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Let G be a simple undirected connected graph, then D, (G) = aT7(G) + (1 — ®)D(G) is called the a-distance matrix of G, where
a € [0,1], D(G) is the distance matrix of G, and Tt (G) is the vertex transmission diagonal matrix of G. In this paper, we study
some bounds on the a-distance energy and a-distance Estrada index of G. Furthermore, we establish the relation between

a-distance Estrada index and a-distance energy.

1. Introduction

L.1. a-Distance Energy of Graphs. In this paper, we suppose
that G is a connected graph. Let G = (V(G),E(G)) be a
graph with the vertex set V(G) = {v;,...,v,} and edge set
E (G). The distance between two vertices v;, v;ieV (G) is the
length of the shortest path between v; and v;, denoted by
d(v;,v;). The Wiener index W(G) of the graph G is
W(G) = (I/Z)Zvi,vjeV(G)d(Vi’ vj). The matrix D(G) =
(di,j) € B is called the distance matrix of G, where
dij=d(v;,v;), i,j€{1,2,...,n}. For some properties of
distance matrix, see [1-3].

The adjacency matrix of the graph G is
A(G) = (a;) € B™", whered;; = 1if (i, j) € E(G) and a@;; =
0 otherwise. The Laplacian matrix and signless Laplacian
matrix of G are L(G)=D(G)-A(G) andQ(G) =
D(G) + A(G), respectively, where D(G) = diag(d,,, ...,
d,) € ™" and d, is the degree of v, i=1,2,...,n.

In 2013, the study of Laplacian matrix and signless
Laplacian matrix was extended to distance Laplacian ma-
trices and distance signless Laplacian matrices defined as in
equation (1) (see [4]). In 2016, the study of the spectrum of
signless Laplacian matrix was generalized to a convex
combination of D(G) and A(G) defined as
A (G) = aD(G) + (1 - ®)A(G), « € [0,1] (see [5]). In [6],

the above study was further extended to the a-distance
matrices (see equation (2)).

Let Tr(v;) = Zvjev(c)d(v,», v;) is called the transmission
of v;. Let

Z(G) =Tr(G) - D(G),

(1)
Q(G) =Tr(G) + D(G),

where Tr (G) = diag(Tr (v,),...,Tr(v,)). £(G) and Q are
called the distance Laplacian matrix and distance signless
Laplacian matrix of the graph G, respectively. A graph G is
said to be transmission regular if the transmissions of all the
vertices in V (G) are equal (see [4]). For a transmission
regular graph G, the characteristic polynomials of & (G) and
@ (G) were characterized in [4]. For more properties of
Z(G) and Q(G), see [7-9].
In [6], the a-distance matrix of a graph G

D(y(G) = aTr(G) +(1-@D(G), ac[0,1], (2)

was defined. Clearly, D, (G)=D(G), D, (G)=
(12)@(G), D;)(G)=Tr(G), and D, (G) =D (G) =
(a = B)Z (G). The spectra of D ) (G) is called the a-distance
spectra of G. Since D, (G) is a real symmetric matrix, the
eigenvalues of D, (G) are real. Let oy (G)= )
G)=z---= o (G) be the eigenvalues of D, (G). And let
P(w (G) denote the spectral radius of D, (G). From the
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Perron-Frobenius theorem, we have ¢, (G) = p, (G). The
spectral properties of D, (G) were recently studied in-
cluding spectral radius, second largest eigenvalue, k-th
smallest eigenvalue, and smallest eigenvalue (see [6, 10-12]).

Graph energy is an important graph invariant in graph
theory; some graph energies E_ (G) = Y, IA;(G)|, DE(G)
=" ,17:; (@], and DSLE(G) = Y., |%; (G) — (2W (G)/n)| are
called the energy (original energy), the distance energy, and
the distance signless Laplacian energy, respectively, where
A;(G), y;(G), and v, (G) denote the eigenvalues of A(G),
D(G), and @ (G), respectively,i =1,2,...,nand n = |V (G)|
(see [13-16]).

Graph energy has important applications in the fields of
mathematics and chemistry. There are many research studies
on the above kinds of graph energy. Scholars gave the
bounds on the energy of graphs, for example, the McClel-
land’s bounds [17], Koolen-Moulton’s bounds [18] and so
on [19]. In [16], the distance energy of some graphs was
calculated.

In [11], Guo and Zhou extended the concept of graph
energy to a more general form called a-distance energy:

n

C(a)(G) = Z

i=1

" 2aW (G)
6 (G) - » >

a € [0,1], (3)

where o'y (G) is the eigenvalue of D, (G), i=1,2,...,n,
n=1[V(G)|. Clearly, ¢ (G)=DE(G) and ¢, (G)=
(1/2)DSLE(G).

1.2. a-Distance Estrada Index of Graphs. In [20], a spectral
quantity is put forward by Estrada. EE(G) = Y, =
Y1 YR M(G)/K! s called the Estrada index of G where
A (G), A, (G), ..., A, (G) denote the eigenvalues of A(G) (see
[20]). It is Well known that the Estrada index plays an
important role in the problem of characterizing the mo-
lecular structure [21] and complex networks [22-25]. In
[26], the study was extended to distance matrices, and the
distance  Estrada 1ndex of G is DEE(G)=
Yren @ = T YO F(G)KL, where 7, (G), 1, (G), ..,
v, (G) are the eigenvalues of D (G).

In this paper, we consider a more general Estrada index.
Let

n - o] U : (G)
DEE, (G) = Y 70 @ =y’ Z( ® ) (4)
i=1 i=1 k=0
be the a-distance Estrada index of G, where
oy (G,..., ) (G) are the eigenvalues of D, (G). Clearly,
DEE ) (G) = DEE(G).

1.3. Main Work. In this paper, we study some bounds on the
a-distance energy and a-distance Estrada index of graphs in
terms of the parameter & and the vertex number, the
transmission of vertices and Wiener index. Furthermore, we
establish the relation between a-distance Estrada index and
a-distance energy.
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2. Some Bounds for the a-Distance
Energy of Graphs

To begin with this section, we introduce some notations and
propositions.

Proposition 1 (see [6]). Let G be a graph with n vertices.
Then,

n

Zo »(G) = ZocTr(v

i=1

(0(1 @) =

= 2aW (G),
(5)

NGE

Z Tr* (v;) +2(1 - a)’S,
i=1

]
—

where S =Y, icad” (v, v;) and 0¢))(G) 200 (G)= -~ >

0(, (G) denotes the eigenvalues of D 4 (G).

In the following, a new matrix is established:
ZaW(G)I
n

U (G) =aTr(G) +(1 -a)D(G) - a € [0,1],

(6)

where I, denotes identity matrix of order n. Let
n0 (G), e (Q),..., M) (G) denote the eigenvalues of
U () (G). Obviously,

ns

C(oc) (G) =

M (G, ael01]. (7)

i=1

Proposition 2. Let G be a graph with n vertices. Then,
n n 2
2.1 (@) =02 (1 (@) =22,
i=1 i=1
(8)

(9)

Y 1 G, G,

I<i<j<n

= Y 1 O G =

I<i<j<n

where  Z = (1-a)’S+ (a?/2)Y1, (Tr(v;)) — W (G)/n))*
and 10 (G),zﬁ‘z) (G),.. N (G) denote the eigenvalues of
U(oc) (G)

Proof. In order to prove equation (8), let
10 (G),q‘fz) (G),..., M) (G) denote the eigenvalues of
U (y (G), by equations (5) and (6), we have

Y (1%(G)) = trace(UZ, () = 2(1 - @S
i=1

n 2
+a Z (Tr(vi) - 2Wn(G)) .

i=1

(10)

By equation (5), we have

2
0=<Zﬂ“&>(6>> =2Z+2 ) G (Gnf,(G). (D)
i=1

1<i<j<n

Then,
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Y. 1o Gy G|

1<i<j<n

== ) 1@ (G) =

1<i<j<n

(12)
In the following, we introduce some Lemmas which are

helpful for the following proofs of theorems.

Lemma 1 (see [6]). Let G be a graph with n vertices. Then,
2W(G)
Pa(G) 2 ,

(13)

the equality holds if and only if G is a transmission regular
graph.

Lemma 2 (see [27]). Let G be a graph with n vertices. Then,
nn-1)

W (G) > (14)
the equality holds if and only if G = K,,. K,, denotes a complete
graph with n vertices.

Next, we give some bounds for the a-distance energy of a
graph by using the parameter a and the vertex number.

Theorem 1. Let G be a connected graph with n vertices. Then,
¢, (G)22(1-a)(n-1), (15)

the equality holds if and only if G = K,

Proof. Let a‘fl)(G)za‘E‘z) G)=...
values of D, (G).

By Lemma 1 and ac€[0,1], we know that
i (G)= W (G)/n) = (2W (G)a/n). Suppose that ¢ is the
largest number such that o0y (G) = W (G)a/n). It follows
from equation (5) that

-0 (G))

2W (G 2 2W (G
2R (M
-0 2O o @)

i=1+1
i=1+1

207, (G) be the eigen-

1

S (G) = Z(a‘:i) G)

i=1

2W (G)oc

Z"(z)(G

1 G G n
Zgc(,i)(G)_IzWi Ja 2W() ZI " (G)

i=1

-2 75O

i=1+1

-23 (ot 6 -2 E)

W(G)a
. .

From Lemmas 1 and 2, we have

> 2(0’31) (G) - 2
(16)

3
2(0‘?1) (G) - ZWEIG)“) > Z(ZWH(G) - ang(G)>
(17)
=4(1- )W(G)>2(1 —a)(n-1).

The above three inequalities are the equality holds if and
only if G = K,,. O

We give some bounds for a-distance energy through the
order n, the transmission of vertex and the parameter «
based on Cauchy-Schwarz inequalities in the following.

Theorem 2. Let G be a graph with n vertices. Then,
\2Z +n(n-1)p@ ¢ (G)<VanZ,  (18)

where p = det|U (G)I and Z=(1-
(Tr (v)) - QW (G)/n)).

a)’S + (a?/2)37,

Proof. Let 10y (G 11y (G, .., 1y (G) denote the eigen-
values of U ) (G). From Cauchy-Schwarz inequality, we have

2
<<<a><c>>2=(z ) S ol $1

(19)

Using equations (7) and (8), we have

(¢ (@) <20z (20)
So,

S (G) < V2nZ. (21)
Similarly, from equation (11), we know

2
2
(s (@) = ( <G>|> 1ty G
i=1 i=1 (22)

7%, (G)].

According to arithmetic-geometric inequality, we have

n(n 1) £ Z|}7(’) (G)””(;) ( G)'

(1/n(n-1))
(n— 1)>

) (1/n(n-1))

(1)

n
i=1 ]-1

) " . o) (I/n(n—l))_ (2/n)
i=1 i=1
(23)
By equations (7) and (9), we have
2
(sw@) =Y |t @ +
i=1 z#] )

>2Z+n(n- 1)p(2/"),



where p = det|U ,, (G)|.
So,

\/ZZ +n(n-1)p@m<q, (G) < V2nZ. (25)

In the following, we can obtain another lower bound in
terms of the vertex number and the maximum value of
|’70(‘i) (G)| of U ) (G). O
Corollary 1. Let G be a graph with n vertices, then

¢ (G <04, (G) +\(n-1(2Z - 6% (G?),  (26)

where 1 (G) = max{ln 1)(G)|} and  Z=(1-a)*S+

(a?/2)¥7, (Tr(v )— (ZW(G)/n))

Proof. Let 8‘2‘1) (&) 25(2) G)=,...,> 8‘E‘n) (G) be a nonin-
creasing sequence of |#{; (G)|. From Cauchy-Schwarz in-
equality, we have

2
(Zv@)sSmergs @
i=2

i=2 =2

By equation (7), we have

(s (@ -8 @) < n-1(22 (84, (@) ).  28)
So,
S (G) <67, (G) + \/(n - 1)(22 -(8%, (G))z). (29)

O
In the following, we obtained some new bounds for
a-distance energy through the Ozeki [28] and Polya’s [29]

inequality, respectively.

Lemma 3 (see [29]). Suppose a; and b; are real numbers for

1<i<n, then
() ).

i=1

where M, = max,_;_,a;, M, = max,_;.,b;, m;
and m, = min,_;_,b;.

= min, ., 4;

Lemma 4 (see [28]
1<i<n, then

(8)(89) (50 5un

where M, = max,_;_,a;, M, = max,_;_,b;,
and m, = min,_;_.,b

). If a; and b; are real numbers for

—m1m2)2’

(31)

my = min, .., d;

;-
Theorem 3. Let G be a gmph with n vertices. Then,

2V2nZ4[67) (G) 8“ ) (G)

32
o (02 6?1)(G)+8‘z‘n><c> ’ .
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where 5(1) (G) and 5(;1) (G) are the largest and the smallest of
In( (G, respectively, —and Z=(1- a)’S + (a?/2)
YL (Tr(v;) — QW (G)/m))*.

Proof. Let 87,,(G)=26(,(G)=,..., 287, (G) be a nonin-
creasing sequence of 7% (G andleta; = 6'2‘1.) (G)and b, =1,
where i = 1,...,n. By Lemma 3, we have

2
n N/ 1 @ | [,
<;(5(i) (G)) ><; 1> S4 <V5?n) © + \J (e )

2
()

M:

Il
—

(33)

By equation (8), we have

2
1 50 55,0 )
MmZ <= - + S (@) . (34)
: <V6<n><c> Vi@ ) (@)
Thus,
. (G)>2\/2nZ 801 (G)o7, (G) (35)
@ 88,G) + 6, (G)
O
Theorem 4. Let G be a graph with n vertices. Then,
" a 2 36
S (@) 2\2nZ = (87, (G) =8(,y (@), (36)

where 0}y (G) and &7, (G) are the largest and the smallest of
|l’] (G, respectively, and = (1-a)’S+ (a?/2)
1(TT(V) - 2W (G)/m)).

Proof. Let 8(},(G) 207, (G)=,..., 28, (G) be a nonin-
creasing sequence of |7} (G)|. According to Lemma 4, let
a; =07;(G) and b; = 1, where i = 1,...,n, we have

<§( 0 (G))2><g 1) B (ga‘ﬂ) o 1>2 (37)

2
= %(5?1

(G- 8%, (G).

By equation (7), we have

2
MZ (5 (@) <81, (@) = 8, (@) (8)
Then,
2
(G2 \jZnZ - "Z(a‘;‘l) (G)-8%,(G). (39)
m

Lemma 5 (see [30]). Let x,>x,>
numbers. Then,

.2x,>0 be n real
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n n
‘21 |xi - M| <5x1, (40)
i

where M = (Y]_,x;/n).

It follows from the above Proposition the following
result holds directly.

Proposition 3. For a graph G with n vertices, let 17}, (G) be
the largest eigenvalue of D, (G). For a € [(1/2),1),

S (G) <31t (G). (41)

3. Bounds for the a-Distance Estrada
Index of Graphs

In this section, some bounds for a-distance Estrada index are
obtained in terms of Wiener index, the transmission of the
vertex, spectral radius of D, (G), and the vertex number.
Furthermore, we give the relation between «-distance
Estrada index and a-distance energy.

Next, we establish some bounds on the «-distance
Estrada index.

Lemma 6 (see [31]). Let xq,%,,...
numbers. Then, for k=2,

, X, be nonnegative real

n n (k/2)
> x; < Y (42)
i=1 i=1
Theorem 5. Let G be a graph with n vertices. Then,
DEE(OC) (G)£n+2(xW(G)— 1-w+e®, (43)

where w = \/aZZ?:lTrZ (v)+2(1 - a)’S.

Proof. Let o'y (G)s ..., 07, (G) be the eigenvalues of D, (G).
From equation (5) and Lemma 6, we have

» (G)
DEE 4 (G) = 1+ 2aW (G) + Z Z%
i=1 k=2 .
i (G)
<n+2aW(G)+ ’ |
i=1 k=2
< 1 . k
=n+20W(G)+ Y - ¥ |04, (G|
k:2k! i=1

i=1

- . )
<n+2aW(G)+ ) I;<Z € (G))2>

(k12)
[ee) 1 n
=n+2aW (G) +kz;k!<(xzzl:Tr2 (v)+201 —oc)ZS>
- i=
:n+20cW(G)—1—w+kZ(:)Hw

=n+2aW(G)-1-w+e”,
(44)

where w = \/aZZ?lerz (v) +2(1 - a)’S. O

In the following, we obtained a lower bound on the
a-distance Estrada index by arithmetic-geometric inequality.

Theorem 6. Let G be a graph with n vertices. Then,

DEE ) (G) > \/n + 4aW (G) + n(n — 1)e@W©@/m_ (45)

Proof. Let R (CI
Then,

n
2 « « «
(DEE (@) = Y0 @42 3 0@,
i=1

1<i<j<n

0 (G) be the eigenvalues of D, (G).

(46)

From arithmetic-geometric inequality and equation (5),

we obtain
(2/n(n-1))
2 Z e (1)(G)ea(1)(G >n H e ()(G)eU(J)
I<i<j<n I<i<j<n

" n-1 (2/n(n-1))
=n(n-1) H 0@

i=1

(2/n)
=n(n- 1)( Z =1 ()<G))
_ n(n _ 1)6(4LXW(G)/71).
(47)

By means of a power-series expansion, we have

iez% G) _ i i (205 z) (G))

i=1 i=1 k=0
n oo (48)
=n+4aW (G) + z Z (20 )(G))
i=1 k=2
>n+ 4aW (G).
O

By substituting equations (47) and (48) in equation (46),
we see that

DEE ) (G) 2 Vn + 4aW (G) + n(n — 1)e(W©@m_ (49)
Theorem 7. Let G be a graph with n vertices. Then,
2W (G
DEE ) (G) 2e®V @M 4+ (n— 1) + 2aW (G) - @
(50)

Proof. Let f(x)= (x-1)—-Inx, where x>0. Obviously,
f (x) is a decreasing function when x € (0,1], and f (x) is
increasing when x € [1, +00). Then, f (x) > f (1) = 0, that s,

x>1+lnx, x>0, (51)

and the equality holds if and only if x = 1. So, by this
function and equation (5), we have



n
DEE ) (G) 2”0 @ + (n-1) + Y Ine"® (@
k=2

n
=" 0@ 4 (n-1)+ Z 0 (G)
k=2
= "0+ (n—1) + 2aW (G) - 0¥, (G),
(52)
where oy (G),..., 00, (G) are the eigenvalues of D, (G).
Let T(x)=e*+ (n-1)+2aW (G) —x, where x>0.

Clearly, I'(x) is an increasing function when x € (0, +00).
From Lemma 1, we have

a§)) (G) = 2W(G) >0. (53)
Then,
2W (G
I(0%,(G)) > r( n( )). (54)
Hence,
2
DEE ) (G) 2 eV (@M 1 (n - 1) + 2aW (G) - Wn(G).
(55)
From Theorem 7, we have the following result. O

Corollary 2. Let G be a transmission regular graph with n
vertices. Let Tr(u) = r for each u € V (G). Then,

DEE ) (G)2e" +(n—1) +anr —r. (56)

We are inspired by literature [32], and we give Theorems
8 and 9 as follows.

Lemma 7 (see [33]). For aj,a,,...
Pi>Pas- - > Pp >0 such that YL, p; = 1. Then,

n n ) 1 n n
ZPi i—naf‘ZnT<Z Zai—nai(lm)) (57)
i=1 i=1 i=1 i=1

, Pa} Equality holds if and only if

4,20  and

where T = min{p,, p,,. ..
a,=a,=,...,=a,

Theorem 8. Let G be a graph with n vertices. Then,
DEE,) (G)2¢’0@ +2(n—1)A - (n - 1)e W ©@n),
(58)
where A = ¢@BDaW (@)+n(0%, (G)+,..it08, (G)/2n(n-1)
holds if and only if G = nK,.

. Equality

Proof. Let p, = (1/2n), p;=(2n-1/2n(n-1)) for
i=2,...,n a;=e0 for i=2,...,n. Obviously,
T = min{(1/2n), 2n - 1/2n(n- 1))} = (1/2n), and accord-
ing to Lemma 7, we have
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i=2
(59)
11 G @) T .08 (Gm
>— z e - e
2\n i=1 i=1
where A = e(a”(‘l) (G)/2n) Hn " e((2n— l)o'z‘i) (G)2n(n-1))
. .
By equation (5), we have
n
A= e(ob;l)(c)/zn) He((Zn—l)o‘z‘i) (@)/2n(n-1))
i=2
_ e((n—l)(ZotW(G)— z:l:za‘z‘i) (G))/Zn(n—l)) (60)
) e((zn—l)zi":zabgi) (G)/2n(n—1)>
_ e(2(n71)sz(G)+n( @ (Gt (G))/Zn(nfl)).
Since
%, (G) _ L o (G)
e’m . 2n—1 Ze%(g),e ) _A
2n 2n(n-1)\ S
(61)
J1 2": @ _ 1 cow@m
2n pary
then
1 o o
DEE(“) (G) = Zeﬂ(i)(G) 260(1)((3) +2(n-1DA
i1 (62)
_ (1’1 _ 1)e(ZaW(G)/n)'
Equality holds, that is, 0@ = 7@ == %@
if and only if G = nK. O
Lemma 8 (see [34]). For a,a,,...,a,>0. Then,
L& " (1/n)
n| — Z a; — H a; <Y
ni3 i=1
(63)
n n (1/n)
<n(n-1) M - a; ,
n i=1
where ¥ = ny a; — (3L, \/a_i)z'
Theorem 9. Let G be a graph with n vertices. Then,
2
(zft e (ofi) (G>/2)> — neaW (G)n)
i
- <DEE 4, (G)
(64)

n
< ( e (o <G>/2)> 1 (n - 1)e WG,
i=1

1
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Proof. Let a; = ¢’0@ for i=1,2,...,n, by Lemma 8, we
have

" " (1/n)

Z eo-?i) @ _ n go-?i) @) <Vv

i i=1

n
a
S e

i=1

n
a

n
(n-1) Z ea(i)(G) >
i=1

where W = nY7 70 @ — (Y770 (@22,

Analyzing the left and right side of the previous in-
equality, respectively, by equation (5), we have

DEE (G = (60
>
(@) ( ) = n— 1 >
n 2 " J (G (1/n)
nZe“ (G) <Ze(a‘;l)(G)/2)> Sn(n_1)<2, 1€ (He“ (G> )
i=1
DEE, (G) < Z e(J(Z"’ (G)/z) —n(n—1)e®W©m,
i=1 O
DEE ) (G) <V (©m (i w0 (G) +e@ @), (67)

Also, the relation between a-distance Estrada index and
a-distance energy are established.

Theorem 10. Let G be a graph with n vertices. Then,

DEE(a) (G) _ e(ZaW(G)/n)

_ e(thW(G)/n

<e (2aW (G)/n)

<e

= e(Z(XW(G)/n (n 1- C(a) (G) + e (G))

i( “(G) -

=~

Proof. By the definition of a-distance energy, we have

o7 (©)=CaW (G)in) )

(2aW (G)/n))
k!

)

0%, (G) - (2aW (G)/m)|| (68)




4. Conclusion

It is well-known that the graph energy and the Estrada index
of graphs are important topics in graph theory. The
a-distance matrix is an extension of the distance matrix. And
the a-distance energy and a-distance Estrada index are
generalized distance energy and distance Estrada index of
graphs, respectively. In this paper, we establish some bounds
on a-distance energy and a-distance Estrada index of G.
Furthermore, a new lower bound for the a-distance Estrada
index in relation to the a-distance energy of the graph G is
given.
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