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Let G be a simple undirected connected graph, then Dα(G) � αTr(G) + (1 − α)D(G) is called the α-distance matrix of G, where
α ∈ [0, 1], D(G) is the distance matrix of G, and Tr(G) is the vertex transmission diagonal matrix of G. In this paper, we study
some bounds on the α-distance energy and α-distance Estrada index of G. Furthermore, we establish the relation between
α-distance Estrada index and α-distance energy.

1. Introduction

1.1. α-Distance Energy of Graphs. In this paper, we suppose
that G is a connected graph. Let G � (V(G), E(G)) be a
graph with the vertex set V(G) � v1, . . . , vn  and edge set
E(G). ,e distance between two vertices vi, vj ∈ V(G) is the
length of the shortest path between vi and vj, denoted by
d(vi, vj). ,e Wiener index W(G) of the graph G is
W(G) � (1/2)vi,vj∈V(G)d(vi, vj). ,e matrix D(G) �

(di,j) ∈R
n×n is called the distance matrix of G, where

di,j � d(vi, vj), i, j ∈ 1, 2, . . . , n{ }. For some properties of
distance matrix, see [1–3].

,e adjacency matrix of the graph G is
A(G) � (aij) ∈R

n×n, where aij � 1 if (i, j) ∈ E(G) and aij �

0 otherwise. ,e Laplacian matrix and signless Laplacian
matrix of G are L(G) � D(G) − A(G) and Q(G) �
D(G) + A(G), respectively, where D(G) � diag(dv1

, . . . ,
dvn

) ∈Rn×n and dvi
is the degree of vi, i � 1, 2, . . . , n.

In 2013, the study of Laplacian matrix and signless
Laplacian matrix was extended to distance Laplacian ma-
trices and distance signless Laplacian matrices defined as in
equation (1) (see [4]). In 2016, the study of the spectrum of
signless Laplacian matrix was generalized to a convex
combination of D(G) and A(G) defined as
A(α)(G) � α D(G) + (1 − α)A(G), α ∈ [0, 1] (see [5]). In [6],

the above study was further extended to the α-distance
matrices (see equation (2)).

Let Tr(vi) � vj∈V(G)d(vi, vj) is called the transmission
of vi. Let

L(G) � Tr(G) − D(G),

Q(G) � Tr(G) + D(G),
(1)

where Tr(G) � diag(Tr(v1), . . . , Tr(vn)). L(G) and Q are
called the distance Laplacian matrix and distance signless
Laplacian matrix of the graph G, respectively. A graph G is
said to be transmission regular if the transmissions of all the
vertices in V(G) are equal (see [4]). For a transmission
regular graphG, the characteristic polynomials ofL(G) and
Q(G) were characterized in [4]. For more properties of
L(G) and Q(G), see [7–9].

In [6], the α-distance matrix of a graph G

D(α)(G) � αTr(G) +(1 − α)D(G), α ∈ [0, 1], (2)

was defined. Clearly, D(0)(G) � D(G), D(1/2)(G) �

(1/2)Q(G), D(1)(G) � Tr(G), and D(α)(G) − D(β)(G) �

(α − β)L(G). ,e spectra of D(α)(G) is called the α-distance
spectra of G. Since D(α)(G) is a real symmetric matrix, the
eigenvalues of D(α)(G) are real. Let σα(1)(G)≥ σα(2)

(G)≥ · · · ≥ σα(n)(G) be the eigenvalues of D(α)(G). And let
ρ(α)(G) denote the spectral radius of D(α)(G). From the
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Perron–Frobenius theorem, we have σ(1)(G) � ρα(G). ,e
spectral properties of D(α)(G) were recently studied in-
cluding spectral radius, second largest eigenvalue, k-th
smallest eigenvalue, and smallest eigenvalue (see [6, 10–12]).

Graph energy is an important graph invariant in graph
theory; some graph energies Eπ(G) � 

n
i�1|λi(G)|, DE(G)

� 
n
i�1|ci(G)|, and DSLE(G) � 

n
i�1|]i(G) − (2W(G)/n)| are

called the energy (original energy), the distance energy, and
the distance signless Laplacian energy, respectively, where
λi(G), ci(G), and ]i(G) denote the eigenvalues of A(G),
D(G), and Q(G), respectively, i � 1, 2, . . . , n and n � |V(G)|

(see [13–16]).
Graph energy has important applications in the fields of

mathematics and chemistry.,ere aremany research studies
on the above kinds of graph energy. Scholars gave the
bounds on the energy of graphs, for example, the McClel-
land’s bounds [17], Koolen–Moulton’s bounds [18] and so
on [19]. In [16], the distance energy of some graphs was
calculated.

In [11], Guo and Zhou extended the concept of graph
energy to a more general form called α-distance energy:

ς(α)(G) � 
n

i�1
σα(i)(G) −

2αW(G)

n




, α ∈ [0, 1], (3)

where σα(i)(G) is the eigenvalue of D(α)(G), i � 1, 2, . . . , n,
n � |V(G)|. Clearly, ς(0)(G) � DE(G) and ς(1/2)(G) �

(1/2)DSLE(G).

1.2. α-Distance Estrada Index of Graphs. In [20], a spectral
quantity is put forward by Estrada. EE(G) � 

n
i�1e

λi(G) �


n
i�1
∞
k�0λ

k
i (G)/k! is called the Estrada index of G, where

λ1(G), λ2(G), . . . , λn(G) denote the eigenvalues of A(G) (see
[20]). It is well-known that the Estrada index plays an
important role in the problem of characterizing the mo-
lecular structure [21] and complex networks [22–25]. In
[26], the study was extended to distance matrices, and the
distance Estrada index of G is DEE(G) �


n
i�1e

ci(G) � 
n
i�1
∞
k�0c

k
i (G)/k!, where c1(G), c2(G), . . . ,

cn(G) are the eigenvalues of D(G).
In this paper, we consider a more general Estrada index.

Let

DEE(α)(G) � 
n

i�1
e
σα

(i)
(G)

� 
n

i�1


∞

k�0

σα(i)(G) 
k

k!
, (4)

be the α-distance Estrada index of G, where
σα(1)(G), . . . , σα(n)(G) are the eigenvalues of D(α)(G). Clearly,
DEE(0)(G) � DEE(G).

1.3.MainWork. In this paper, we study some bounds on the
α-distance energy and α-distance Estrada index of graphs in
terms of the parameter α and the vertex number, the
transmission of vertices and Wiener index. Furthermore, we
establish the relation between α-distance Estrada index and
α-distance energy.

2. Some Bounds for the α-Distance
Energy of Graphs

To begin with this section, we introduce some notations and
propositions.

Proposition 1 (see [6]). Let G be a graph with n vertices.
6en,



n

i�1
σα(i)(G) � 

n

i�1
αTr vi(  � 2αW(G),



n

i�1
σα(i)(G) 

2
� α2 

n

i�1
Tr

2
vi(  + 2(1 − α)

2
S,

(5)

where S � 1≤i<j≤nd2(vi, vj) and σα(1)(G)≥ σα(2)(G)≥ · · · ≥
σα(n)(G) denotes the eigenvalues of D(α)(G).

In the following, a new matrix is established:

U(α)(G) � αTr(G) +(1 − α)D(G) −
2αW(G)

n
In, α ∈ [0, 1],

(6)

where In denotes identity matrix of order n. Let
ηα(1)(G), ηα(2)(G), . . . , ηα(n)(G) denote the eigenvalues of
U(α)(G). Obviously,

ς(α)(G) � 
n

i�1
ηα(i)(G)



, α ∈ [0, 1]. (7)

Proposition 2. Let G be a graph with n vertices. 6en,



n

i�1
ηα(i)(G) � 0, 

n

i�1
ηα(i)(G) 

2
� 2Z,

(8)

Z � − 
1≤i<j≤n

ηα(i)(G)ηα(j)(G) � 
1≤i<j≤n

ηα(i)(G)ηα(j)(G)




, (9)

where Z � (1 − α)2S + (α2/2)
n
i�1(Tr(vi) − (2W(G)/n))2

and ηα(1)(G), ηα(2)(G), . . . , ηα(n)(G) denote the eigenvalues of
U(α)(G).

Proof. In order to prove equation (8), let
ηα(1)(G), ηα(2)(G), . . . , ηα(n)(G) denote the eigenvalues of
U(α)(G), by equations (5) and (6), we have



n

i�1
ηα(i)(G) 

2
� trace U

2
(α)(G)  � 2(1 − α)

2
S

+ α2 

n

i�1
Tr vi(  −

2W(G)

n
 

2

.

(10)

By equation (5), we have

0 � 
n

i�1
ηα(i)(G)⎛⎝ ⎞⎠

2

� 2Z + 2 
1≤i<j≤n

ηα(i)(G)ηα(j)(G). (11)

,en,
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Z � − 
1≤i<j≤n

ηα(i)(G)ηα(j)(G) � 
1≤i<j≤n

ηα(i)(G)ηα(j)(G)




.

(12)

In the following, we introduce some Lemmas which are
helpful for the following proofs of theorems.

Lemma 1 (see [6]). Let G be a graph with n vertices. 6en,

ρα(G)≥
2W(G)

n
, (13)

the equality holds if and only if G is a transmission regular
graph.

Lemma 2 (see [27]). Let G be a graph with n vertices. 6en,

W(G) ≥
n(n − 1)

2
, (14)

the equality holds if and only ifG � Kn.Kn denotes a complete
graph with n vertices.

Next, we give some bounds for the α-distance energy of a
graph by using the parameter α and the vertex number.

Theorem 1. Let G be a connected graph with n vertices.6en,

ςα(G)≥ 2(1 − α)(n − 1), (15)

the equality holds if and only if G � Kn.

Proof. Let σα(1)(G)≥ σα(2)(G)≥ . . . ≥ σα(n)(G) be the eigen-
values of Dα(G).

By Lemma 1 and α ∈ [0, 1], we know that
σα(1)(G)≥ (2W(G)/n)≥ (2W(G)α/n). Suppose that ι is the
largest number such that σα(ι)(G)≥ (2W(G)α/n). It follows
from equation (5) that

ς(α)(G) � 
ι

i�1
σα(i)(G) −

2W(G)α
n

  + 
i�ι+1

n 2W(G)α
n

− σα(i)(G) 

� 

ι

i�1
σα(i)(G) − ι

2W(G)α
n

+(n − ι)
2W(G)α

n
− 

n

i�ι+1
σα(i)(G)

� 
ι

i�1
σα(i)(G) − ι

2W(G)α
n

− ι
2W(G)α

n
+ 

n

i�1
σα(i)(G)

− 

n

i�ι+1
σα(i)(G)

� 2
ι

i�1
σα(i)(G) −

2W(G)α
n

 

≥ 2 σα(1)(G) −
2W(G)α

n
 .

(16)

From Lemmas 1 and 2, we have

2 σα(1)(G) −
2W(G)α

n
 ≥ 2

2W(G)

n
− α

2W(G)

n
 

� 4(1 − α)
W(G)

n
≥ 2(1 − α)(n − 1).

(17)

,e above three inequalities are the equality holds if and
only if G � Kn. □

We give some bounds for α-distance energy through the
order n, the transmission of vertex and the parameter α
based on Cauchy–Schwarz inequalities in the following.

Theorem 2. Let G be a graph with n vertices. 6en,
����������������

2Z + n(n − 1)p(2/n)



≤ ς(α)(G)≤
����
2nZ

√
, (18)

where p � det|U(α)(G)| and Z � (1 − α)2S + (α2/2)
n
i�1

(Tr(vi) − (2W(G)/n))2.

Proof. Let ηα(1)(G), ηα(2)(G), . . . , ηα(n)(G) denote the eigen-
values ofU(α)(G). FromCauchy–Schwarz inequality, we have

ς(α)(G) 
2

� 
n

i�1
ηα(i)(G)



 · 1⎛⎝ ⎞⎠

2

≤ 
n

i�1
ηα(i)(G)




2



n

i�1
1.

(19)

Using equations (7) and (8), we have
ς(α)(G) 

2
≤ 2nZ. (20)

So,

ς(α)(G)≤
����
2nZ

√
. (21)

Similarly, from equation (11), we know

ς(α)(G) 
2

� 
n

i�1
ηα(i)(G)



⎛⎝ ⎞⎠

2

� 
n

i�1
ηα(i)(G)




2

+ 
i≠j

ηα(i)(G)


 ηα(j)(G)


.

(22)

According to arithmetic-geometric inequality, we have
1

n(n − 1)

i≠j

ηα(i)(G) ηα(j)(G)
�����



≥
i≠j

ηα(i)(G) ηα(j)(G)
�����



 
(1/n(n− 1))

� 
n

i�1
ηα(i)(G)




(n− 1)



n

j�1
ηα(j)(G)




(n− 1)

⎛⎝ ⎞⎠

(1/n(n− 1))

� 
n

i�1
ηα(i)(G)




2(n− 1)

⎞⎠

(1/n(n− 1))

� 
n

i�1
ηα(i)(G)





(2/n)

.⎛⎜⎝

(23)

By equations (7) and (9), we have

ς(α)(G) 
2

� 
n

i�1
ηα(i)(G)




2

+ 
i≠j

ηα(i)(G)


 η
α
(j)(G)





≥ 2Z + n(n − 1)p
(2/n)

,

(24)
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where p � det|U(α)(G)|.
So,

����������������

2Z + n(n − 1)p(2/n)



≤ ς(α)(G)≤
����
2nZ

√
. (25)

In the following, we can obtain another lower bound in
terms of the vertex number and the maximum value of
|ηα(i)(G)| of U(α)(G). □

Corollary 1. Let G be a graph with n vertices, then

ς(α)(G)≤ δα(1)(G) +

�������������������

(n − 1) 2Z − δα(1)(G)2 



, (26)

where δα(1)(G) � max |ηα(i)(G)|  and Z � (1 − α)2S+

(α2/2)
n
i�1(Tr(vi) − (2W(G)/n)) 2.

Proof. Let δα(1)(G)≥ δα(2)(G)≥ , . . . , ≥ δα(n)(G) be a nonin-
creasing sequence of |ηα(i)(G)|. From Cauchy–Schwarz in-
equality, we have



n

i�2
δα(i)(G) · 1⎛⎝ ⎞⎠

2

≤ 
n

i�2
δα(i)(G) 

2


n

i�2
1. (27)

By equation (7), we have

ς(α)(G) − δα(1)(G) 
2
≤ (n − 1) 2Z − δα(1)(G) 

2
 . (28)

So,

ς(α)(G)≤ δα(1)(G) +

���������������������

(n − 1) 2Z − δα(1)(G) 
2

 



. (29)
□

In the following, we obtained some new bounds for
α-distance energy through the Ozeki [28] and Polya’s [29]
inequality, respectively.

Lemma 3 (see [29]). Suppose ai and bi are real numbers for
1≤ i≤ n, then



n

i�1
a
2
i

⎛⎝ ⎞⎠ 

n

i�1
b
2
i

⎛⎝ ⎞⎠≤
1
4

������
M1M2

m1m2



+

������
m1m2

M1M2


⎛⎝ ⎞⎠

2



n

i�1
aibi

⎛⎝ ⎞⎠

2

,

(30)

where M1 � max1≤i≤nai, M2 � max1≤i≤nbi, m1 � min1≤i≤nai,
and m2 � min1≤i≤nbi.

Lemma 4 (see [28]). If ai and bi are real numbers for
1≤ i≤ n, then



n

i�1
a
2
i

⎛⎝ ⎞⎠ 

n

i�1
b
2
i

⎛⎝ ⎞⎠ − 
n

i�1
aibi

⎛⎝ ⎞⎠

2

≤
n2

4
M1M2 − m1m2( 

2
,

(31)

where M1 � max1≤i≤nai, M2 � max1≤i≤nbi, m1 � min1≤i≤nai,
and m2 � min1≤i≤nbi.

Theorem 3. Let G be a graph with n vertices. 6en,

ς(α)(G)≥
2

����
2nZ

√ ������������
δα(1)(G)δα(n)(G)



δα(1)(G) + δα(n)(G)
, (32)

where δα(1)(G) and δα(n)(G) are the largest and the smallest of
|ηα(i)(G)|, respectively, and Z � (1 − α)2S + (α2/2)


n
i�1(Tr(vi) − (2W(G)/n))2.

Proof. Let δα(1)(G)≥ δα(2)(G)≥ , . . . , ≥ δα(n)(G) be a nonin-
creasing sequence of |ηα(i)(G)| and let ai � δα(i)(G) and bi � 1,
where i � 1, . . . , n. By Lemma 3, we have



n

i�1
δα(i)(G) 

2⎛⎝ ⎞⎠ 

n

i�1
1⎛⎝ ⎞⎠≤

1
4

�������
δα(1)(G)

δα(n)(G)



+

�������
δα(n)(G)

δα(1)(G)



⎛⎝ ⎞⎠

2

· 
n

i�1
δα(i)(G)⎛⎝ ⎞⎠

2

.

(33)

By equation (8), we have

2nZ≤
1
4

�������
δα(1)(G)

δα(n)(G)



+

�������
δα(n)(G)

δα(1)(G)



⎛⎝ ⎞⎠

2

ς(α)(G) 
2
. (34)

,us,

ς(α)(G)≥
2

����
2nZ

√ ������������
δα(1)(G)δα(n)(G)



δα(1)(G) + δα(n)(G)
. (35)

□

Theorem 4. Let G be a graph with n vertices. 6en,

ς(α)(G)≥

������������������������

2nZ −
n2

4
δα(1)(G) − δα(n)(G) 

2



, (36)

where δα(1)(G) and δα(n)(G) are the largest and the smallest of
|ηα(i)(G)|, respectively, and Z � (1 − α)2S + (α2/2)

n
i�1(Tr(vi) − (2W(G)/n))2.

Proof. Let δα(1)(G)≥ δα(2)(G)≥ , . . . , ≥ δα(n)(G) be a nonin-
creasing sequence of |ηα(i)(G)|. According to Lemma 4, let
ai � δα(i)(G) and bi � 1, where i � 1, . . . , n, we have



n

i�1
δα(i)(G) 

2⎛⎝ ⎞⎠ 

n

i�1
1⎛⎝ ⎞⎠ − 

n

i�1
δα(i)(G) · 1⎛⎝ ⎞⎠

2

≤
n2

4
δα(1)(G) − δα(n)(G) 

2
.

(37)

By equation (7), we have

2nZ − ς(α)(G) 
2
≤

n2

4
δα(1)(G) − δα(n)(G) 

2
. (38)

,en,

ς(α)(G)≥

������������������������

2nZ −
n2

4
δα(1)(G) − δα(n)(G) 

2



. (39)

□

Lemma 5 (see [30]). Let x1 > x2 ≥ . . . ≥xn > 0 be n real
numbers. 6en,
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n

i�1
xi − M


<

n

2
x1, (40)

where M � (
n
1�1xi/n).

It follows from the above Proposition the following
result holds directly.

Proposition 3. For a graph G with n vertices, let ηα(1)(G) be
the largest eigenvalue of Dα(G). For α ∈ [(1/2), 1),

ς(α)(G)≤
n

2
ηα(1)(G). (41)

3. Bounds for the α-Distance Estrada
Index of Graphs

In this section, some bounds for α-distance Estrada index are
obtained in terms of Wiener index, the transmission of the
vertex, spectral radius of Dα(G), and the vertex number.
Furthermore, we give the relation between α-distance
Estrada index and α-distance energy.

Next, we establish some bounds on the α-distance
Estrada index.

Lemma 6 (see [31]). Let x1, x2, . . . , xn be nonnegative real
numbers. 6en, for k≥ 2,



n

i�1
x

k
i ≤ 

n

i�1
x
2
i

⎛⎝ ⎞⎠

(k/2)

. (42)

Theorem 5. Let G be a graph with n vertices. 6en,

DEE(α)(G)≤ n + 2αW(G) − 1 − ω + eω, (43)

where ω �

����������������������

α2n
i�1Tr2(vi) + 2(1 − α)2S



.

Proof. Let σα(1)(G), . . . , σα(n)(G) be the eigenvalues of Dα(G).
From equation (5) and Lemma 6, we have

DEE(α)(G) � n + 2αW(G) + 

n

i�1


∞

k�2

σα(i)(G) 
k

k!

≤ n + 2αW(G) + 
n

i�1


∞

k�2

σα(i)(G)



k

k!

� n + 2αW(G) + 
∞

k�2

1
k!



n

i�1
σα(i)(G)




k

≤ n + 2αW(G) + 

∞

k�2

1
k!



n

i�1
σα(i)(G) 

2⎛⎝ ⎞⎠

(k/2)

� n + 2αW(G) + 
∞

k�2

1
k!

α2 

n

i�1
Tr

2
vi(  + 2(1 − α)

2
S⎛⎝ ⎞⎠

(k/2)

� n + 2αW(G) − 1 − ω + 

∞

k�0

1
k!
ωk

� n + 2αW(G) − 1 − ω + e
ω
,

(44)

where ω �

����������������������

α2n
i�1Tr2(vi) + 2(1 − α)2S



. □

In the following, we obtained a lower bound on the
α-distance Estrada index by arithmetic-geometric inequality.

Theorem 6. Let G be a graph with n vertices. 6en,

DEE(α)(G)≥
����������������������������
n + 4αW(G) + n(n − 1)e(4αW(G)/n)


. (45)

Proof. Let σα(1)(G), . . . , σα(n)(G) be the eigenvalues of Dα(G).
,en,

DEE(α)(G) 
2

� 

n

i�1
e
2σα

(i)
(G)

+ 2 
1≤i<j≤n

e
σα

(i)
(G)

e
σα

(j)
(G)

. (46)

From arithmetic-geometric inequality and equation (5),
we obtain

2 
1≤i<j≤n

e
σα

(i)
(G)

e
σα

(j)
(G) ≥ n(n − 1) 

1≤i<j≤n
e
σα

(i)
(G)

e
σα

(j)
(G)⎛⎝ ⎞⎠

(2/n(n− 1))

� n(n − 1) 
n

i�1
e
σα

(i)
(G)⎛⎝ ⎞⎠

n− 1

⎛⎝ ⎞⎠

(2/n(n− 1))

� n(n − 1) e
n

i�1σ
α
(i)

(G)
 

(2/n)

� n(n − 1)e
(4αW(G)/n)

.

(47)

By means of a power-series expansion, we have



n

i�1
e
2σα

(i)
(G)

� 
n

i�1


∞

k�0

2σα(i)(G) 
k

k!

� n + 4αW(G) + 
n

i�1


∞

k�2

2σα(i)(G) 
k

k!

≥ n + 4αW(G).

(48)

□

By substituting equations (47) and (48) in equation (46),
we see that

DEE(α)(G)≥
����������������������������
n + 4αW(G) + n(n − 1)e(4αW(G)/n)


. (49)

Theorem 7. Let G be a graph with n vertices. 6en,

DEE(α)(G)≥ e(2W(G)/n) +(n − 1) + 2αW(G) −
2W(G)

n
.

(50)

Proof. Let f(x) � (x − 1) − lnx, where x> 0. Obviously,
f(x) is a decreasing function when x ∈ (0, 1], and f(x) is
increasing when x ∈ [1, +∞). ,en, f(x)≥f(1) � 0, that is,

x≥ 1 + lnx, x> 0, (51)

and the equality holds if and only if x � 1. So, by this
function and equation (5), we have
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DEE(α)(G)≥ e
σα

(1)
(G)

+(n − 1) + 
n

k�2
ln e

σα
(k)

(G)

� e
σα

(1)
(G)

+(n − 1) + 
n

k�2
σα(k)(G)

� e
σα

(1)
(G)

+(n − 1) + 2αW(G) − σα(1)(G),

(52)

where σα(1)(G), . . . , σα(n)(G) are the eigenvalues of Dα(G).
Let Γ(x) � ex + (n − 1) + 2αW(G) − x, where x> 0.

Clearly, Γ(x) is an increasing function when x ∈ (0, +∞).
From Lemma 1, we have

σα(1)(G)≥
2W(G)

n
≥ 0. (53)

,en,

Γ σα(1)(G) ≥ Γ
2W(G)

n
 . (54)

Hence,

DEE(α)(G)≥ e(2W(G)/n) +(n − 1) + 2αW(G) −
2W(G)

n
.

(55)

From ,eorem 7, we have the following result. □

Corollary 2. Let G be a transmission regular graph with n
vertices. Let Tr(u) � r for each u ∈ V(G). 6en,

DEE(α)(G)≥ er +(n − 1) + αnr − r. (56)

We are inspired by literature [32], and we give,eorems
8 and 9 as follows.

Lemma 7 (see [33]). For a1, a2, . . . , an ≥ 0 and
p1, p2, . . . , pn ≥ 0 such that 

n
i�1pi � 1. 6en,



n

i�1
piai − 

n

i�1
a

pi

i ≥ nT
1
n



n

i�1
ai − 

n

i�1
a

(1/n)
i

⎞⎠,⎛⎝ (57)

where T � min p1, p2, . . . , pn . Equality holds if and only if
a1 � a2 �, . . . , � an.

Theorem 8. Let G be a graph with n vertices. 6en,

DEE(α)(G)≥ e
σα

(1)
(G)

+ 2(n − 1)Δ − (n − 1)e(2αW(G)/n) ,

(58)

where Δ � e
(2(n− 1)αW(G)+n(σα

(2)
(G)+,...,+σα

(n)
(G))/2n(n− 1)). Equality

holds if and only if G � nK1.

Proof. Let p1 � (1/2n), pi � (2n − 1/2n(n − 1)) for
i � 2, . . . , n, ai � e

σα
(i)

(G) for i � 2, . . . , n. Obviously,
T � min (1/2n), (2n − 1/2n(n − 1)){ } � (1/2n), and accord-
ing to Lemma 7, we have

e
σα

(1)
(G)

2n
+

2n − 1
2n(n − 1)



n

i�2
e
σα

(i)
(G)

− Δ

≥
1
2

1
n



n

i�1
e
σα

(i)
(G)

− 
n

i�1
e
σα

(i)
(G)/n⎞⎠,⎛⎝

(59)

where Δ � e
(σα

(1)
(G)/2n)


n
i�2 e

((2n− 1)σα
(i)

(G)/2n(n− 1)).
By equation (5), we have

Δ � e
( σα

(1)
(G)/2n



n

i�2
e
( (2n− 1)σα

(i)
(G)/2n(n− 1)

� e
(n− 1) 2αW(G)− 

n

i�2σ
α
(i)

(G) /2n(n− 1) 

· e
(2n− 1)

n

i�2σ
α
(i)

(G)/2n(n− 1) 

� e
( 2(n− 1)αW(G)+n( σα

(2)
(G)+,...,+σα

(n)
(G)/2n(n− 1)

.

(60)

Since

e
σα

(1)
(G)

2n
+

2n − 1
2n(n − 1)



n

i�1
e
σα

(i)
(G)− e

σα
(1)

(G)

⎛⎝ ⎞⎠ − Δ

≥
1
2n



n

i�1
e
σα

(i)
(G)

−
1
2
e

(2αW(G)/n)
,

(61)

then

DEE(α)(G) � 
n

i�1
e
σα

(i)
(G) ≥ e

σα
(1)

(G)
+ 2(n − 1)Δ

− (n − 1)e(2αW(G)/n).

(62)

Equality holds, that is, e
σα

(1)
(G)

� e
σα

(2)
(G)

� , . . . , � e
σα

(n)
(G)

if and only if G � nK1. □

Lemma 8 (see [34]). For a1, a2, . . . , an ≥ 0. 6en,

n
1
n



n

i�1
ai − 

n

i�1
ai

⎛⎝ ⎞⎠

(1/n)

⎛⎜⎝ ⎞⎟⎠≤Ψ

≤ n(n − 1)


n
i�1ai

n
− 

n

i�1
ai

⎛⎝ ⎞⎠

(1/n)

⎛⎜⎝ ⎞⎟⎠,

(63)

where Ψ � n
n
i�1ai − (

n
i�1

��
ai

√
)2.

Theorem 9. Let G be a graph with n vertices. 6en,


n
i�1e

( σα
(i)

(G)/2
 

2
− ne(2αW(G)/n)

n − 1
≤DEE(α)(G)

≤ 
n

i�1
e
( σα

(i)
(G)/2⎛⎝ ⎞⎠ − n(n − 1)e(2αW(G)/n).

(64)
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Proof. Let ai � e
σα

(i)
(G) for i � 1, 2, . . . , n, by Lemma 8, we

have



n

i�1
e
σα

(i)
(G)

− n 

n

i�1
e
σα

(i)
(G)⎛⎝ ⎞⎠

(1/n)

≤Ψ

≤ n(n − 1)


n
i�1e

σα
(i)

(G)

n
− 

n

i�1
e
σα

(i)
(G)⎞⎠

(1/n)

⎛⎜⎝ ⎞⎟⎠,⎛⎜⎝

(65)

where Ψ � n
n
i�1e

σα
(i)

(G)
− (

n
i�1e

(σα
(i)

(G)/2)
)2.

Analyzing the left and right side of the previous in-
equality, respectively, by equation (5), we have



n

i�1
e
σα

(i)
(G)

− n 
n

i�1
e
σα

(i)
(G)⎛⎝ ⎞⎠

(1/n)

≤ n 
n

i�1
e
σα

(i)
(G)

− 
n

i�1
e

σα
(i)

(G)/2 ⎛⎝ ⎞⎠

2

(n − 1) 

n

i�1
e
σα

(i)
(G) ≥ 

n

i�1
e

σα
(i)

(G)/2 ⎛⎝ ⎞⎠

2

− ne
(2αW(G)/n)

DEE(α)(G)≥


n
i�1e

σα
(i)

(G)/2 
 

2

− ne(2αW(G)/n)

n − 1
,

n 

n

i�1
e
σα

(i)
(G)

− 

n

i�1
e

σα
(i)

(G)/2 ⎛⎝ ⎞⎠

2

≤ n(n − 1)


n
i�1e

σα
(i)

(G)

n
− 

n

i�1
e
σα

(i)
(G)⎛⎝ ⎞⎠

(1/n)

⎛⎜⎝ ⎞⎟⎠

DEE(α)(G)≤ 
n

i�1
e

σα
(i)

(G)/2 ⎛⎝ ⎞⎠ − n(n − 1)e
(2αW(G)/n)

.

(66)

□

Also, the relation between α-distance Estrada index and
α-distance energy are established.

Theorem 10. Let G be a graph with n vertices. 6en,

DEE(α)(G)≤ e(2αW(G)/n) n − 1 − ς(α)(G) + eς(α)(G) . (67)

Proof. By the definition of α-distance energy, we have

DEE(α)(G) � e
(2αW(G)/n)



n

i�1
e
σα

(i)
(G)− (2αW(G)/n)⎛⎝ ⎞⎠

� e
(2αW(G)/n)

n + 
n

i�1


∞

k�2

σα(i)(G) − (2αW(G)/n) 
k

k!
⎛⎝ ⎞⎠

≤ e
(2αW(G)/n)

n + 
n

i�1


∞

k�2

σα(i)(G) − (2αW(G)/n)



k

k!
⎛⎜⎜⎝ ⎞⎟⎟⎠

≤ e
(2αW(G)/n)

n + 
∞

k�2

1
k!

ς(α)(G) 
k⎛⎝ ⎞⎠

� e
(2αW(G)/n)

n − 1 − ς(α)(G) + e
ς(α)(G)

 .

(68)

□
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4. Conclusion

It is well-known that the graph energy and the Estrada index
of graphs are important topics in graph theory. ,e
α-distance matrix is an extension of the distancematrix. And
the α-distance energy and α-distance Estrada index are
generalized distance energy and distance Estrada index of
graphs, respectively. In this paper, we establish some bounds
on α-distance energy and α-distance Estrada index of G.
Furthermore, a new lower bound for the α-distance Estrada
index in relation to the α-distance energy of the graph G is
given.
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