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In this paper, the asymptotic behavior of a multigroup SEIR model with stochastic perturbations and nonlinear incidence rate
functions is studied. First, the existence and uniqueness of the solution to the model we discuss are given. 'en, the global
asymptotical stability in probability of the model with R0 < 1 is established by constructing Lyapunov functions. Next, we prove
that the disease can die out exponentially under certain stochastic perturbation while it is persistent in the deterministic case when
R0 > 1. Finally, several examples and numerical simulations are provided to illustrate the dynamic behavior of themodel and verify
our analytical results.

1. Introduction

'e history of human beings is full of struggle against
diseases which cause great disaster to humans. At present,
many countries and people around the world are suffering
from the COVID-19, which has seriously affected people’s
lives and brought huge losses to the economy. Epidemiology
is the subject to study the spread of diseases and formulate
the strategies and measures for controlling and eliminating
diseases. Mathematical modeling has been widely used in
epidemiology to depict the mechanism of disease trans-
mission and study the behavior of disease. One of the classic
epidemic models is the SIR model which divides the host
population into three parts, the susceptible, the infective,
and the removed, and records their sizes by S(t), I(t), and
R(t) at time t, respectively. However, many diseases do not
break out immediately, and there will be a latent period of
time, so SEIR models with latent period have been widely
studied. In SEIR models, the size of the exposed individuals
is labeled by E(t) at time t.

Many models have considered the case of only one
group; however, groups in different communities, regions,
or with different cultural backgrounds have various life-
styles, dietary habits, and so on, which will make the disease

have different ways of transmission. 'erefore, considering
different contact patterns, transmission, or geographic
distributions, it is more reasonable to divide the host
population into several subgroups and study the disease
interactions among different subgroups.'is is known as the
multigroup model. One of the earliest works on the mul-
tigroup disease model was done by Lajmanovich and Yorke
[1], who discussed a class of SIS multigroup models for the
transmission of gonorrhea and used Lyapunov functions to
prove the stability of the unique endemic equilibrium. Since
then, there has been a great quantity of literature on the
multigroup model, such as [2–8].

In the classic SEIR models, the incidence function takes
the bilinear form. A premise for this form is that the host
population is homogeneously mixed, and everyone has the
same possibility to be infected when the infectives are in-
troduced to the group. In real life, however, the population
may not be homogeneously mixed, and the immunity of
each person may be different such that the chances of being
infected are disparate, so extending bilinear incidence to
nonlinear functions can conform to the actual situation
better. Many scholars have studied the epidemicmodels with
nonlinear incidence rate, such as [4, 8–11] and the reference
therein. Also, many scholars investigated the epidemic
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models with time delays, such as [12, 13]. In [4], the authors
discussed the global stability of the multigroup epidemic
model with nonlinear incidence rates of the form fkj(Sk, Ij),
which satisfies the following assumptions:

(i) (H1) for 0< Sk ≤ S0k, it has 0< limIj⟶0+

(fkj(Sk, Ij)/Ij) � Ckj(Sk), where S0k is the positive
solution of certain function.

(ii) (H2) fkj(Sk, Ij)≤Ckj(Sk)Ij for any Ij > 0.
(iii) (H3) Ckj(Sk)≤Ckj(S0k), for 0< Sk ≤ S0k.

'is research intends to study this general form of in-
cidence function and assumes further that (Ckj(Sk)/Sk)≤K,
where for K is a positive constant. 'e above incidence rate
functionsfkj(Sk, Ij) include some special cases which can be
seen in some literature, for example,

fkj Sk, Ij􏼐 􏼑 � SkIj,

fkj Sk, Ij􏼐 􏼑 � S
q

kIj, q≥ 1,

fkj Sk, Ij􏼐 􏼑 �
SkIj

1 + αI2j
,

fkj Sk, Ij􏼐 􏼑 �
SkIj

φ Ij􏼐 􏼑
.

(1)

'e multigroup SEIR model with above incidence
functions can be obtained:

dSk

dt
� Λk − 􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − d

S
kSk,

dEk

dt
� 􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − ϵk + d

E
k􏼐 􏼑Ek,

dIk

dt
� ϵkEk − αk + d

I
k + ck􏼐 􏼑Ik,

dRk

dt
� ckIk − d

R
k Rk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

What the parameters mean can be summarized in the
following list:

Λk: the influx of individuals in the kth group.
βkj: the transmission rate between Sk and Ij.
dS

k, dE
k , dI

k, anddR
k : the natural death rate of S, E, I, and

R in the kth group, respectively.
ϵk: the rate of becoming infectious in the kth group.
αk: the death rate caused by disease in the kth group.
ck: the cure rate in the kth group.

'e parameters above are all nonnegative. In particular,
when βkj � 0, it means that there is no disease transmission
between Sk and Ij. 'e matrix B � (βkj)n×n reflects the
transmission mechanism of disease among different

subgroups built in the model. In this paper, we assume that
the matrix B is irreducible.

Since that Rk, k � 1, 2, . . . , n, do not appear in the first
three equations of model (2) but only in the fourth equation,
their properties and behaviors can be solved easily if
Ik, k � 1, 2, . . . , n, are known; they can be omitted when
analyzed. 'erefore, the model can be simplified into the
following form:

dSk

dt
� Λk − 􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − d

S
kSk,

dEk

dt
� 􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − ϵk + d

E
k􏼐 􏼑Ek,

dIk

dt
� ϵkEk − αk + d

I
k + ck􏼐 􏼑Ik.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In the epidemic models, the basic reproduction number
R0, which represents the number of second generations
produced by a single infected individual, plays an important
role in the spread of disease for the long time. According to
[4, 14], R0 � ρ(M0), where M0 � (βkjϵkCkj(S0k)/(αk + dI

k

+ ck)(ϵk + dE
k ))n×n, S0k � Λk/dS

k, and ρ is the spectral radius of
the matrix M0. If R0 < 1, there is only disease-free equilib-
rium P0, where P0 � ((Λ1/dS

1), 0, 0, . . . , (Λn/dS
n), 0, 0). When

R0 > 1, then P0 is unstable, and the model has an endemic
equilibrium P∗ which means the disease will be persistent. In
this situation, our concern is whether there is a way to
exterminate the disease.

'e reality is filled with randomness, and the epidemic
models are often influenced by random environments. For
example, there are a lot of natural disasters in reality, such as
storm and earthquake. If these randomnesses happen, the
parameters and the transmission mechanism in the model
are likely to be affected. 'us, the deterministic model has
some limitations to fully describe transmission of disease.
Many scholars have studied the epidemic model with sto-
chastic perturbations depicted by Brownian motion, and a
lot of literature studies have been published; we refer the
readers to [5, 7, 10, 12, 13, 15–17]. In [18–20], the authors
studied the SIR or SIRS model with Markovian switching,
and they gave some conditions on extinction or ergodicity of
the model.

Influenced by the work of predecessors, we use the
similar method of Dalal et al. and Witbooi [21, 22] to
construct stochastic perturbations, that is, we replace the
parameters dE

k and dI
k by dE

k − σ1kdBk and dI
k − σ2kdWk,

where the stochastic perturbations Bk and Wk are inde-
pendent standard Brownian motions. 'e reason that not all
parameters but only some of them are disturbed by sto-
chastic perturbations may be the uncertainty of stochastic
factors and the change of behavior of the infected.

For all we know, the papers that discuss asymptotic
behaviors of stochastic multigroup SEIR models with
nonlinear incidence rate functions are relatively few. In this
paper, we will study the following stochastic multigroup
SEIR model:
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_Sk � Λk − 􏽐
n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − dS

kSk
⎛⎝ ⎞⎠dt,

_Ek � 􏽐
n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − ϵk + dE

k( 􏼁Ek
⎛⎝ ⎞⎠dt + σ1kEkdBk(t),

_Ik � ϵkEk − αk + dI
k + ck( 􏼁Ik( 􏼁dt + σ2kIkdWk(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where σik, i � 1, 2, are the intensities of stochastic
perturbation.

Because the incidence rate functions fkj(Sk, Ij) are
general and can be of different types in one model, which
increase the difficulty of research, we will overcome it by
some inequality techniques. 'is paper is organized as
follows. Section 2 presents some background knowledge and
lemmas which will be used afterwards. In Section 3, we prove
that there is a unique positive solution to the model for any
initial value. Section 4 proves that the disease-free equi-
librium is globally asymptotically stable in probability when
R0 < 1 by constructing Lyapunov functions. In Section 5, the
disease will die out exponentially under certain stochastic
perturbations when R0 > 1, and in Section 6, we provide
some numerical simulations of the model to verify our
analytical results.

2. Preliminaries

'roughout the paper, unless otherwise specified,
(Ω, Ft􏼈 􏼉t≥ 0, P) denotes a complete probability space with a
filtration Ft􏼈 􏼉t≥ 0 satisfying the usual conditions (i.e., it is
right continuous, and F0 contains all P-null sets). Denote

R
n
+ � x ∈ R

n
: xi > 0 for all 1≤ i≤ n􏼈 􏼉. (5)

In general, let X be a regular homogeneous Markov
process in Rn; consider the stochastic differential equation

dX(t) � b(X(t))dt + 􏽘
d

k�1
σk(X(t))dBk(t), (6)

with initial value X(t0) � x0 ∈ Rn and Bk(t), 1≤ k≤d, are
standard Brownian motions. Define the differential operator
L associated with the above equation by

L � 􏽘
n

k�1
bk(x)

z

zxk

+
1
2

􏽘

n

i�1
􏽘

n

j�1
σT

(x)σ(x)􏽨 􏽩
ij

z2

zxizxj

. (7)

If L acts on a function V ∈ C2,1(El × R+;R+), then by
It􏽢o formula,

dV(X, t) � LV(X, t)dt + 􏽘
d

r�1
Vx(X, t)σr(X(t))dBr(t).

(8)

where

LV(X, t) � Vt(X, t) + 􏽘
n

k�1
bk(x)

zV

zxk

+
1
2

􏽘

n

i�1
􏽘

n

j�1
σT

(x)σ(x)􏽨 􏽩
ij

z2V

zxizxj

.

(9)

Next, we introduce some definitions about stability and
lemmas which will be used latter. Assume that b(0) � 0 and
σk(0) � 0, k � 1, 2, . . . , d; then, X(t) ≡ 0 is the trivial solu-
tion to (6).

Definition 1. 'e trivial solution is called to be

(i) Stable in probability if for any ϵ> 0 and the solution
X(t, x0) with initial value X(0) � x0, then

lim
x0⟶0

P supt≥0
􏼌􏼌􏼌􏼌 X t, x0( 􏼁

􏼌􏼌􏼌􏼌 ≥ ϵ􏼐 􏼑 � 0. (10)

(ii) Globally asymptotically stable in probability if it is
stable in probability, and for any x0 ∈ Rn,

P lim
t⟶∞

X t, x0( 􏼁 � 0􏼒 􏼓 � 1. (11)

Lemma 1 (cf. [23]). If there is a positive definite function
V(t, x) ∈ C2(Rn) with an infinitesimal upper limit such that
the function LV is negative definite, then the trivial solution
is globally asymptotically stable in probability.

Lemma 2 (Perron–Frobenius). If A � (aij)n×n is irreducible
and nonnegative, then the spectral radius ρ(A) of A is a single
eigenvalue, and there is a positive eigenvector
ω � (ω1,ω2, . . . ,ωn) corresponding to ρ(A) of A. Moreover,
ρ(A) satisfies the inequality

mini 􏽘
j

aij ≤ ρ(A)≤maxi 􏽘
j

aij. (12)

Remark 1. From our previous description in Introduction,
we know that R0 � ρ(M0)< 1 will lead to the extinction of
disease in deterministic model (3). Combining the expres-
sion of R0 with the estimation of ρ(M0) in (12), we can infer
that if transmission rate βkj decreases, ρ(M0) will become
smaller, which provides the possibility of eliminating dis-
ease. A very important way to reduce βkj is to isolate people
at home and restrict them from going out. 'is measure is
being taken in many countries to combat COVID-19.

Lemma 3 (cf. [24]). Let M � Mt􏼈 􏼉t≥ 0 be a real-valued
continuous local martingale vanishing at t � 0. 5en,
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lim
t⟶∞

〈M, M〉t �∞ a.s.⟹ lim
t⟶∞

Mt

〈M, M〉t

� 0 a.s.

lim sup
t⟶∞

〈M, M〉t

t
<∞ a.s.⟹ lim

t⟶∞

Mt

t
� 0 a.s..

(13)

3. The Existence and Uniqueness of the
Solution to Model (4)

'e first question we concern is whether the system has a
solution or not. In this section, we prove that the system has
a global and positive solution for any initial value.

Theorem 1. Given any initial value (S1(0), E1(0), I1(0)

· · · Sn(0), En(0), In(0)) ∈ R3n
+ , then model (4) has a unique

solution on t≥ 0, and the solution will remain in R3n
+ with

probability one, that is, (S1(t), E1(t), I1(t) · · · Sn(t), En(t),

In(t)) ∈ R3n
+ for t≥ 0 almost surely.

Proof. Since the coefficients of the model are locally Lip-
schitz continuous, there is a unique local solution
(S1(t), E1(t), I1(t) · · · Sn(t), En(t), In(t)) on t ∈ [0, τe],
where τe is the explosion time (cf. [24]). In order to illustrate
the solution is global, we only need to prove τe �∞. Assume
c0 is sufficiently large so that S1(0), E1(0), I1(0) · · ·

Sn(0), En(0), In(0) lie within the interval [(1/c0), c0]. For
c≥ c0, define the stopping time

τc � inf t ∈ 0, τe􏼂 􏼃, min
1≤k≤n

Sk(t), Ek(t), Ik(t)􏼈 􏼉≤
1
c

􏼚 ,

or max
1≤k≤n

Sk(t), Ek(t), Ik(t)􏼈 􏼉≥ c􏼩.

(14)

We set inf∅ �∞ (where ∅ denotes the empty set).
Clearly, τc is increasing as c⟶∞. Let τ∞ � limc⟶∞τc,
and τ∞ ≤ τe a.s. If we can prove τ∞ �∞ a.s., then equality
τe �∞ holds true, and the conclusion can be obtained. If the
assertion is false, then there exist two constants T> 0 and
ϵ ∈ (0, 1) such that

P τ∞ ≤T( 􏼁> ϵ. (15)

Hence, there exists a positive integer c1 ≥ c0 such that

P τc ≤T( 􏼁> ϵ, for all c≥ c1. (16)

'en, we define a function V: R3n
+ ⟶ R by

V Sk, Ek, Ik( 􏼁 ≔ 􏽘
n

k�1
Sk − ak − akln

Sk

ak

􏼠 􏼡􏼢

+ Ek − 1 − lnEk( 􏼁

+ Ik − 1 − lnIk( 􏼁⎤⎦,

(17)

where ak, k � 1, 2, · · · n, are constants which will be deter-
mined later. Using It􏽢o’s formula, we can get

dV � 􏽘
n

k�1
1 −

ak

Sk

􏼠 􏼡 Λk − 􏽘
n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − d

S
kSk

⎛⎝ ⎞⎠dt⎡⎢⎢⎣ ⎤⎥⎥⎦

+
1
2

􏽘

n

k�1
σ21k + σ22k􏽨 􏽩

+ 􏽘
n

k�1
1 −

1
Ek

􏼠 􏼡 􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − ϵk + d

E
k􏼐 􏼑Ek

⎛⎝ ⎞⎠dt⎡⎢⎢⎣

+ σ1kEkdBk(t)⎤⎦

+ 􏽘
n

k�1
1 −

1
Ik

􏼠 􏼡 ϵkEk − αk + d
I
k + ck􏼐 􏼑Ik􏼐 􏼑dt􏼔

+ σ2kIkdWk(t)􏼕dt

� LVdt + 􏽘
n

k�1
σ1k Ek − 1( 􏼁dBk(t) + σ2k Ik − 1( 􏼁dWk(t)􏼂 􏼃,

(18)

where

LV � 􏽘
n

k�1
Λk − d

S
kSk −

ak

Sk

Λk +
ak

Sk

􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑⎡⎢⎢⎣

+ akd
S
k − d

E
k Ek

−
1

Ek

􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − αk + d

I
k + ck􏼐 􏼑Ik −

ϵkEk

Ik

⎤⎥⎥⎦

+ ϵk + d
E
k + αk + d

I
k + ck +

1
2

􏽘

n

k�1
σ21k + σ22k􏽨 􏽩

≤ 􏽘
n

k�1
Λk + ak 􏽘

n

j�1
βkjKIj + akd

S
k − αk + d

I
k + ck􏼐 􏼑Ik

⎡⎢⎢⎣ ⎤⎥⎥⎦

+ ϵk + d
E
k + αk + d

I
k + ck +

1
2

􏽘

n

k�1
σ21k + σ22k􏽨 􏽩.

(19)

Notice that

􏽘

n

k�1
􏽘

n

j�1
akβkjKIj − 􏽘

n

k�1
αk + d

I
k + ck􏼐 􏼑Ik

� 􏽘
n

j�1
􏽘

n

k�1
akβkjK

⎛⎝ ⎞⎠Ij − 􏽘
n

j�1
αj + d

I
j + cj􏼐 􏼑Ij

� 􏽘
n

j�1
􏽘

n

k�1
Kakβkj − αj + d

I
j + ck􏼐 􏼑⎡⎣ ⎤⎦Ij.

(20)
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We choose appropriate numbers ak, 1≤ k≤ n, such that
􏽐

n
k�1 Kakβkj − (αj + dI

j + ck) � 0; then, LV≤M, where M

is a positive constant. 'erefore,

dV≤Mdt + 􏽐
n

k�1
σ1k Ek − 1( 􏼁dBk(t) + σ2k Ik − 1( 􏼁dWk(t)􏼂 􏼃.

(21)

Integrate both sides of (21) from 0 to τc ∧T and take
expectation; then,

EV Sk τc ∧T( 􏼁, Ek τc ∧T( 􏼁, Ik τc ∧T( 􏼁( 􏼁

≤V Sk(0), Ek(0), Ik(0)( 􏼁 + E􏽚
τc ∧T

0
Mdt

≤V Sk(0), Ek(0), Ik(0)( 􏼁 + MT.

(22)

Set Ωc � τc ≤T􏼈 􏼉; we have P(Ωc)≥ ϵ. Notice that, for
every ω ∈ Ωc, there exists at least one of S(τc,ω),

E(τc,ω), I(τc,ω) which equals either c or 1/c. 'erefore,

V Sk τc ∧T( 􏼁, Ek τc ∧T( 􏼁, Ik τc ∧T( 􏼁( 􏼁

≥ min
1≤k≤n

c − ak − ak ln
c

ak

,
1
c

− ak − ak ln
1

akc
􏼨 􏼩

∧ (c − 1 − ln c)∧
1
c

− 1 − ln
1
c

􏼒 􏼓.

(23)

Combining (22) with (23), we can obtain that

V Sk(0), Ek(0), Ik(0)( 􏼁 + MT≥E 1Ωc(ω)V Sk τc ∧T( 􏼁, Ek τc ∧T( 􏼁, Ik τc ∧T( 􏼁( 􏼁􏽨 􏽩

≥ ϵ min
1≤k≤n

c − ak − ak ln
c

ak

,
1
c

− ak − ak ln
1

akc
􏼠 􏼡􏼨

∧ (c − 1 − ln c)∧
1
c

− 1 − ln
1
c

􏼒 􏼓􏼩,

(24)

where 1Ωm(ω) is the indicator function of Ωm. Letting
m⟶∞ leads to the contradiction that
∞>V(Sk(0), Ek(0), Ik(0)) + MT �∞. So, τe �∞ a.s. 'e
proof is completed. □

Corollary 1. For Sk, k � 1, 2 · · · n, in model (4), there exists a
set of Mk such that Sk ≤Mk. Furthermore, the set
Γ � Sk: Sk > 0, Sk ≤ (Λk/dS

k)􏼈 􏼉 is the invariant set, that is to
say, if the initial value Sk(0) ∈ Γ, then Sk(t) ∈ Γ, for t≥ 0
almost surely.

Proof. For the first equation of model (4), we have
dSk ≤ (Λk − dS

kSk)dt. By the method of variation of con-
stants, we get that

Sk(t)≤
Λk

dS
k

+ Sk(0) −
Λk

dS
k

􏼠 􏼡e
− dS

k
t
. (25)

If Sk(0)≤ (Λk/dS
k), then Sk(t)≤ (Λk/dS

k). If Sk(0)>
(Λk/dS

k), then Sk(t)≤ Sk(0). Let Mk � max (Λk/dS
k),􏼈 Sk(0)}.

'e proof is complete.

'e assumption Sk(0)≤ (Λk/dS
k) will be used in the rest

of the paper. □

4. The Behavior of the Model with R0 < 1

In the deterministic SEIR model, P0 is the disease-free
equilibrium, and it is globally stable which means that the
disease will die out with any initial value when R0 < 1. In this
section, we will discuss the asymptotic behavior of the
stochastic model with R0 < 1.

Theorem 2. Let (S1(t), E1(t), I1(t), . . . , Sn(t), En(t), In(t))

be the solution to model (4) with the initial valueinitial
value(S1(0), E1(0), I1(0), . . . , Sn(0), En(0), In(0) ∈ R3n

+ . If
B � (βkj)n×n is irreducible and R0 � ρ(M0)< 1, then P0 is the
unique equilibrium of model (4), and it is globally asymp-
totically stable in probability.

Proof. According to the assumption, B is irreducible and
nonnegative; then, by Lemma 2, M0 has a single eigenvalue
ρ(M0) and a positive eigenvector ω � (ω1,ω2, . . . ,ωn)

corresponding to ρ(M0) such that
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ω1,ω1, . . . ,ωn( 􏼁M0 � ω1,ω1, . . . ,ωn( 􏼁ρ M0( 􏼁. (26)

Let V1 � 􏽐
n
k�1(1/2)ak((Λk/dS

k) − Sk)2 and V2 � 􏽐
n
k�1 ck

(Ek + ((ϵk + dE
k )/ϵk)Ik), where ck � ωkϵk/(dE

k + ϵk)(αk

+ dI
k + ck) and ak will be determined later. Using It􏽢o’s for-

mula, we can obtain that

LV1 � − 􏽘
n

k�1
ak

Λk

dS
k

− Sk􏼠 􏼡 Λk − 􏽘
n

j�1
βkjfkj Sk, Ij􏼐 􏼑 − d

S
kSk

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ − 􏽘
n

k�1
akd

S
k

Λk

dS
k

− Sk􏼠 􏼡

2

+ 􏽘
n

k�1
􏽘

n

j�1
akβkjCkj Sk( 􏼁Ij Sk −

Λk

dS
k

􏼠 􏼡

≤ − 􏽘
n

k�1
akd

S
k

Λk

dS
k

− Sk􏼠 􏼡

2

+
ϵ
2

􏽘

n

k�1
􏽘

n

j�1
akβkjCkj S

0
k􏼐 􏼑
Λk

dS
k

− Sk􏼠 􏼡

2

+
1
2ϵ

􏽘

n

k�1
􏽘

n

j�1
akβkjCkj S

0
k􏼐 􏼑I

2
j

� − 􏽘
n

k�1
ak d

S
k −
ϵ
2

􏽘

n

j�1
βkjCkj S

0
k􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦
Λk

dS
k

− Sk􏼠 􏼡

2

+
1
2ϵ

􏽘

n

k�1
􏽘

n

j�1
akβkjCkj S

0
k􏼐 􏼑I

2
j .

(27)

Here, the second inequality holds true because of the
inequality ab≤ (ϵ/2)a2 + (1/2ϵ)b2. Similarly, we use It􏽢o’s
formula to V2 to get

LV2 � 􏽘
n

k�1
ck 􏽘

n

j�1
βkjfkj Sk, Ij􏼐 􏼑 −

ϵk + dE
k( 􏼁 αk + dI

k + ck( 􏼁

ϵk
Ik

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 􏽘
n

j�1
􏽘

n

k�1
ωk

ϵkβkjCkj S0k( 􏼁

ϵk + dE
k􏼐 􏼑 αk + dI

k + ck􏼐 􏼑
Ij − 􏽘

n

k�1
ωkIk

� ρ0 − 1( 􏼁 􏽘

n

k�1
ωkIk.

(28)

Define Lyapunov function V(t) by V(t) � V1(t)+ V2(t),
and according to 'eorem 1, V(t) is positive definite; then,

LV≤ − 􏽘
n

k�1
ak d

S
k −
ϵ
2

􏽘

n

j�1
βkjCkj S

0
k􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦
Λk

dS
k

− Sk􏼠 􏼡

2

+
1
2ϵ

􏽘

n

k�1
􏽘

n

j�1
akβkjCkj S

0
k􏼐 􏼑I

2
j + ρ0 − 1( 􏼁 􏽘

n

k�1
ωkIk.

(29)

We can choose small ϵ such that dS
k − (ϵ/2) 􏽐

n
j�1 βkj

Ckj(S0k)> 0, ak are chosen to be sufficiently small, and be-
cause of R0 < 1, we haveLV< 0. Hence, applying Lemma 1,
we arrive at the desired assertion. 'e proof is
completed. □

5. The Influence of Large Noise on Disease

In this section, we will discuss the influence of large noises
on disease when R0 > 1. Before we give the theorem, an
inequality is presented first.

Lemma 4. For ak, bk, ck, dk, k � 1, 2 · · · , n, the following
inequality holds true:

􏽘

n

k�1
akbk + ckdk( 􏼁⎡⎣ ⎤⎦

2

≤ 􏽘
n

k�1
a
2
k + 􏽘

n

k�1
c
2
k

⎛⎝ ⎞⎠ 􏽘

n

k�1
b
2
k + 􏽘

n

k�1
d
2
k

⎛⎝ ⎞⎠.

(30)

Proof. We prove it by transforming it into an inner product
in space Rn. Let a ≔ (a1, a2, . . . , an)T ∈ Rn, and the vectors
b, c, and d are defined in a similar way. 'en,

aTb + cTd􏼐 􏼑
2

� ((a, b) +(c, d))
2 ≤ ‖a‖

2
‖b‖

2
+‖c‖2‖d‖

2

+ 2‖a‖‖b‖‖c‖‖d‖

≤ ‖a‖
2
‖b‖

2
+‖c‖2‖d‖

2
+‖a‖

2
‖c‖2 +‖b‖

2
‖d‖

2

≤ ‖a‖
2

+‖c‖2􏼐 􏼑 ‖b‖
2

+‖d‖
2

􏼐 􏼑.

(31)

'e proof is completed. □

Theorem 3. If B � (βkj)1≤k,j≤n is irreducible, then we have
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max
1≤k≤n

lim sup
t⟶∞

1
t
lnEk(t), lim sup

t⟶∞

1
t
ln Ik(t)􏼨 􏼩

≤ R0 − 1( 􏼁 max
1≤k≤n

αk + d
I
k + ck􏽮 􏽯

−
1

2􏽐
n
i�1 1/σ21k􏼐 􏼑 + 1/σ22k􏼐 􏼑􏼐 􏼑

, a.s.

(32)

Proof. We define a C2 function V(Ek, Ik) by

V � 􏽘
n

k�1
ck Ek +

dE
k + ϵk
ϵk

Ik􏼠 􏼡, (33)

where ck � ωkϵk/(dE
k + ϵk)(αk + dI

k + ck). By calculation, we
can get that

dV � 􏽘
n

k�1
􏽘

n

j�1
ckβkjfkj Sk, Ij􏼐 􏼑 − 􏽘

n

k�1
ωkIk

⎡⎢⎢⎣ ⎤⎥⎥⎦dt

+ 􏽘
n

k�1
ckσ1kEkdBk(t)

+ 􏽘
n

k�1
ckσ2k

dE
k + ϵk
ϵk

IkdWk(t).

(34)

Using Ito’s formula, we arrive at

d lnV �
1
V

􏽘

n

k�1
􏽘

n

j�1
ckβkjfkj Sk, Ij􏼐 􏼑 − 􏽘

n

k�1
ωkIk

⎡⎢⎢⎣ ⎤⎥⎥⎦dt

−
1

2V2 􏽘

n

k�1
c
2
k σ21kE

2
k + σ22k

dE
k + ϵk( 􏼁

2

ϵ2k
I
2
k

⎡⎣ ⎤⎦dt

+
1
V

􏽘

n

k�1
ckσ1kEkdBk(t) +

1
V

􏽘

n

k�1
ckσ2k

dE
k + ϵk
ϵk

IkdWk(t).

≤
1
V

􏽘

n

k�1
􏽘

n

j�1
ckβkjCkj S

0
k􏼐 􏼑Ij − 􏽘

n

k�1
ωkIk

⎡⎢⎢⎣ ⎤⎥⎥⎦dt

−
1

2V2 􏽘

n

k�1
c
2
k σ21kE

2
k + σ22k

dE
k + ϵk( 􏼁

2

ϵ2k
I
2
k

⎡⎣ ⎤⎦dt

+
1
V

􏽘

n

k�1
ckσ1kEkdBk(t) +

1
V

􏽘

n

k�1
ckσ2k

dE
k + ϵk
ϵk

IkdWk(t).

≕V1(t)dt + V2(t)dt + V3(t) + V4(t).

(35)

For V1(t), from the expression of eigenvector of R0, i.e.,
(ω1,ω1 · · ·ωn)M0 � R0(ω1,ω1 · · ·ωn), we obtain that

V1(t) �
1
V

R0 − 1( 􏼁 􏽘

n

k�1
ωkIk

≤
R0 − 1

􏽐
n
k�1 ck dE

k + ϵk/ϵk􏼐 􏼑Ik

􏽘

n

k�1
ωkIk

≤ max
1≤k≤n

αk + d
I
k + ck􏽮 􏽯 R0 − 1( 􏼁.

(36)

According to the expression of V, utilizing Lemma 4
yields

V
2

� 􏽘
n

k�1
ckσ1kEk

1
σ1k

+ ck

σ2k dE
k + ϵk( 􏼁Ik

ϵk
1
σ2k

􏼠 􏼡⎡⎣ ⎤⎦
2

≤ 􏽘
n

k�1
c
2
k σ21kE

2
k +

σ22k dE
k + ϵk( 􏼁

2
I2k

ϵ2k
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ 􏽘

n

k�1

1
σ21k

+
1
σ22k

􏼠 􏼡⎡⎣ ⎤⎦.

(37)

Hence, V2(t) satisfies the inequality

V2(t)≤
1

2􏽐
n
k�1 1/σ21k􏼐 􏼑 + 1/σ22k􏼐 􏼑􏼐 􏼑

. (38)

Because

lim sup
t⟶∞

1
t

􏽚
t

0

􏽐
n
k�1 c2kσ

2
1kE

2
k

V2 dt <∞, (39)

applying Lemma 3 to V3(t) yields

lim sup
t⟶∞

1
t

􏽚
t

0
􏽘

n

k�1
V− 1ckσ1kEkdBk(t) � 0. (40)

V4(t) can be done in the same way. 'erefore,

lim sup
t⟶∞

ln V(t)
t
≤ max

1≤k≤n
dIk + ck􏽮 􏽯 R0 − 1( 􏼁

−
1

2􏽐
n
k�1 1/σ21k􏼐 􏼑 + 1/σ22k􏼐 􏼑􏼐 􏼑

.

(41)

Since

1
t
ln 􏽘

n

k�1
ckEk

⎛⎝ ⎞⎠≤
1
t

ln max
1≤k≤n

ck􏼈 􏼉n max
1≤k≤n

Ek􏼈 􏼉􏼠 􏼡􏼢 􏼣

≤
1
t

ln max
1≤k≤n

ck􏼈 􏼉n􏼠 􏼡 + ln max
1≤k≤n

Ek􏼈 􏼉􏼠 􏼡􏼢 􏼣,

1
t
ln 􏽘

n

k�1
ckEk

⎛⎝ ⎞⎠≥
1
t

ln min
1≤k≤n

ck􏼈 􏼉 max
1≤k≤n

Ek􏼈 􏼉􏼠 􏼡􏼢 􏼣

≥
1
t

ln min
1≤k≤n

ck􏼈 􏼉􏼒 􏼓 + ln max
1≤k≤n

Ek􏼈 􏼉􏼠 􏼡􏼢 􏼣,

(42)

taking the upper limit yields
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lim sup
t⟶∞

1
t
ln 􏽘

n

k�1
ckEk

⎛⎝ ⎞⎠ � max
1≤k≤n

lim sup
t⟶∞

1
t
ln Ek􏼨 􏼩. (43)

Making use of the same method, we can obtain that

lim sup
t⟶∞

1
t
ln 􏽘

n

k�1

ck dEk + ϵk􏼐 􏼑

ϵk
Ik⎛⎝ ⎞⎠ � max

1≤k≤n
lim sup
t⟶∞

1
t
ln Ik􏼨 􏼩.

(44)

Combining (43) and (44) yields

lim sup
t⟶∞

1
t
lnV(t)≥ max

1≤k≤n
lim sup
t⟶∞

1
t
ln Ek, lim sup

t⟶∞

1
t
ln Ik􏼨 􏼩.

(45)

Along with (41), we arrive at the desired assertion. 'e
proof is complete. □

0 10 20 30 40 50 60 70 80 90 100
t

S1(t)
E1(t)
I1(t)

S2(t)
E2(t)
I2(t)

0

1

2

3

4

5

6

7

8

(a)

0 10 20 30 40 50 60 70 80 90 100
t

S1(t)
E1(t)
I1(t)

0

1

2

3

4

5

6

7

8

(b)

0 10 20 30 40 50 60 70 80 90 100
t

S2(t)
E2(t)
I2(t)

0

1

2

3

4

5

6

7

8

(c)

Figure 1: 'e trajectories with R0 < 1 and initial value S1(0) � 5, E1(0) � 2.7, I1(0) � 2.3; S2(0) � 2, E2(0) � 2.1, I2(0) � 1:
(a) the trajectory without stochastic perturbation; (b, c) the trajectories with stochastic perturbations where parameters are shown in
Example 1.
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Corollary 2. For the solution to model (4), Ek(t) and Ik(t),
k � 1, 2 · · · n, decay exponentially to zero almost surely if

R0 − 1( 􏼁 max
1≤k≤n

αk + d
I
k + ck􏽮 􏽯<

1
2􏽐

n
i�1 1/σ21k􏼐 􏼑 + 1/σ22k􏼐 􏼑􏼐 􏼑

.

(46)

Remark 2. From (46), we know that the right side of the
inequality increases with the increase of σ1k and σ2k;
therefore, the inequality above holds true for certain αk, dI

k,
ck, and sufficiently large σ1k and σ2k even if R0 > 1, which

makes the disease extinct. It reflects that stochastic per-
turbations play an important role in disease control.
Compared with the deterministic model in [4], the SEIR
model with stochastic perturbations can show more prop-
erties and different behaviors.

Remark 3. We can see from many literature studies that the
incidence function of themultigroup SEIRmodel is single one,
such as Sk(t)Ij(t) in [5, 7] and Sk(t)Ij(t)/(1 + αkIj(t)) in [9].
'ese may have some limitations and cannot reflect the actual
situation well. Incidence functions fkj(Sk(t), Ij(t)) in this
paper can be expressed in different forms, which can better
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Figure 2: 'e trajectories with R0 > 1: (a) the trajectory without stochastic perturbation; (b, c) the trajectories with stochastic perturbations
where parameters are shown in Example 2.
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describe the reality of life. We will provide different examples
to illustrate the results in Section 6.

6. Examples and Numerical Simulations

In this section, we give some simulations of model (4) to
confirm the analytical results above. By using Milstein’s
higher-order method [25], we obtain the corresponding
discretization equation:
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Figure 3: 'e trajectories with R0 > 1 and two different incidence functions: (a) the trajectory without stochastic perturbation; (b, c) the
trajectories with stochastic perturbations where parameters are shown in Example 3.
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Si,k+1 � Si,k + Λi − 􏽐
n

j�1
βijfkj Si,k, Ij,k􏼐 􏼑 − dS

i Si,k
⎛⎝ ⎞⎠Δt,

Ei,k+1 � Ei,k + 􏽐
n

j�1
βijfkj Si,k, Ij,k􏼐 􏼑 − ϵi + dE

i( 􏼁Ei,k
⎛⎝ ⎞⎠Δt + σ1iEi,kηi,k

��
Δt

√

+
1
2
σ21iEi,k η2i,kΔt − Δt􏼐 􏼑,

Ii,k+1 � Ii,k + ϵiEi,k − αi + dI
i + ci( 􏼁Ii,k􏼐 􏼑Δt + σ2iIi,kρi,k

��
Δt

√
+
1
2
σ22iIi,k ρ2i,kΔt − Δt􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where ηik, ρik are Gaussian random variables which follow
the distribution N(0, 1). Let n � 2, i.e., we consider the
interactions of diseases in two groups.

First, we give an example to verify 'eorem 2.

Example 1. Assume that fkj � SkIj/(1 + 2I2j). We choose
Λ1 � 0.3, Λ2 � 0.4; ϵ1 � 0.5, ϵ2 � 0.6; c1 � 0.4, c2 � 0.3; α1 �

0.1, α2 � 0.07; β11 � 0.02, β12 � 0.05, β21 � 0.04, β22 � 0.02,

dS
1 � 0.05, dS

2 � 0.1, dE
1 � 0.08, dE

2 � 0.12, dI
1 � 0.1, dI

2 � 0.15
such that R0 � 0.4835< 1, which satisfies the condition of
'eorem 2. Moreover, let σ11 � 1, σ12 � 0.5, σ21 � 0.8, and
σ22 � 1.5. Its trajectory is shown in Figure 1.

From Figure 1(a), we can see that the diseases are extinct
when stochastic perturbations are absent. From Figures 1(b)
and 1(c), we can see the diseases in two groups are globally
asymptotically stable.

Now, we move forward to verify 'eorem 3. We will
present two examples to illustrate the two cases of incidence
functions. In Example 2, we give the same incidence function
for two groups, and in Example 3, two different incidence
functions are presented.

Example 2. Assume that fkj � SkIj/(1 + 2I2j). We choose
Λ1 � 0.3,Λ2 � 0.4;ϵ1 � 0.5,ϵ2 � 0.6;c1 � 0.4,c2 � 0.3;α1 � 0.1,

α2 � 0.07;β11 � 0.1,β12 � 0.05,β21 � 0.12,β22 � 0.2,dS
1 � 0.05,

dS
2 � 0.1,dE

1 � 0.08,dE
2 � 0.12, dI

1 � 0.1,dI
2 � 0.15 such that

R0 � 1.685>1, which satisfies the condition of 'eorem 3.
Moreover, let σ11 � 1,σ12 � 0.5,σ21 � 0.8,σ22 � 1.5 so that
(R0 − 1)max1≤k≤n αk + dI

k + ck􏼈 􏼉<1/2􏽐
n
i�1((1/ σ21k) + (1/σ22k))

is satisfied. Its trajectory is shown in Figure 2. From
Figure 2(a), we can see that the diseases are persistent be-
cause of R0>1 when stochastic perturbation is absent. We
can see in Figures 2(b) and 2(c) that the diseases in two
groups die out under certain stochastic perturbations and
the exposed are the same results.

Example 3. Assume that f1j � S21Ij, f2j � SkIj/(1 + 2I2j),
j � 1, 2, such that

M0 �

β11ϵ1 Λ1/dS
1( 􏼁

2

α1 + dI
1 + c1( 􏼁 ϵ1 + dE

1( 􏼁

β12ϵ1 Λ1/dS
1( 􏼁

2

α1 + dI
1 + c1( 􏼁 ϵ1 + dE

1( 􏼁

β21ϵ2 Λ2/dS
2( 􏼁

α2 + dI
2 + c2( 􏼁 ϵ2 + dE

2( 􏼁

β22ϵ2 Λ2/dS
2( 􏼁

α2 + dI
2 + c2( 􏼁 ϵ2 + dE

2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(48)

We choose Λ1 � 0.3,Λ2 � 0.4; ϵ1 � 0.5, ϵ2 � 0.6;

c1 � 0.4, c2 � 0.3;α1 � 0.1,α2 � 0.07;β11 � 0.04,β12 � 0.15,

β21 � 0.1,β22 � 0.05, dS
1 � 0.05, dS

2 � 0.1, dE
1 � 0.08, dE

2 � 0.12,

dI
1 � 0.1, dI

2 � 0.15 so that R0 � 3.61> 1 can be obtained.
Moreover, let σ11 � 4, σ12 � 4.5, σ21 � 2.8, and σ22 � 5; then,
the conditions in 'eorem 3 are satisfied. Its trajectory is
shown in Figure 3. From Figure 3(a), we can see that the
diseases are persistent because R0 > 1 without stochastic
perturbation. We can see in Figures 3(b) and 3(c) that the
exposed and infected in two groups die out under certain
stochastic perturbations, which conform to the results of
'eorem 3.
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