conditions for the
optimization problem of the principal which are

(1 − p)
zUP

Hm

zC1
Hm

− λ3
z 􏽥U

1
Hm

zC1
Hm

+ λ4
zU1

Hm

zC1
Hm

� 0, (16)

p
zUP

Lm

zC1
Lm

+ λ1
zU1

Lm

zC1
Lm

+ λ3
zU1

Lm

zC1
LH

− λ4
z 􏽥U

1
Lm

zC1
Lm

� 0, (17)

(1 − p)
zUP

Hm

zu1
Hm

− λ3
z 􏽥U

1
Hm

zu1
Hm

+ λ4
zU1

Hm

zu1
Hm

� 0, (18)

p
zUP

Lm

zu1
Lm

+ λ1
zU1

Lm

zu1
Lm

+ λ3
zU1

Lm

zC1
LH

− λ4
z 􏽥U

1
Lm

zu1
Lm

� 0. (19)

We write linear equations as matrix multiplication:

0 −
z 􏽥U

1
Hm

zC1
Hm

zU1
Hm

zC1
Hm

zU1
Lm

zC1
Lm

zU1
Lm

zC1
LH

−
z 􏽥U

1
Lm

zC1
Lm

0 −
z 􏽥U

1
Hm

zu1
Hm

zU1
Hm

zu1
Hm

zU1
Lm

zu1
Lm

zU1
Lm

zC1
LH

−
z 􏽥U

1
Lm

zu1
Lm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

λ1
λ3
λ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− (1 − p)
zUP

Hm

zC1
Hm

− p
zUP

Lm

zC1
Lm

− (1 − p)
zUP

Hm

zu1
Hm

− p
zUP

Lm

zu1
Lm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≔

0 d12 d13

d21 d22 d23

0 d32 d33

d41 d42 d43

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

λ1
λ3
λ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

b1

b2

b3

b4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

0rough the elementary transformation of the matrix,
we have

0 1
d13

d12

1 0 D23

0 0
d33

d32
−

d13

d12

0 0 D43

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

λ1

λ3

λ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

b1
d12

D24

b3

d32
−

b1

d12

D44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where

D23 � −
d22

d21
·

d13

d12
−

d23

d22
􏼠 􏼡,

D24 � −
d22

d21
·

b1

d12
−

b2

d22
􏼠 􏼡,

D43 �
d33

d32
−

d43

d42
􏼠 􏼡 −

d41

d42
· D23,

D44 �
b3

d32
−

b4

d42
􏼠 􏼡 −

d41

d42
· D24.

(22)

According to the uniqueness of the solution, there is one
and only one of the following three conditions established:

(1) (d33/d32) − (d13/d12) � (b3/d32) − (b1/d12) � 0
(2) D43 � D44 � 0
(3) D44 · ((d33/d32) − (d13/d12)) � D43 · ((b3/d32) −

(b1/d12))

0en, we have
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λ1 � D24 − D23 · λ4,

λ3 �
b1

d12
−

d13

d12
· λ4,

λ4 �
d33

d32
−

d13

d12
􏼠 􏼡

− 1

·
b3
d32

−
b1
d12

􏼠 􏼡

or λ4 �
D44

D43
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

If we assume that λ4 � 0, then λ3 � (b1/d12) but b1 > 0
and d12 < 0 which contradict λ3 ≥ 0. 0erefore, λ4 > 0.
According to the Kuhn–Tacker conditions, the truth-telling
constraint of H− type agent 1 is tight. Moreover, we assume
that λ3 > 0, then the truth-telling constraint of L− type agent
1 is tight also, i.e.,

− q · e
− r1 C1

HL − 􏽒
T

0
θH/2( ) u1

HL( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1

HH− 􏽒
T

0
θH/2( ) u1

HH( )
2ds􏼐 􏼑

� − q · e
− r1 C1

LL− 􏽒
T

0
θH/2( ) u1

LL( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1

LH − 􏽒
T

0
θH/2( ) u1

LH( )
2ds􏼐 􏼑

,

− q · e
− r1 C1

LL− 􏽒
T

0
θL/2( ) u1

LL( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1

LH− 􏽒
T

0
θL/2( ) u1

LH( )
2ds􏼐 􏼑

� − q · e
− r1 C1

HL − 􏽒
T

0
θL/2( ) u1

HL( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1

HH− 􏽒
T

0
θL/2( ) u1

HH( )
2ds􏼐 􏼑

.

(24)

It is not hard to get u1
LL � u1

HL and u1
LH � u1

HH. 0is
shows that H− type and L− type agent 1 received the same
contract and provided the same effort. 0is contradicts the
original intention that the principal wants to distinguish
between the H− type and the L− type. 0erefore, we can
assert that λ3 � 0, i.e.,

λ1 �
1

d21
b2 −

b1d23

d13
􏼠 􏼡> 0,

λ3 � 0,

λ4 �
b1

d13
> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

According to λ1 > 0 and the Kuhn–Tacker condition, we
know that the participation constraint of the L− type agent 1
is tight, that is, the expected utility of the L− type agent 1 is
equal to his reserved utility.

Similarly, for agent 2, we can get the Lagrange multiplier
λ2 > 0, λ5 � 0, and λ6 > 0.

0erefore, we have the following conclusion:

Proposition 1. !e optimal contracts and optimal efforts of
Problem 1 satisfy the following conditions, for l, m ∈ L, H{ }:

(1) U1(θL, C1(u1
L,m(θL), θL, ηm)) � U1(L1(θL, ηm))

(2) U2(ηL, C2(u2
l,L(ηL), θl, ηL)) � U2(L2(θl, ηL))

(3) U1(θH, C1(u1
H,m(θH), θH, ηm)) �

U1(θH, C1(u1
L,m(θH), θL, ηm))

(4) U2(ηH, C2(u2
l,H(ηH), θl, ηH)) � U2(ηH, C2(u1

l,L(ηH),

θl, ηL))

(5) (zUP
Hm/zu1

Hm)/(zUP
Hm/zC1

Hm) � (zU1
Hm/zu1

Hm)/
(zU1

Hm/zC1
Hm)

(6) (zUP
lH/zU2

lH)/(zUP
lH/zC2

lH) � (zU2
lH/zu2

lH)/(zU2
lH/

zC2
lH)

(7) (zUP
Lm/zu1

Lm)/(zUP
Lm/zC1

Lm) � (λ1(zU1
Lm/zC1

Lm) − λ4
(z 􏽥U

1
Lm/zC1

Lm))/(λ1(zU1
Lm/zu1

Lm) − λ4(z 􏽥U
1
Lm/zu1

Lm))

(8) (zUP
lL/zu2

lL)/(zUP
lL/zC2

lL) � (λ2(zU2
lL/zC2

lL) −

λ6(z 􏽥U
2
lL/zC2

lL))/(λ2(zU2
lL/zC2

lL) − λ6(z 􏽥U
2
lL/zu2

lL))

Proposition 1 shows that the optimal contracts and the
optimal efforts have the following properties. First, according to
(1)–(4), for H− type agents, due to asymmetric information
(private information), the expected utility obtained is higher than
its reserved utility. And the L− type agents only obtained the
reserved utility. Second, L− type agents’ optimal contracts sat-
isfied the truth-telling constraints.!ird, the optimal contracts of
H− type agent are efficient because under full information, (6)
and (7) also hold. Finally, from (7) and (8), we can see

zUP
Lm/zu1

Lm

zuP
Lm/zC1

Lm

<
zU1

Lm/zC1
Lm

zU1
Lm/zu1

Lm

,

zUP
lL/zu2

lL

zUP
lL/zC2

lL

<
zU2

lL/zC2
lL

zU2
lL/zC2

lL

,

(26)

i.e., the L− type agents’ efficiency conditions are distorted. !is
means that the principal lost efficiency relative to the L− type
agents, but he paid less information rent to the H− type agents
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(here, our conclusion is the same as an adverse selection model
with only one risk-neutral (but unknown type) agent (see
[21])).

4. Third Best: Moral Hazard and
Adverse Selection

In real life, due to asymmetric information, moral hazard
and adverse selection are often inseparable. In this section,
we consider the model in the presence of adverse selection
and moral hazard. Obviously, the problem faced by the
principal is more complicated when the principal cannot
observe the agents’ efforts. 0erefore, we will restate the
problem of the principal.

4.1. !e Principal’s Problem. We follow the marks in the
Section 2.2. 0en, the principal’s problem is described as
follows:

Problem 2. Choose control pairs ul,m � (u1
m,l, u2

m,l) and a
menu of contracts C(·, θl, ηm) � (C1(·, θl, ηm), C2(·, θl, ηm))

to maximising

U
P

YT, C( 􏼁 � − p · q · E
Pu

e
− rP YL,L− C ·,θL,ηL( )‖ ‖􏼔 􏼕􏼒

+ p · (1 − q) · E
Pu

e
− rP YL,H− C ·,θL,ηH( )‖ ‖􏼔 􏼕

+(1 − p) · q · E
Pu

e
− rP YH,L− C ·,θH,ηL( )‖ ‖􏼔 􏼕

+(1 − p) · (1 − q) · E
Pu

e
− rP YH,H − C ·,θH,ηH( )‖ ‖􏼔 􏼕􏼓,

(27)

subject to

(1) dYl,m(t) � b(t, A, ul,m)dt + 􏽐 dBu
t , l, m ∈ L, H{ }

(2) u1
l,m ∈ argmax

u1
Eθ,ηU1(θl, C1(u1, θl, ηm))

(3) u2
l,m ∈ argmax

u2
Eθ,ηU2(ηm, C2(u2, θl, ηm))

(4) Eθ,ηU1(θl,C
1(u1

l,m(θl),θl,ηm))≥Eθ,ηU1(θi,

C1(u1
l,m(θi), θl,ηm)); i≠ l

(5) Eθ,ηU2(ηm, C2(u2
l,m(ηm), θl, ηm))≥Eθ,ηU2(ηj,

C2(u2
l,m(ηj), θl, ηm)); j≠m

(6) Eθ,ηU1(θl, C1(u1
l,m, θl, ηm))≥U1(L1(θl, ηm)) �

− e− r1L1(θl ,ηm); l, m ∈ L, H{ }

(7) Eθ,ηU2(ηm, C2(u2
l,m, θl, ηm))≥U2(L2(θl, ηm)) �

− e− r2L2(θl ,ηm); l, m ∈ L, H{ }

where ‖Y − C‖ � Y1 + Y2 − C1 − C2.
0e first constraint defines the dynamics of the output

processes of each type when choosing the contracts designed
for agents. 0e second and the third constraint express that
agents maximise their expected utility (incentive constraint).
0e fourth and the fifth constraint, the truth-telling con-
straint (or incentive compatibility constraint), makes each
agent optimally select the contract designed from him. Fi-
nally, the sixth and the seventh constraint, the participation
constraint, ensures that the agents contract with the
principal.

4.2. !e Agents’ Problem. Given a menu of contracts
C1(·, θl, ηm), for agent 1, his problem is to choose the suitable
effort u1(θi) � (u1

i,L(θi), u1
i,H(θi)), i ∈ L, H{ } to maximize his

expected utility based on the type of agent 2., i.e.,

u
1 θi( 􏼁 ∈ argmax

u1
E
θ,η

U
1 θi, C

1
u
1
, θi, η􏼐 􏼑􏼐 􏼑

� max
u1

E
θ,η

− q · e
− r1 C1 θi ,ηL( )− 􏽒

T

0
θi/2( )· u1

i,L( )
2ds􏼐 􏼑

− (1 − q) · e
− r1 C1 θi ,ηH( )− 􏽒

T

0
θi/2( )· u1

i,H( )
2ds􏼐 􏼑

􏼢 􏼣.

(28)

0e following result is slightly adapted from Elie and
Possamai [15] and Mastrolia [22].

Lemma 1. Denote that C
1
(·, θi, ηm) is the optimal contract

provided by the principal to the i− type agent 1. !ere exists a

pair (Z1
i,L, X

1
0(θi, ηL)) and (Z1

i,H, X
1
0(θi, ηL)) such that con-

tracts satisfy the following conditions:

X
1
0 θi, ηL( 􏼁 � C

1 θi, ηL( 􏼁 − 􏽚
T

0
Z
1
i,L 􏽘 dBs + 􏽚

T

0
−

r1
2

Z
1
i,L 􏽘

�����

�����
2

+ Z
1
i,Lb s, A, u

1
i,L, u

2
i,L􏼐 􏼑 −

θi

2
u
1
i,L􏼐 􏼑

2
􏼢 􏼣ds,

X
1
0 θi, ηH( 􏼁 � C

1 θi, ηH( 􏼁 − 􏽚
T

0
Z
1
i,H 􏽘 dBs + 􏽚

T

0
−

r1
2

Z
1
i,H 􏽘

�����

�����
2

+ Z
1
i,Hb s, A, u

1
i,H, u

2
i,H􏼐 􏼑 −

θi

2
u
1
i,H􏼐 􏼑

2
􏼢 􏼣ds.

(29)

For agent 1’s optimization problem (28), According to
Borch theorem [23], we can can obtain the optimal solution of
agent 1 as follows

Lemma 2 (Borch’s theorem). A risk exchange (X
1
0(θi, ηL),

X
1
0(θi, ηH)) maximizes problem (28) if and only if

q · r1 · e− r1X
1
0(θi ,ηL) � (1 − q) · r1 · e− r1X

1
0(θi ,ηH).

Discrete Dynamics in Nature and Society 7



0erefore, we have

p · e
− r1 C

1
θi ,ηL( )− 􏽒

T

0
θi/2( ) u

1
i,L( )

2ds􏼐 􏼑

� (1 − p) · e
− r1 C

1
θi ,ηH( )− 􏽒

T

0
θi/2( ) u

1
i,H( )

2ds􏼐 􏼑
,

(30)

i.e.,

max
u1

E
θ,η

U
1 θi, C

1
u
1
, θi, η􏼐 􏼑􏼐 􏼑

� 2p · e
− r1 C

1
θi ,ηL( )− 􏽒

T

0
θi/2( ) u

1
i,L( )

2ds􏼐 􏼑
.

(31)

Next, we will solve the following optimization problem:

u
1
i,L θi( 􏼁 ∈ argmax

u1
i,L

E
θ,η

− e
− r1 C1 θi ,ηL( )− 􏽒

T

0
θi/2( )· u1

i,L( )
2ds􏼐 􏼑

􏼢 􏼣.

(32)

According to Lemma 1, we get the contract form of i−

type agent 1:

C
1

u
1
i,L, θi, ηL􏼐 􏼑 � X

1
0 θi, ηL( 􏼁 − 􏽚

T

0
h
1

s, θi, Z
1
i,L􏼐 􏼑ds

+ 􏽚
T

0
Z
1
i,L 􏽘 dBs,

(33)

where h1(s, θi, Z1
i,L) � − (r1/2)‖Z1

i,L 􏽐‖2 + Z1
i,Lb(s, A, u1

i,L,

u2
i,L) − (θi/2)(u1

i,L)2.
Suppose that l− type agent 1 has chosen C1(u1

i,L, θi, ηL)

satisfied equation (33). 0e optimal contract should satisfy
the truth-telling constraint, i.e.,

C
1

u
1
i,L, θi, ηL􏼐 􏼑 − 􏽚

T

0

θl

2
· u

1
i,L􏼐 􏼑

2
ds≤C

1
u
1
l,L, θl, ηL􏼐 􏼑 − 􏽚

T

0

θl

2
· u

1
l,L􏼐 􏼑

2
ds.

(34)

When agent 1 tells the truth (l � i), the equal sign is
established.

Similarly, for agent 2, given a menu of contracts
C2(·, θl, ηm), his problem is to choose the suitable effort
u2(ηj) � (u2

L,j(ηj), u1
H,j(ηj)), j ∈ L, H{ } to maximize his

expected utility based on the type of agent 1, i.e.,

u
2 ηj􏼐 􏼑 ∈ argmax

u2
E
θ,η

U
2 ηj, C

2
u
2
, θ, ηj􏼐 􏼑􏼐 􏼑

� max
u2

E
θ,η

− p · e
− r2 C2 θL,ηj( 􏼁− 􏽒

T

0
ηj/2( 􏼁· u2

L,j􏼐 􏼑
2
ds􏼒 􏼓⎡⎢⎢⎢⎢⎢⎣

− (1 − p) · e
− r2 C2 θH,ηj( 􏼁− 􏽒

T

0
ηj/2( 􏼁· u2

H,j􏼐 􏼑
2
ds􏼒 􏼓⎤⎥⎥⎥⎥⎥⎦

� 2q · e
− r2 C

2
θL,ηj( 􏼁− 􏽒

T

0
ηj/2( 􏼁· u

2
L,j􏼐 􏼑

2
ds􏼒 􏼓

,

(35)

where C
2
(θL, ηj) is a optimal contract for j− type agent 2

with L− type agent 1. 0erefore, the optimization problem
for agent 2 is as follows:

u
2
L,j ηj􏼐 􏼑 ∈ argmax

u2
L,j

E
θ,η

− e
− r2 C2 θL,ηj( 􏼁− 􏽒

T

0
ηj/2( 􏼁· u2

L,j􏼐 􏼑
2
ds􏼒 􏼓⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(36)

According to Lemma 1, there exists a pair
(X2

0(θL, ηj), Z2
L,j) such that

C
2

u
2
L,j, θL, ηj􏼐 􏼑 � X

2
0 θL, ηj􏼐 􏼑 − 􏽚

T

0
h
2

s, θi, Z
2
L,j􏼐 􏼑ds + 􏽚

T

0
Z
2
L,j 􏽘 dBs,

(37)

where h2(s, ηj, Z2
L,j) � − (r2/2)‖Z2

L,j 􏽐 ‖2 + Z2
L,jb(s, A, u1

L,j,

u2
L,j) − (ηj/2)(u2

L,j)
2. According to the truth-telling con-

straint, the optimal contract C2(u2
L,m, θL, ηm) for m− type

agent 2 should satisfy

C
2

u
2
L,m, θL, ηm􏼐 􏼑 − 􏽚

T

0

ηm

2
u
2
L,m􏼐 􏼑

2
ds≥C

2
u
2
L,j, θL, ηj􏼐 􏼑

− 􏽚
T

0

ηm

2
u
2
L,j􏼐 􏼑

2
ds.

(38)

When m � j, the equal sign is established.

4.3. Optimal Contracts. In this subsection, we solve explicit
solutions to optimal contracts and optimal efforts. At first,
we introduce the definition of two different equilibrium
contracts.

Definition 2 (see [21]). If there is only one contract accepted
by two different types of agents, that is, the equilibrium
contract of different types of agents is the same, the
equilibrium contract is called the pooling equilibrium
contract. If there are different equilibrium contracts for
different types of agents, it is called separating equilibrium
contracts.

We assume that the pooling equilibrium contract exists,
i.e., C1(·, θL, ηj) � C1(·, θH, ηj) and C2(·, θi, ηL) � C2

(·, θi, ηH). From the truth-telling constraints for equations
(34) and (38), we have u1

Hj � u1
Lj and u2

iH � u2
iL. But, from the

incentive constraints, obviously, the optimal efforts of dif-
ferent types of agents are different, i.e., u1

Hj ≠ u1
Lj and

u2
iH ≠ u2

iL. 0erefore, we can assert that pooling equilibrium
contracts do not exist.

Next, we will derive the specific form of separation
equilibrium contracts.

For the principal, we use Borch’s theorem again, and
then we have the following conclusion:

max
C

U
P

YT, C( 􏼁 � max
C

− 4p · q · E
Pu

e
− rP YL,L− C ·,θL,ηL( )‖ ‖􏼔 􏼕􏼒 􏼓

⇔ max
C

E
Pu

− e
− rP Yi,j− C ·,θi ,ηj( 􏼁

����
����

􏼔 􏼕, i, j ∈ L, H{ }.

(39)
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According to the analysis in Section 4.2, we only need to
analyze the optimal contract in the case of i− type agent 1 and
j− type agent 2 (i, j ∈ L, H{ }), and then we can derive the
optimal contract in other cases.

For i− type agent 1 and j− type agent 2, from equations
(33) and (37), we know that contracts C1(u1

i,j, θi, ηj)

and C2(u2
i,j, θi, ηj) are linear quadratic about u1

i,j and
u2

i,j, respectively. From the first-order condition with
respect to u1

i,j and u2
i,j, we get the form of optimal efforts as

follows:

ui,j � u1
i,j u2

i,j􏼐 􏼑 �

u1,1
i,j u1,2

i,j

u2,1
i,j u2,2

i,j

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ �

a11

θi

Z
1,1
i,j

a12

ηj

Z
1,2
i,j

a21

θi

Z
2,1
i,j

a22

ηj

Z
2,2
i,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(40)

Combining with equations (33) and (37) and
substituting into the principal’s expected utility function,
then

U
P

YT, C( 􏼁 � E
Pu(Z)

− e

− rP 􏽚
T

0
b s, A, ui,j􏼐 􏼑

�����

�����ds + 􏽚
T

0
􏽘

s

���������

���������
dB

u
s

⎛⎝ ⎞⎠

· e

− rP − X0 θi ,ηj( 􏼁
����

����− (1/2) 􏽚
T

0
r Zi,jΣs
�����

�����
2

+ k ui,j

�����

�����
2

􏼒 􏼓ds − 􏽚
T

0
Zi,j􏽘

s

���������

���������
dB

u
s

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E
Pu(Z)

− e

− rP 􏽚
T

0
􏽘

s

���������

���������
− Zi,j􏽘

s

���������

���������
⎡⎣ ⎤⎦dB

u
s + rP/2( 􏼁 􏽚

T

0
􏽘

s

���������

���������
− Zi,j􏽘

s

���������

���������
⎛⎝ ⎞⎠

2

ds⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· e

− rP 􏽚
T

0
b s, A, ui,j􏼐 􏼑

�����

����� − X0 θi, ηj􏼐 􏼑
�����

����� − (1/2) r Zi,j􏽘
s

���������

���������

2

+ k ui,j

�����

�����
2

⎡⎢⎣ ⎤⎥⎦ − rP/2( 􏼁 􏽘
s

���������

���������
− 􏽘

i,j

􏽘
s

����������

����������

⎡⎢⎢⎣ ⎤⎥⎥⎦

2

⎛⎝ ⎞⎠ds⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E
Pu(Z)

− e

− rP 􏽚
T

0
􏽘

s

���������

���������
− Zi,j􏽘

s

���������

���������
⎡⎣ ⎤⎦dBs − rP/2( 􏼁 􏽚

T

0
Σs

����
���� − Zi,jΣs

�����

�����􏼒 􏼓
2
ds⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· e

− rP 􏽚
T

0
b s, A, ui,j􏼐 􏼑

�����

����� − X0
����

���� − (1/2) r Zi,j􏽘
s

���������

���������

2

+ k ui,j

�����

�����
2

⎡⎢⎣ ⎤⎥⎦ − rP/2( 􏼁 􏽘
s

���������

���������
− Zi,j􏽘

s

���������

���������
⎡⎣ ⎤⎦

2

⎛⎝ ⎞⎠ds⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E
Pu(Z)

− Λ − rP · 􏽚
T

0
􏽘

s

���������

���������
− Zi,jΣs

�����

�����⎛⎝ ⎞⎠dBs
⎛⎝ ⎞⎠ · e

− rP ·􏽒
T

0
g s,Zi,j( 􏼁ds⎡⎢⎢⎣ ⎤⎥⎥⎦,

(41)
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where

g s, Zi,j􏼐 􏼑 � − X
1
0 θi, ηj􏼐 􏼑 + X

2
0 θi, ηj􏼐 􏼑􏼐 􏼑 +

a2
11
θi

Z
1,1
i,j +

a2
12
ηj

Z
1,2
i,j

+
a2
21
θi

Z
2,1
i,j +

a2
22
ηj

Z
2,2
i,j −

a2
11
2θi

Z
1,1
i,j􏼐 􏼑

2
−

a2
12

2ηj

Z
1,2
i,j􏼐 􏼑

2

−
a2
21
2θi

Z
2,1
i,j􏼐 􏼑

2
−

a2
22

2ηj

Z
2,2
i,j􏼐 􏼑

2
−
σ21
2

r1 Z
1,1
i,j􏼐 􏼑

2
􏼔

+ r2 Z
1,2
i,j􏼐 􏼑

2
􏼕 −

σ22
2

r1 Z
2,1
i,j􏼐 􏼑

2
+ r2 Z

2,2
i,j􏼐 􏼑

2
􏼔 􏼕

−
rP

2
σ21 Z

1,1
i,j + Z

1,2
i,j − 1􏼐 􏼑

2
+ σ22 Z

2,1
i,j + Z

2,2
i,j − 1􏼐 􏼑

2
􏼔 􏼕,

Zi,j � Z1
i,j Z2

i,j􏼐 􏼑 �

Z1,1
i,j Z1,2

i,j

Z2,1
i,j Z2,2

i,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(42)

We show that the principal maximizes his utility
function equivalent to maximizing the function g and easy
to compute that g is concave onZ1

i,j andZ2
i,j. Taking the first-

order conditions, then we can get the exact expression of Z1
i,j

and Z2
i,j, for i, j ∈ L, H{ }.

0erefore, we have the following result:

Proposition 2. For i, j ∈ L, H{ }, the optimal equilibrium
effort for the i− agent 1 and the j− type agent 2 is as follows:

ui,j � u1
i,j u2

i,j􏼐 􏼑 �

u1,1
i,j u1,2

i,j

u2,1
i,j u2,2

i,j

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ �

a11

θi

Z
1,1
i,j

a12

ηj

Z
1,2
i,j

a21

θi

Z
2,1
i,j

a22

ηj

Z
2,2
i,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(43)

0e optimal utility of the principal is

U
P

YT, C( 􏼁 � − pq · e
− rPTg ZL,L( ) + p(1 − q) · e

− rPTg ZL,H( )􏼒

+(1 − p)q · e
− rPTg ZH,L( ) +(1 − p)(1 − q)

· e
− rPTg ZH,H( )􏼓.

(44)

0e optimal contract given to i− type agent 1 is

C
1

u
1
i,j, θi, ηj􏼐 􏼑 � X

1
0 θi, ηj􏼐 􏼑 +

r1T

2
· σ1Z

1,1
i,j􏼐 􏼑

2
+ σ2Z

2,1
i,j􏼐 􏼑

2
􏼔 􏼕

+
T

2θi

· a11Z
1,1
i,j􏼐 􏼑

2
+ a21Z

2,1
i,j􏼐 􏼑

2
􏼔 􏼕

+ Z
1,1
i,j Y

1
i,j + Z

2,1
i,j Y

2
i,j − T

· Z
1,1
i,j

a2
11
θi

Z
1,1
i,j +

a2
12
ηj

Z
1,2
i,j􏼠 􏼡􏼢

+ Z
2,1
i,j

a2
21
θi

Z
2,1
i,j +

a2
22
ηj

Z
2,2
i,j􏼠 􏼡􏼣,

(45)

and optimal contract given to j− type agent 2 is

C
2

u
2
i,j, θi, ηj􏼐 􏼑 � X

2
0 θi, ηj􏼐 􏼑 +

r2T

2
· σ1Z

1,2
i,j􏼐 􏼑

2
+ σ2Z

2,2
i,j􏼐 􏼑

2
􏼔 􏼕

+
T

2ηj

· a12Z
1,2
i,j􏼐 􏼑

2
+ a22Z

2,2
i,j􏼐 􏼑

2
􏼔 􏼕 + Z

1,2
i,j Y

1
i,j

+ Z
2,2
i,j Y

2
i,j − T · Z

1,2
i,j

a2
11
θi

Z
1,1
i,j +

a2
12
ηj

Z
1,2
i,j􏼠 􏼡􏼢

+ Z
2,2
i,j

a2
21
θi

Z
2,1
i,j +

a2
22
ηj

Z
2,2
i,j􏼠 􏼡􏼣,

(46)

where Zi,j satisfy the first-order conditions of equation (42).
Also, the certainty equivalent X1

0(θi, ηj) and X2
0(θi, ηj)

for agents satisfy the following conditions:

X1
0 θL, ηL( 􏼁 � L1 θL, ηL( 􏼁,

X1
0 θH, ηL( 􏼁 � L1 θL, ηL( 􏼁 +

T · θL − θH( 􏼁

2
· u

1
H,L􏼐 􏼑

2
,

X1
0 θL, ηH( 􏼁 � L1 θL, ηH( 􏼁,

X1
0 θH, ηH( 􏼁 � L1 θL, ηH( 􏼁 +

T · θL − θH( 􏼁

2
· u

1
H,H􏼐 􏼑

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

and
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X2
0 θL, ηL( 􏼁 � L2 θL, ηL( 􏼁,

X2
0 θL, ηH( 􏼁 � L2 θL, ηH( 􏼁 +

T · ηL − ηH( 􏼁

2
· u

2
L,H􏼐 􏼑

2
,

X2
0 θH, ηL( 􏼁 � L2 θH, ηL( 􏼁,

X2
0 θH, ηH( 􏼁 � L2 θH, ηL( 􏼁 +

T · ηL − ηH( 􏼁

2
· u

2
H,H􏼐 􏼑

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Next, we will explain that equations (47) and (48) are
established. Referring to Conclusion 4.2 of Macho-Stadler
and Perez-Castrillo [21], for different types of agent 1, the

separating equilibrium contracts (C1(·, θL, ηj), C1(·, θH, ηj))

should satisfy the following two constraints:

(1) And for L− type agent 1, the optimal contract optimal
satisfied

E
θ,η

U
1 θL, C

1
u
1
L,j θL( 􏼁, θL, ηj􏼐 􏼑􏼐 􏼑

� E
θ,η

U
1 θL, C

1
u
1
H,j θL( 􏼁, θH, ηj􏼐 􏼑􏼐 􏼑 � U

1
L1 θL, ηj􏼐 􏼑􏼐 􏼑,

(49)

i.e.,

− q · e
− r1X1

0 θL,ηL( ) − (1 − q) · e
− r1X1

0 θL,ηH( )

� − q · e
− r1 · C1 u1

L,L
θL( ),θL,ηL( )− 􏽒

T

0
θL/2( ) u1

L,L
θL( )( )

2ds􏼔 􏼕,

− (1 − q) · e
− r1 · C1 u1

L,H
θL( ),θL,ηH( )− 􏽒

T

0
θL/2( ) u1

L,H
θL( )( )

2ds􏼔 􏼕

� − q · e
− r1 · X1

0 θH,ηL( )+􏽒
T

0
θH/2( ) u1

H,L
θL( )( )

2ds− 􏽒
T

0
θL/2( ) u1

H,L
θL( )( )

2ds􏼔 􏼕
,

− (1 − q) · e
− r1 · X1

0 θH,ηH( )+􏽒
T

0
θH/2( ) u1

H,H
θL( )( )

2ds− 􏽒
T

0
θL/2( ) u1

H,H
θL( )( )

2ds􏼔 􏼕

� − q · e
− r1L1 θL,ηL( ) − (1 − q) · e

− r1L1 θL,ηH( ).

(50)

0at is, the truth-telling constraint of L-type
agent 1 is tight (the inequality is taken equal sign).
And his optimal expected utility equals his
reservation utility. 0erefore, equation (47) is
established.

(2) For H− type agent 1, the optimal contract always
satisfies the truth-telling constraint. 0en, in this
case, the optimal contract for H− type agent 1 does
not satisfy Borch’s theorem. 0erefore, H− type
agent 1 lost optimal expected utility due to
asymmetric information. 0at is, the expected
utility of H− type agent 1 when there is an adverse
selection is lower than the expected utility when
there is no adverse selection.

Similarly, for agent 2, we also have the same conclusion,
i.e., equations (48) and (51) are established.

According to Conclusion 4.3 of Macho-Stadler and
Perez-Castrillo [21], we have to follow the conclusion.

Proposition 3. !ere exists a probability q∗ < 􏼔1 + exp􏼚(r1T

(θL − θH)/2) · 􏼔(u1
HH)2 − (u1

HL)2􏼕􏼛􏼕
− 1
∈ (0, 1), and a

probability

p∗ < 􏼔1 + exp (r2T(ηL − ηH)/2) · 􏼔(u2
HH)2 − (u2

LH)2􏼕􏼚 􏼛􏼕
− 1
.

(1) If q ∈ (q∗, 1) and p ∈ (p∗, 1), then the optimal
contracts in Proposition 2 are called the separating
equilibrium contracts.

(2) If q ∈ (0, q∗) and p ∈ (0, p∗), for the principal, there
is no equilibrium contract. 0is means that the
principal only provides H− type contracts although
there is a risk that the agents are L− type (this is a
small probability event).
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But, the H− type agents satisfy Broch’s theorem, i.e.,

X1
0 θH, ηL( 􏼁 −

ln q

r1
� X

1
0 θH, ηH( 􏼁 −

ln(1 − q)

r1
,

X2
0 θL, ηH( 􏼁 −

lnp

r2
� X

2
0 θH, ηH( 􏼁 −

ln(1 − p)

r2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(51)

For H− type agent 1, according to equation (47), if the
optimal contract satisfies Borch’s theorem, we have

L1 θL, ηH( 􏼁 � L1 θL, ηL( 􏼁 +
T · θL − θH( 􏼁

2
· u

1
H,L􏼐 􏼑

2
− u

1
H,H􏼐 􏼑

2
􏼒 􏼓

+
1
r1
ln

1 − q

q
􏼠 􏼡.

(52)

According to our assumption L1(θL, ηH)≥ L1(θL, ηL);
therefore, we should have

T · θL − θH( 􏼁

2
· u

1
H,L􏼐 􏼑

2
− u

1
H,H􏼐 􏼑

2
􏼒 􏼓 +

1
r1
ln

1 − q

q
􏼠 􏼡≥ 0,

(53)

i.e.,

0≤ q≤ q
∗ < 1 + exp

r1T θL − θH( 􏼁

2
· u

1
HH􏼐 􏼑

2
− u

1
HL􏼐 􏼑

2
􏼔 􏼕􏼨 􏼩􏼢 􏼣

− 1

.

(54)

Similarly, we can easily get

p
∗ < 1 + exp

r2T ηL − ηH( 􏼁

2
· u

2
HH􏼐 􏼑

2
− u

2
LH􏼐 􏼑

2
􏼔 􏼕􏼨 􏼩􏼢 􏼣

− 1

.

(55)

In the next section, we will find a suitable p∗ and q∗

through a specific example, such that, when q ∈ (0, q∗) and
p ∈ (0, p∗), the principal prefers to provide H− type
contracts compared to providing separate equilibrium
contracts.

0us, we have obtained an explicit solution to the
optimal contracts where the agents’ type is discrete. 0e
solution process for this case is similar to solving the
optimal contract with only moral hazard. Next, we use
numerical simulation to present our conclusions more
intuitively.

4.4. Numerical Simulation. In this section, we graphically
simulate the conclusions in Proposition 2. For simplicity,
we assume that the parameters of the two agents are the
same (here, we still think that agents need to guess each
other’s type). 0erefore, in the following, we have an
obligation to simulate one agent’s optimal contract and
optimal efforts.

Firstly, we analyze the impact of uncertainty 􏽐 on the
optimal contract. 0e parameters are a11 � a12 � a21 �

a22 � 1, r1 � r2 � rP � 1/2, T � 1, L1(θL, ηL) � L2(θL, ηL) �

0 θL, ηL � 2, θH, ηH � 1, and p � q � 1/2. 0erefore,

Z1,1
H,H � Z1,2

H,H �
σ41 + 6σ21 + 8

3σ41 + 16σ21 + 16
,

Z2,1
H,H � Z2,2

H,H �
σ42 + 6σ22 + 8

3σ42 + 16σ22 + 16
,

Z1,1
L,H �

σ41 + 4σ21 + 4
3σ41 + 10σ21 + 4

,

Z1,2
L,H �

σ41 + 4σ21 + 2
3σ41 + 10σ21 + 4

,

Z2,1
L,H �

σ42 + 4σ22 + 4
3σ42 + 10σ22 + 4

,

Z2,2
L,H �

σ42 + 4σ22 + 2
3σ42 + 10σ22 + 4

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1,1
L,L � Z1,2

L,L �
σ41 + 2σ21 + 1
3σ41 + 4σ21 + 1

,

Z2,1
L,L � Z2,2

L,L �
σ42 + 2σ22 + 1
3σ42 + 4σ22 + 1

,

Z1,1
H,L �

σ41 + 4σ21 + 2
3σ41 + 10σ21 + 4

,

Z1,2
H,L �

σ41 + 4σ21 + 4
3σ41 + 10σ21 + 4

,

Z2,1
H,L �

σ42 + 4σ22 + 2
3σ42 + 10σ22 + 4

,

Z2,2
H,L �

σ42 + 4σ22 + 4
3σ42 + 10σ22 + 4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

0en, we can draw the efforts of agents, as shown in
Figure 1.

Figure 1 shows a general conclusion that effort is a
decreasing function of volatility (uncertainty). Furthermore,
the type of coworker will affect the agent’s efforts. 0e
conclusion in Figure 1 shows that first, the H-type agent
provides more effort than the L-type agent provides; second,
theH-type agent will prompt his coworker to provide higher
effort (whether the coworker is H-type or L-type). Among
them, the second conclusion is the unique conclusion in the
multiagent problem.

Figures 2 and 3 show the optimal contract for the L− type
agent and the H− type agent, respectively. We can see from
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Figure 1: 0e optimal efforts for agent 1 and agent 2.
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Figure 3: 0e optimal contract for H− type agent 1.
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Figure 2: 0e optimal contract for L− type agent 1.
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Figures 2 and 3 that the optimal incentive contract of each
agent is affected by his own type and the type of coworker. In
detail, each agent’s contract is increasing both in his type and
his coworker’s type (we can see the same conclusion in [6]).
Moreover, the H-type optimal incentive contract is larger
than the L-type optimal incentive contract, regardless of
whether the agent is H-type or the coworker is H-type. 0is
conclusion is a generalization of the conclusion of the single-
agent adverse selection problem.

0e trend in Figure 4 is similar to Figure 3. 0at is, the
greater the uncertainty, the lower the expected utility of the
principal. 0is shows that when there are moral hazard and
adverse selection, the expected utility of both of them has
been reduced, i.e., corporate management is inefficient.
0is is a general conclusion in the principal-agent problem.
0e influence of uncertainty on contract is also a topic
worth studying in the principal-agent problem (such as
[24]).

Secondly, we analyze the influence of prior distribution
on the optimal contract. Similarly, we also have to fix some
parameters, a11 � a12 � a21 � a22 � 1, r1 � r2 � rP � 1/2,

T � 1, Σ �
1 0
0 1􏼠 􏼡, θL, ηL � 2, θH, ηH � 1, L1(θL, ηj) �

L2(θi, ηL) � 0, and L1(θH, ηj) � L2(θi, ηH) � 0.18. Accord-
ing to the conclusions in Proposition 1 and Proposition 2,
H− type agents’ utility exceeds his reserved utility, i.e.,
L1(θH, ηj)<L1(θL, ηj) + (T · (θL − θH)/2) · (u1

H,j)
2. 0ere-

fore, in this case, we assume that L1(θH, ηj) � (1/
2) · [L1(θL, ηj) + (T · (θL − θH)/2) · (u1

H,j)
2]. 0en,

Z1,1
H,H � Z1,2

H,H � Z2,1
H,H � Z2,2

H,H �
3
7
,

Z1,1
L,H � Z2,1

L,H �
9
17

,

Z1,2
L,H � Z2,2

L,H �
7
17

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1,1
L,L � Z1,2

L,L � Z2,1
L,L � Z2,2

L,L �
1
2
,

Z1,1
H,L � Z2,1

H,L �
7
17

,

Z1,2
H,L � Z2,2

H,L �
9
17

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

Next, we will find the specific values of p∗ and q∗.
Given the principal only provides H− type contracts
C1

HH � C1(u1
HH, θH, ηH) and C2

HH � C2(u2
HH, θH, ηH).

According to the conclusion of Proposition 3, when
p ∈ (0, p∗) and q ∈ (0, q∗), the H− type agents satisfied
Borch’s theorem; therefore, for H− type agents, regardless
of the type of the coworker, choosing to provide effort
un

HH (n � 1, 2) is always optimal. We assume that L− type
agents also accept H− type contracts and provide efforts,
marked as 􏽥un

HH. Because of the moral hazard, the prin-
cipal cannot observe the agents’ efforts. So, for L− type
agents, 􏽥un

HH < un
HH. Because of the certainty equivalent

provided by the principal to H− type and L− type is the
same, i.e.,

g
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Figure 4: 0e function g and the expected utility for the principal.
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C
1

u
1
H,H, θH, ηH􏼐 􏼑

� X
1
0 θH, ηH( 􏼁 +

r1T

2
· σ1Z

1,1
H,H􏼐 􏼑

2
+ σ2Z

2,1
H,H􏼐 􏼑

2
􏼔 􏼕 +

T

2θH

· a11Z
1,1
H,H􏼐 􏼑

2
+ a21Z

2,1
H,H􏼐 􏼑

2
􏼔 􏼕

� X
1
0 θH, ηH( 􏼁 +

r1T

2
· σ1 􏽥Z

1,1
H,H􏼒 􏼓

2
+ σ2 􏽥Z

2,1
H,H􏼒 􏼓

2
􏼢 􏼣 +

TθL

2
·

a11

θH

􏽥Z
1,1
H,H􏼠 􏼡

2

+
a21

θH

􏽥Z
2,1
H,H􏼠 􏼡

2
⎡⎣ ⎤⎦,

(58)

and for agent 2,

C
2

u
2
H,H, θH, ηH􏼐 􏼑

� X
2
0 θH, ηH( 􏼁 +

r2T

2
· σ1Z

1,2
H,H􏼐 􏼑

2
+ σ2Z

2,2
H,H􏼐 􏼑

2
􏼔 􏼕 +

T

2ηH

· a12Z
1,2
H,H􏼐 􏼑

2
+ a22Z

2,2
H,H􏼐 􏼑

2
􏼔 􏼕

� X
2
0 θH, ηH( 􏼁 +

r2T

2
· σ1 􏽥Z

1,2
H,H􏼒 􏼓

2
+ σ2 􏽥Z

2,2
H,H􏼒 􏼓

2
􏼢 􏼣 +

TηL

2
·

a12

ηH

􏽥Z
1,2
H,H􏼠 􏼡

2

+
a22

ηH

􏽥Z
2,2
H,H􏼠 􏼡

2
⎡⎣ ⎤⎦.

(59)

0erefore, in this case, we have

􏽥u
1,1
HH �

a11

θH

􏽥Z
1,1
H,H �

3
��
15

√

35
,

􏽥u
2,1
HH �

a21

θH

􏽥Z
2,1
H,H �

3
��
15

√

35
,

􏽥u
1,2
HH �

a12

ηH

􏽥Z
1,2
H,H �

3
��
15

√

35
,

􏽥u
2,2
HH �

a22

ηH

􏽥Z
2,2
H,H �

3
��
15

√

35
.

(60)

Denote that 􏽥U
P
(YT, C) represents the principal’s opti-

mal expected utility under the situation he only provided the
H− type contract, and UP(YT, C) is his optimal expected
utility under the situation with which he provided the
separating equilibrium contracts. If the following inequality
holds,

U
P

YT, C( 􏼁 − 􏽥U
P

YT, C( 􏼁 � − pq · e
− rPTg ZL,L( ) + p(1 − q) · e

− rPTg ZL,H( ) +(1 − p)q · e
− rPTg ZH,L( )􏼒

+(1 − p)(1 − q) · e
− rPTg ZH,H( )􏼓 + pq · e

− rPTg 􏽥Z
1

H,H,􏽥Z
2

H,H􏼐 􏼑
+ p(1 − q) · e

− rPTg 􏽥Z
1

H,H,Z2
H,H􏼐 􏼑

􏼠

+(1 − p)q · e
− rPTg Z1

H,H,􏽥Z
2

H,H􏼐 􏼑
+(1 − p)(1 − q) · e

− rPTg Z1
H,H,Z2

H,H( )􏼡< 0.

(61)

We should have p< 0.1 � p∗ and q< 0.1 � q∗. In other
words, when the probability of the L− type agents is small,
the principal only provides H− type contracts to obtain
higher expected utility.

0e left side of Figure 5 is |UP(YT, C) − 􏽥U
P
(YT, C)|, that

is, the comparison of the principal’s utility function in both
cases. From the figure, we can see that when p ∈ (0, 0.1) and
q ∈ (0, 0.1), we have UP(YT, C)< 􏽥U

P
(YT, C), i.e., when the

probability of the L− type agent is relatively small, the
principal only provides the H− type contract, which can
improve his expected utility.0e right side of Figure 5 shows

the entire expected utility of the principal. Obviously, the
higher the probability of the H− type agent, the greater the
expected utility of the principal.

Figure 5 depicts an interesting conclusion in this paper
after the exact solution of the optimal contract, and the
optimal effort is obtained through the fixed parameters.0at
is to say, in our model, we can find a probability value p∗ and
q∗ that decides whether the principal provides H-type
contract or separates equilibrium contract.

Figure 6 shows the separating equilibrium contracts for
agent 1 and agent 2.0e L− type agents’ contract is obviously
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smaller than the H− type agents’ contract. And when the
probability of a coworker being an L− type agent is in-
creasing, the agent’s expected utility is diminishing.

Unlike the single-agent model, Figure 6 shows the in-
teraction between agents. 0e types of agents and the efforts
they provide will affect the expected utility of their co-
workers. 0is conclusion is closer to the real situation in the
labor market.

5. Conclusion

We develop a continuous-time model for modeling a
multiagent relationship in the presence of adverse selection,
with or without moral hazard. For principal, it is also sat-
isfactory to have a model in which the firm’s rate of return
(or risk item yield) can be controlled by the agent, and the
volatility is unknown (but fixed). And for principal, it is
important to have models in which to employ multiple

agents to provide the efforts to coproduce (or manage risk
projects together). Moreover, it is important to allow for
these effort actions to be dynamic. We have shown that the
multiagent incentive problem can be transformed into risk
sharing problem, in the case of pure reverse selection. 0us,
solving the principal’s problem becomes similar to solving a
first-best problem as seen in Cvitanic and Zhang [25]. Given
both the principal and the agents are risk averse, because of
the nonlinearity of the utility functions, we need to solve the
risk sharing problem with a method that is different from
solving the linear problem.

In the third best case, we have the following conclusions:
firstly, moral hazard and adverse selection in the market will
lead to the absence of market equilibrium. Secondly, if
market equilibrium exists, then it must be a separating
equilibrium.0at is, the market supports different contracts,
each of which applies to one type of agent. 0irdly, although
the team incentive problem in continuous time is much
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Figure 6: 0e optimal expected utility for the agents.
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Figure 5: 0e expected utility for the principal.
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more complicated than the static single agency incentive
problem, we get the conclusions are similar to the conclu-
sions in the static model. Finally, there is an interesting
conclusion that under the separating equilibrium, the
L− type agents obtain the reservation utility. Because of the
asymmetry of information, the expected utility of the
H− type agents is less than that of the full information.

It should be noted that the continuous payment pro-
vided by the principal is not considered in our model. In
addition, in order to get the exact solution of the optimal
contracts, our model assumes only two types of two agents,
which are obviously not very realistic. In many cases, it is
assumed that the set of agents’ type is a continuous space or
that more agents in the team are more reasonable. 0ese
issues would be of significant interest for future research.
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