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In order to improve the segmentation performance of the printed fabric pattern, a segmentation criterion based on the 3D
maximum entropy which is optimized by an improved fruit fly optimization algorithm is designed. &e triple is composed of the
gray value of the pixel, the average gray values of the diagonal, and the nondiagonal pixels in the neighbourhood. According to the
joint probability of the triple, the 3D entropy of the object and the background areas could be designed.&e optimal segmentation
threshold is resolved by maximizing the 3D entropy. A hybrid fruit fly optimization algorithm is designed to optimize the 3D
entropy function. Chaos search is used to enhance the ergodicity of the fruit fly search, and the crowding degree is introduced to
enhance the global searching ability. Experiment results show that the segmentation method based on maximizing the 3D entropy
could improve the segmentation performance of the printed fabric pattern and the pattern information could be reserved well.&e
improved fruit fly algorithm has a higher optimization efficiency, and the optimization time could be reduced to 30 percent of the
original algorithm.

1. Introduction

Printed fabric pattern segmentation is one of the key
technologies in printing and dyeing process [1–3]. It has a
direct impact on the accuracy of drawing, hemming, and
cloth printing [4]. In actual production, new patterns can be
formed by colouring the split pattern, so as to enrich the
variety of fabric products [5–8]. At present, there are many
common image segmentation methods, for example, seg-
mentation methods based on the edge-extraction operators
of Canny and Sobel and segmentation methods based on the
clustering analysis of mean shift [9–12]. &ese methods have
been widely used in practical industrial production. How-
ever, due to the complex texture structure of the fabric itself,
many common image segmentationmethods are not ideal in
the application of printed fabric pattern segmentation [13].
For example, texture noise will lead to a large number of false
edges in segmentation results based on edge extraction,

leading to inaccurate segmentation. In addition, due to the
spatial distribution of pixels is not fully utilized, the seg-
mentation method based on clustering will lead to wrong
segmentation in the case of lack of prior knowledge. &e
image segmentation method which based on maximum
entropy has the advantages of simple implementation and
relatively stable segmentation performance. It has been ef-
fectively applied in various image-processing fields [14–16].
However, due to the insufficient description of pixel dis-
tribution information by one-dimensional entropy, the
antinoise performance is poor. Especially, in printed fabric
pattern segmentation, it is easy to produce false segmen-
tation because of it is sensitive to texture noise.

&e performance of image segmentation can be im-
proved by constructing 2D entropy which introduces the
average gray value of neighbouring pixels [17, 18]. However,
with the increase of information entropy dimension, the
calculation of maximum entropy also increases rapidly. It
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causes the calculation time of segmentation threshold to be
too long. It can improve the operation speed by combining
intelligent optimization algorithm to solve the maximum
entropy. Intelligent optimization algorithms, such as genetic
algorithm [19], ant colony algorithm [20], and fish swarm
algorithm [21] can be used to solve complex functions.
However, the implementation of this kind of optimization
method is slightly complex, and there are many parameters
to be set in the algorithm, which reduces the convenience of
the algorithm. In contrast, the fruit fly algorithm has been
widely used in many optimization problems because of its
low complexity and small computation. However, the fruit
fly algorithm is easy to be precocious and fall into local
minima because of its optimization mechanism is too
simple. In addition, although the 2D entropy considers the
distribution information of pixels and their neighbours, the
use of more detailed direction information in neighbour-
hood pixels is insufficient, which reduces the accuracy of
feature description of target and background pixels [22].&e
texture noise of the image has some influence on the seg-
mentation result.

Compared with the 2D maximum entropy method, the
3D maximum entropy method has better segmentation
quality, but the complexity of the algorithm is greatly in-
creased. However, the calculation of entropy still uses the
logarithm operation with low efficiency, so the efficiency of
the algorithm still has room to rise. In order to improve the
segmentation performance of the printed fabric pattern.
Based on the 2D entropy of the image, 3D entropy is
constructed by integrating the direction information of
neighbouring pixels. Fabric pattern segmentation based on
maximizing the 3D entropy criterion could improve the
segmentation performance of the printed fabric pattern. An
improved fruit fly optimization algorithm is designed to
optimize the 3D entropy function. &is method reduces the
computation and increases the image edge. &e optimal
energy function of the entropy penalty factor is adopted to
reduce the loss of effective information. With the help of
image segmentation technology of the improved Drosophila
optimization algorithm, fabric pattern information can be
quickly extracted from the fabric image, which improves the
calculation speed and design efficiency of fabric pattern
segmentation. Compared with other similar algorithms, this
algorithm improves the accuracy of image retrieval and
preserves the fabric pattern information more completely.

2. Pattern Segmentation of 3D
Maximum Entropy

&e Gray binary group (i, j) is composed of the gray level of
the pixel itself and the average gray level of its neighbour-
hood, and its frequency is expressed as fij. &us, the 2D
entropy can be calculated. According to the principle of
maximum entropy, the segmentation threshold can be de-
termined. However, the average gray value of the neigh-
bourhood only reflects the basic spatial distribution
information of the pixels, it lacks accurate direction infor-
mation. Especially, the information description of image
edge points is not accurate enough. Texture information

mostly has the attributes of edge information. &e seg-
mentation criteria based on the 2D maximum entropy have
limited ability to suppress texture noise of the fabric pattern.
&erefore, considering the neighbourhood direction infor-
mation, the 3D entropy is designed to realize the automatic
segmentation of the fabric pattern.

Taking the 3× 3 neighbourhood as an example, the gray
value of the pixel point (x, y) and its neighbourhood gray
value can be expressed as shown in Table 1.

According to the pixel distribution shown in Figure 1,
the average gray value in the diagonal direction of the
neighbourhood of the pixel (x, y) is defined as

g′(x, y) �
1
4

[g(x − 1, y − 1) + g(x + 1, y + 1)

+ g(x − 1, y + 1) + g(x + 1, y − 1)].

(1)

&e average gray value of the nondiagonal neighbour-
hood of a pixel (x, y) is defined as

g″(x, y) �
1
4

[g(x − 1, y) + g(x + 1, y) + g(x, y − 1)

+ g(x, y + 1)].

(2)

Set the gray level of the image is L and the gray level of g′
and g″ is L too. &e gray value of each pixel, the neigh-
bourhood diagonal average gray value, and the neigh-
bourhood nondiagonal average gray value form a gray triple
group (i, j, and k). &e frequency of its occurrence is
recorded as fijk. Define the joint probability pijk as

pijk �
fijk

N
, (3)

where N is the total number of pixels in the image. pijk can
be regarded as the normalized 3D histogram in 3D space of
pixel gray, neighbourhood diagonal average gray, and
neighbourhood nondiagonal average gray which are com-
posed of three-dimensional variables of i j, and k. Let the 3D
variable’s value of i j, and k be s, t, and r, respectively, and
the 3D space schematic diagram of the triple is shown in
Figure 1.

&e 3D space shown in Figure 1 is divided into eight
regions. &ere are two areas on the main diagonal which are
A11 and A22. &e space range corresponding to the area A11
is 0≤ i< s, 0≤ j< t, and 0≤ k< r. &e space range corre-
sponding to the area A22 is s≤ i<L, t≤ j< L, and r≤ k<L.
&erefore, areas A11 and A22 can be regarded as the target (or
background) area and background (or target) area,
respectively.

For segmentation thresholds (s, t, and r), the probability
of areas A11 and A22 can be expressed as

P11 � 
s−1

i�0


t−1

j�0


r−1

k�0
pijk,

P22 � 
L−1

i�s



L−1

j�t



L−1

k�r

pijk.

(4)
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&e entropy of A11 and A22 can be defined as

H11 � 
s−1

i�0


t−1

j�0


r−1

k�0

pijk

P11
  ln

pijk

P11
 ,

H22 � 
L−1

i�s



L−1

j�t



L−1

k�r

pijk

P22
  ln

pijk

P22
 .

(5)

&erefore, the 3D entropy can be defined as

H(s, t, r) � H11 + H22. (6)

&e threshold segmentation method based on the
maximum 3D entropy is used to get the best segmentation
threshold s∗, t∗, and r∗. In this way, the 3D entropy H of the
target and background region of the image can be
maximized.

With the increase of dimension, the computational
complexity of solving the 3D entropy of image increases. In
order to meet the needs of fast solution, this paper proposes
an improved fruit fly algorithm to solve the 3D entropy
function of the above image.

3. Improved Fruit fly Algorithm

At present, the optimization calculation method develops
rapidly, including genetic algorithm, ant colony algorithm,
fish swarm algorithm, and fruit fly algorithm. All of these
algorithms belong to the population optimization algorithm
and have strong optimization computing ability. &e dif-
ference is that the heuristic search mechanism used by
various methods is different. For example, the genetic al-
gorithm is used to use genetic operations such as “copy,
select, cross, and mutation” in the genetic process to achieve
optimal calculation.&e ant colony algorithm is based on the
principle of pheromone positive feedback in the process of
ant foraging. &e fish swarm algorithm is based on the
behaviour of “foraging, tail chasing, and clustering” in the

process of fish foraging.&e algorithm of fruit fly is based on
the heuristic mechanism of foraging.

Although the heuristic mechanism of different optimi-
zation algorithms is different, there is a common problem
that the algorithm is prone to the premature phenomenon.
&at is to say, the algorithm is easy to fall into local minima,
resulting in the decline of global optimization ability. In
order to improve the global optimization performance, a
hybrid optimization method with combining the optimi-
zation methods of different mechanisms to construct the
complementary optimization mechanism is proposed in this
paper.

In the algorithm of fruit fly, fruit fly individuals can
quickly gather to the optimal individual through visual
search. &e random search near the optimal individual is
realized by using olfactory search. &e two search methods
can be used alternately, and finally the fruit fly can gather to
the food source. &e concentration evaluation function in
the algorithm is the function to be optimized, that is, the 3D
entropy corresponding to formula (6). &e location of the
optimized individual in the ant colony algorithm and fish
swarm algorithm is the optimal solution. However, the
position of fruit fly does not directly correspond to the
optimization solution in the fruit fly algorithm. Its con-
centration value corresponds to the optimization solution of
the optimization function.

&e fruit fly algorithm is simple in mechanism, small in
calculation, and easy to realize. In addition, the population
can approach the optimal individual quickly, so as to ensure
the algorithm has fast convergence. However, due to the fruit
fly individuals concentrated in the vicinity of the optimal
individuals for random search, it will lead to the premature
phenomenon of the algorithm, thus reducing the global
optimization ability of the algorithm. In this paper, an
improved fruit fly hybrid optimization algorithm is designed
based on the fruit fly algorithm and combined with chaos
search and the optimization mechanism of the fish swarm
algorithm.

In the fruit fly algorithm, the fruit fly individual searches
randomly near the optimal individual, and the search di-
rection and position are generated by the random number
generator. Random search is easy to produce the phe-
nomenon of repeated search, which will reduce the search
efficiency. Chaos search has the characteristics of ergodic
search [18], which can directly overcome the shortcomings
of random search. &erefore, this paper proposes an im-
proved strategy of chaos search instead of individual random
search of fruit fly.

In addition, all the fruit flies in the algorithm have the
same behaviour criterion and gather near the food source,
which reduces the global optimization performance of the
algorithm. In the fish swarm algorithm, artificial fish has
similar behaviour in the process of foraging. However, the
concept of crowding degree is set in the fish swarm algo-
rithm, that is, the artificial fish cannot gather in the same
place too much to prevent the algorithm from converging
too fast. In this paper, the concept of crowding degree in the
artificial fish swarm algorithm is introduced into the fruit fly
algorithm which makes fruit fly no longer have a single

Table 1: Pixel distribution.
g(x − 1, y − 1) g(x, y − 1) g(x + 1, y − 1)

g(x − 1, y) g(x, y) g(x + 1, y)

g(x − 1, y + 1) g(x, y + 1) g(x + 1, y + 1)

Note. g(x, y) represents the gray value of the pixel point (x, y).
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Figure 1: 3D space schematic diagram of the triple.
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behaviour criterion, but choose to search near the optimal
individual with a large probability, and search globally with a
small probability, so as to improve the global optimization
performance of the algorithm.

&e above improved algorithm is described as follows:

Step 1: Initialize parameters.
Initialize the parameters involved in the fruit fly op-
timization algorithm, including maximum number of
iterations MaxGen, population size of fruit fly Size, and
initial optimal position of fruit fly x best and y best,
and set the initial congestion probability value p.
Step 2: Set up the mechanism of chaos.
&ere are many kinds of chaos-generating functions;
among which, the logistic map is one of the most
commonly used functions, which is simple in form and
easy to realize. In this paper, the logistic map is chosen
as the mechanism of chaos sequence:

zx(n + 1) � μ · zx(n) · 1 − zx(n)( , (7)

zy(n + 1) � μ · zy(n) · 1 − zy(n) . (8)

When μ� 4, the above mapping is a chaotic full
mapping. After the initial value is selected, the value
after 2000 iterations of formula (7) and formula (8) is
obtained as the initial value of chaos in the fruit fly
algorithm so that the effect of the initial value of chaos
generation mechanism on search process can be
eliminated.
Step 3: Set the random search direction of fruit fly.
&e ith fruit fly in the population has two search di-
rections. &e random number r between (0, 1) is
generated by the random number generator.
If r<p, then initialize x axis and y axis randomly and
set the chaos search direction of the ith fruit fly near the
(x axis andy axis) position; that is,

x(i) � x axis + c zx − 0.5( ,

y(i) � y axis + c zy − 0.5 ,
(9)

where zx and zy are chaotic variables generated by
formula (7) and formula (8) and c is the coefficient of
search range.
If r≥p, set the random search direction of the ith fruit
fly near the (x best andy best) position; that is,

x(i) � x best + c zx − 0.5( ,

y(i) � y best + c zy − 0.5 .
(10)

Step 4: Calculate the concentration judgment value.&e
distance Disti between the position of ith fruit fly and
the origin is calculated:

Disti �

��������������

(x(i))2 +(y(i))2


. (11)

Calculate the concentration judgment value Si

according to the distance:

Si �
1

Disti
. (12)

Step 5: Calculate concentration Smell(i) of the ith fruit
fly. &e concentration function fit is the optimization
function, so the concentration value of the ith fruit fly is

Smell(i) � fit Si( . (13)

Step 6: Keep the current optimal individual. Keep the
fruit fly with the highest odor concentration as the
current optimal individual:

[bestSmell, bestindex] � min(Smell(i)), (14)

where bestindex is the index number of the optimal
individual and bestSmell is the concentration value of
the optimal individual.
Step 7: Save the optimal concentration and coordinates.
Save the concentration value bestSmell of the optimal
individual and its location coordinate. Command the
fruit flies to fly to this position quickly by visual
perception:

Smell best � bestSmell,

x best � x(bestindex),

y best � y(bestindex).

⎧⎪⎪⎨

⎪⎪⎩
(15)

(x best andy best) is considered as the optimal initial
position for the next optimization. And reduce the
probability of congestion:

p � λ · p, (16)

where λ is the probability attenuation coefficient of
crowding degree (0< λ< 1).
Step 8: Iterative optimization. Repeat steps 3 to 6 and
determine whether the current optimal concentration
has been updated.
If yes, perform step 7; if no, repeat steps 3 to 6 directly
until the specified number of iterations is reached or the
algorithm converges.
&e improved fruit fly algorithm proposed in this paper
combines chaos ergodic search and the concept of
crowding degree of the fish swarm algorithm. It can
overcome the shortcomings of the traditional fruit fly
algorithm, such as low efficiency of random search, the
fruit fly individuals are all concentrated in the optimal
individuals, and it is easy to fall into local minima,
which is conducive to improving the global optimi-
zation performance of the algorithm. In the improved
algorithm, the initial stage of crowding probability can
be set to a larger probability value, so as to ensure that
individual fruit flies can conduct sufficient random
search, try to find the best position in the global range,
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increase the dispersion of individual flies, and help to
overcome the premature phenomenon of the pop-
ulation. At the same time, chaos search mechanism can
improve the ergodicity of algorithm search, reduce the
number of repeated searches, and improve the search
efficiency. With the progress of the search process, the
probability of crowding degree decreases gradually, the
probability of fruit fly individual swarm to the optimal
location increases, and the number of searches near the
optimal location increases, which can ensure that the
algorithm has good convergence characteristics and
stability.
When the fruit fly algorithm is used to determine the
threshold value of image segmentation, the three
threshold variables of s, t, and r are encoded to de-
termine the corresponding concentration value.&e 3D
entropy of formula (6) is used as the evaluation
function of the concentration. After iterative calcula-
tion, the optimal solution of the maximum entropy can
be completed.

4. Experimental Results and Analysis

&e maximum 3D entropy proposed in this paper is used to
segment the printed fabric pattern and is compared with the
maximum 1D and 2D entropy. &e segmentation result of a
single pattern is shown in Figure 2.

Figure 2(a) shows the original image, the segmentation
threshold t1 � 166 is obtained bymaximum 1D entropy.&e
segmentation result is shown in Figure 2(b). &e outline of
pattern segmentation is incomplete, and a lot of basic in-
formation of the pattern is lost. &emaximum 2D entropy is
used to obtain the segmentation threshold t2 � 175, and the
segmentation result is shown in Figure 2(c). Although the
basic contour of the pattern can be preserved in the seg-
mentation result, the contour is not complete. Especially, the
segmentation result of the small cross in the figure has a large
distortion. &e maximum 3D entropy is used to obtain the
segmentation threshold t3 � 183, and the segmentation
result is shown in Figure 2(d). &e result of pattern seg-
mentation has been improved obviously, the contour

(a) (b)

(c) (d)

Figure 2: Segmentation result of a single pattern. (a) Original image; (b) 1D maximum entropy; (c) 2D maximum entropy t2 � 175; (d) 3D
maximum entropy t3 � 183.
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information is complete, and the information of each part of
the pattern can be displayed clearly.

It can be seen that by expanding the dimension of image
entropy and considering the direction information of pixel
neighbourhood, the accuracy of feature description of target
and background pixels can be improved, and the segmen-
tation effect of printed fabric pattern can also be improved.

&e segmentation result of the combination pattern is
shown in Figure 3.

Figure 3(a) shows the original image, which is composed
of six patterns, it makes the composition of the printed fabric
pattern complex and increases the difficulty of threshold
segmentation. Figure 3(b) shows the segmentation result
obtained by using the maximum 1D entropy, and the seg-
mentation threshold is t1 � 164. In the segmentation result,
the segmentation effect of the second and third patterns is
not ideal. &e external edge information of the second
pattern is lost to some extent, and the third pattern has
obvious error segmentation. Figure 3(c) is the segmentation
result obtained by using the maximum 2D entropy, and its
segmentation threshold is t2 � 168. It can be seen from the
segmentation results that the segmentation results of fabric
patterns are improved when the distribution information of
neighbouring pixels is taken into account. For example, the
edge segmentation effect of the second pattern is improved,
but the segmentation result of the third pattern is not ob-
viously improved, and the main shape of the pattern cannot
be segmented. Figure 3(d) shows the segmentation result
obtained by using the maximum 3D entropy, and the seg-
mentation threshold is t3 � 204. It can be seen from the
segmentation results that the segmentation results of fabric
patterns can be further improved when considering the
direction distribution information of neighbouring pixels.
&e second pattern has a complete edge segmentation, while
the third pattern can also segment the basic shape, and the

overall pattern segmentation performance has been signif-
icantly improved.

&ese algorithms, including the chaos optimization al-
gorithm, fish swarm algorithm, fruit fly algorithm, and
improved fruit fly algorithm, proposed in this paper can be
used to optimize the threshold value of fabric pattern seg-
mentation. &e time comparison of various optimization
algorithms is shown in Table 2.

It can be seen from Table 2 that since the chaos opti-
mization algorithm belongs to the serial optimization al-
gorithm, only one solution of optimization space can be
searched in each iteration. Compared with the parallel
population optimization algorithm, the efficiency is lower.
Compared with the fruit fly algorithm, the fish swarm al-
gorithm has more rules and less efficiency. On the basis of
keeping the simple rules and high efficiency of the original
algorithm, combined with chaos search mechanism, the
improved fruit fly algorithm improves the ergodicity of
individual search, combined with crowding degree restric-
tion mechanism of fish swarm, improves the global search
ability of fruit fly, so it has faster optimization efficiency, less
than 30% of the original fruit fly algorithm.

5. Conclusions

Considering the direction information of the neighbour-
hood of the fabric image pixel, the 3D entropy is designed for
the segmentation of the printed fabric pattern, and the
threshold segmentation of the fabric pattern based on the
maximum 3D entropy is realized. In order to improve the
optimization efficiency of the maximum 3D entropy,
combining the chaos search mechanism and the crowding
degree strategy of the fish swarm algorithm, an improved
fruit fly optimization algorithm is proposed, which improves
the ergodicity and global optimization performance of the

(a) (b)

(c) (d)

Figure 3: Segmentation result of the combination pattern. (a) Original image; (b) 1Dmaximum entropy t1 � 164; (c) 2Dmaximum entropy
t2 � 168; (d) 3D maximum entropy t3 � 204.

Table 2: Time comparison of various optimization algorithms.

Fabric pattern Chaos optimization (s) Fish swarm algorithm (s) Fruit fly algorithm (s) Improved algorithm (s)
Single pattern 5.231 4.212 3.013 0.966
Combination pattern 5.692 5.028 3.742 1.023
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algorithm. &e experimental results show that the improved
optimization algorithm has higher search efficiency and can
complete the threshold optimization of 3D maximum en-
tropy. &e result of the printed fabric pattern segmentation
based on the maximum 3D entropy can realize the complete
segmentation of the fabric pattern and can effectively sup-
press the influence of texture noise on the segmentation
result.
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