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Financial data usually have the features of complexity and interdependence structure, such as asymmetric, tail, and time-varying
dependence. *is study constructs a new multivariate skewed fat-tailed copula, namely, noncentral contaminated normal
(NCCN) copula, to analyze the dependent structure of financial market data.*e dynamic conditional correlation (DCC)model is
also incorporated into constructing the time-varying NCCN copula model.*is study comprehensively examines the effects of the
DCC-NCCN copula and related models on fitting dependence structures of Hong Kong stock markets. *e results show that the
DCC-NCCN copula model can better depict the dependence structures of returns. Considering the flexibility and complexity, the
DCC-NCCN copula model is a relatively ideal, time-varying, multivariate skewed fat-tailed copula model.

1. Introduction

After suffering from loss in the stock market, Isaac Newton
ever said that “I can calculate the motions of the heavenly
bodies, but not the madness of people.” *is reflects the
complexity of financial markets. In general, the financial
asset return series have relatively complex interdependence
structural features, such as asymmetric dependence, tail
dependence, and time-varying dependence. According to
whether it can depict asymmetric dependence and fat-tailed
dependence, copula can be divided into four categories:
symmetric thin-tailed copula, symmetric fat-tailed copula,
skewed thin-tailed copula, and skewed fat-tailed copula. *e
examples above are normal copula, t-copula, skew-normal
copula, and skew-t-copula. *e multivariate skew-normal
copula is the copula of the multivariate skew-normal dis-
tribution, such as Wei et al. [1] proposed the copula of the
multivariate skew-normal distribution of Azzalini and Valle
[2]. *e multivariate skew-t-copula is the copula of the
multivariate skew-t distribution, such as Demarta and
McNeil [3] proposed the copula of the multivariate

generalized hyperbolic skew-t (GHST) distribution of
Barndorff-Nielsen [4]. Kollo and Pettere [5] propose the
copula of the multivariate skew-t distribution of Azzalini
and Capitanio [6]; Smith et al. [7] put forth the copula of the
multivariate skew-t distribution of Sahu et al. [8]; and Liu
et al. [9] advanced the copula of the multivariate extended
skew-t (EST) distribution by Arellano-Valle and Genton
[10].

Although these multivariate skew-t copulas are very
flexible, they are also highly complex and challenging to
apply. Considering both flexibility and complexity, these
multivariate skew-t copulas may not be very ideal.*is study
constructs a new multivariate skewed fat-tailed distribution,
namely, the multivariate noncentral contaminated normal
(NCCN) distribution. *e multivariate NCCN distribution
can be interpreted as a multivariate noncentral normal scale
mixture distribution, which is similar to the multivariate
normal variance-mean mixture distribution and multivar-
iate skew-normal scale mixture distribution. *e multi-
variate NCCN distribution can also be interpreted as a
simplified mixture of two multivariate normal distributions.

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 9673623, 23 pages
https://doi.org/10.1155/2020/9673623

mailto:tybrian@gmail.com
https://orcid.org/0000-0001-6623-2048
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9673623


*en, the copula of the multivariate NCCN distribution can
be called the multivariate NCCN copula. Note that the
multivariate NCCN copula cannot be interpreted as a
mixture of two multivariate normal copulas. *e NCCN
copula may be relatively ideal. *e advantages are shown as
follows. First, the NCCN copula can flexibly describe pos-
itive and negative dependence. Second, according to Mar-
dia’s kurtosis, the NCCN copula has stronger tail
dependence than the normal copula. *ird, the NCCN
copula can flexibly describe asymmetric dependence.
Fourth, the subclasses of the NCCN copula include normal
copula and contaminated normal (CN) copula. Note that the
flexibility of the CN copula is similar to the t-copula, but the
complexity of the CN copula is significantly lower than that
of the t-copula. Fifth, NCCN copula is suitable for two- and
higher-dimensional dependence structure modeling. Sixth
and the last, the flexibility of the NCCN copula is similar to
that of skew-t copulas, but the complexity of the NCCN
copula is significantly lower than that of skew-t copulas.

According to whether it can delineate the time-varying
dependence, the copula can be divided into two classes: static
copula and dynamic one. *ere are many options in
modeling dynamic structures, including the time-varying
parameter model [11], the dynamic conditional correlation
(DCC) model [12] and the dynamic condition-related im-
provement (DCC-Student-t) model [13], the time-varying
correlation (TVC) model [14], the asymmetric DCC
(ADCC) model [15,16], and the generalized autoregressive
score (GAS) model [17]. *ese dynamic models have pros
and cons, and we compare them as follows.*e advantage of
the Patton model is that it does not limit the type of time-
varying parameters, and the dynamic structure is relatively
simple; the disadvantage is that the dimension is limited to
two dimensions, and the meaning to interpret the dynamic
structure is not very clear.*e advantages of the DCCmodel
and TVC model are as follows: dimension is unlimited, the
dynamic structure is simple, and the interpretation meaning
of the dynamic structure is clear; the disadvantage is to limit
the type of time-varying parameters to the linear correlation
matrix. *e advantage of the ADCC model is that it further
considers asymmetric dynamics based on the DCC model.
For the GASmodel, the advantages are unlimited dimension
and time-varying parameter type. *e interpretation of the
dynamic structure is relatively definite. *e disadvantage is
that the dynamic structure is generally quite complex. *ere
are only a few studies on the dynamic multivariate skewed
fat-tailed copula, mainly including the dynamic asymmetric
copula (DAC) model given by Christoffersen et al. [18],
GAS-GHST copula model [19], and dynamic double
asymmetric copula (DDAC) model [20]. *e above dynamic
structures provide ample potential options for building the
time-varying NCCN copula.

*e contributions of this paper are as follows. First, a
new multivariate skewed fat-tailed distribution, namely,
multivariate NCCN distribution, is constructed. Second, the
copula of the multivariate NCCN distribution, namely,
multivariate NCCN copula, is proposed. *ird, we adopt the

DCC model to construct a new time-varying copula model,
namely, DCC-NCCN copula model. *e last, employing the
Hang Seng Index (HSI), Hang Seng China Enterprises Index
(CEI), and Hang Seng China-Affiliated Corporations Index
(CCI) as our sample data, we compare the fitting effects of
the DCC-NCCN copula model with some other copula
models and perform the visualized dependence analysis of
Hong Kong stock markets.

2. Model Development

2.1. Fundamental 'eory of the Copula. A copula is a mul-
tivariate cumulative distribution function (cdf) with uni-
form univariate margins and can be used to link univariate
margins to a joint cdf. According to Sklar’s theorem, for a d-
dimensional random vector (X1, . . . , Xd) with joint cdf
F(x1, . . . , xd) and marginal cdfs F1(x1), . . . , Fd(xd), there
exists a copula function C: [0, 1]d⟶ [0, 1] such that

F x1, . . . , xd( 􏼁 � C F1 x1( 􏼁, . . . , Fd xd( 􏼁( 􏼁. (1)

*e copula is unique if the random vector is continuous.
For a continuous random vector (X1, . . . , Xd) with joint cdf
F(x1, . . . , xd), joint probability density function (pdf)
f(x1, . . . , xd), marginal cdfs F1(x1), . . . , Fd(xd), marginal
pdfs f1(x1), . . . , fd(xd), and marginal quantile functions
F− 1
1 (u1), . . . , F− 1

d (ud), the copula function and its pdf are,
respectively, given by

C u1, . . . , ud( 􏼁 � F F
− 1
1 u1( 􏼁, . . . , F

− 1
d ud( 􏼁􏼐 􏼑,

c u1, . . . , ud( 􏼁 �
z

d
C u1, . . . , ud( 􏼁

zu1, . . . , zud

�
f F

− 1
1 u1( 􏼁, . . . , F

− 1
d ud( 􏼁􏼐 􏼑

􏽑
d
i�1 fi F

− 1
i ui( 􏼁􏼐 􏼑,

(2)

where (u1, . . . , ud) ∈ [0, 1]d. According to Sklar’s theorem,
we can quickly get the copula of a given multivariate dis-
tribution. In particular, F1(X1), . . . , Fd(Xd) can be called
the uniform scores of the random variables X1, . . . , Xd, and
Φ− 1(F1(X1)), . . . ,Φ− 1(Fd(Xd)) can be called the normal
scores of the random variables X1, . . . , Xd, where Φ− 1 is the
quantile function of the univariate standard normal distri-
bution. Clearly, the uniform score follows the univariate
uniform distribution on [0, 1], and the normal score follows
the univariate standard normal distribution.

*e copula function is closely related to many depen-
dence measures, such as Kendall’s tau, quantile dependence
(QD) coefficient, and Mardia’s skewness and kurtosis of
normal scores. *ese dependence measures are briefly de-
scribed in the following.

Kendall’s tau is also called Kendall’s rank correlation
coefficient. It can be utilized to measure global dependence.
Let (X1, X2) and (Y1, Y2) be independent and identically
distributed random vectors. For the bivariate continuous
random vector (X1, X2) with joint cdf F(x1, x2), copula
function C(u1, u2), and uniform scores (U1, U2), bivariate
Kendall’s tau is given by
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τ X1, X2( 􏼁 � P X1 − Y1( 􏼁 X2 − Y2( 􏼁> 0􏼂 􏼃

− P X1 − Y1( 􏼁 X2 − Y2( 􏼁< 0􏼂 􏼃

� 2P X1 − Y1( 􏼁 X2 − Y2( 􏼁> 0􏼂 􏼃

− 1 � 4P X1 <Y1, X2 <Y2( 􏼁 − 1

� 4E F X1, X2( 􏼁􏼂 􏼃 − 1 � 4E C U1, U2( 􏼁􏼂 􏼃 − 1.

(3)

*e value range of bivariate Kendall’s tau is [− 1, 1].
Bivariate Kendall’s tau can be interpreted as the probability
of concordance minus the probability of discordance.

*e quantile dependence coefficient can be used to
measure local dependence. For a bivariate continuous
random vector (X1, X2) with copula function C(u1, u2) and
uniform scores (U1, U2), the bivariate lower-lower (lower),
upper-upper (upper), upper-lower, and lower-upper
quantile dependence coefficients (LLQD, UUQD, ULQD,
and LUQD) are, respectively, given by

λ00 X1, X2( 􏼁 � P U2 ≤ q|U1 ≤ q( 􏼁 �
C(q, q)

q
,

λ11 X1, X2( 􏼁 � P 1 − U2 ≤ q|1 − U1 ≤ q( 􏼁

�
[2q − 1 + C(1 − q, 1 − q)]

q
,

λ10 X1, X2( 􏼁 � P U2 ≤ q|1 − U1 ≤ q( 􏼁 �
[q − C(1 − q, q)]

q
,

λ01 X1, X2( 􏼁 � P 1 − U2 ≤ q|U1 ≤ q( 􏼁 �
[q − C(q, 1 − q)]

q
,

(4)

where q∈[0, 1] is the quantile level. *e value range of bi-
variate quantile dependence coefficients is [0, 1]. If q � 1,
then λ00 � λ11 � λ10 � λ01 � 1. If q � (1/2), then λ00 � λ11 �

2C(1/2), (1/2) and λ10 � λ01 � 1 − 2C(1/2), (1/2). If
q⟶ 0, we can get the bivariate tail dependence coefficients
(LLTD, UUTD, ULTD, and LUTD).

Mardia [21] proposed Mardia’s skewness and kurtosis.
For a multivariate continuous random vector X with mean
vector μ and covariance matrix Σ, Mardia’s skewness and
kurtosis are, respectively, given by

β1(X) � E (X − μ)′Σ
− 1

(Y − μ)􏼔 􏼕
3

􏼨 􏼩,

β2(X) � E (X − μ)′Σ
− 1

(X − μ)􏼔 􏼕
2

􏼨 􏼩,

(5)

where Y and X are independent identically distributed
random vectors. For a multivariate continuous random
vector with the multivariate normal distribution, multi-
variate Mardia’s skewness and kurtosis are 0 and d(d + 2),
respectively. Mardia’s skewness and kurtosis of normal
scores can also be called Gaussian skewness and kurtosis.

Gaussian skewness and kurtosis can be used to measure the
asymmetric dependence and tail dependence, respectively.
Note that the Gaussian skewness cannot measure the di-
rection of asymmetric dependence. For a multivariate
random vector with the multivariate normal copula, Mar-
dia’s skewness and kurtosis are not clear, but the Gaussian
skewness and kurtosis are 0 and d(d + 2), respectively. Note
that the tail dependence coefficients cannot reasonably
distinguish the strength of tail dependence. *e two copulas
with the same tail dependence coefficients may have dif-
ferent Gaussian kurtosis.

2.2. Nonlinear Asymmetric GARCH (NAGARCH) Model.
Before modeling the dependence structure, we need to
model the marginal distribution. *is study adopts the
NAGARCH model of Engle and Ng [22] to describe the
dynamics of financial asset return series. *e parameteri-
zation form of the NAGARCHmodel is not unique, and the
distribution assumption is not unique. To easily explain the
parameter of the NAGARCH model, this paper adopts a
variance targeting (VT) form. To avoid the distribution
specification error, this paper does not assume a specific
distribution. We set the NAGARCH model:

yt � μ + εt � μ + σtzt,

μ �
1
T

􏽘

T

t�1
yt,

σ21 � σ2 �
1
T

􏽘

T

t�1
ε2t ,

σ2t+1 � (1 − β)σ2 + βσ2t + α ε2t − σ2t + 2cσtεt􏼐 􏼑,

􏽢θ � argmax
θ

􏽘

T

t�1
− ln σt −

1
2
z
2
t􏼒 􏼓, θ � (α, β, c),

α≥ 0,

β ∈ (0, 1),

c ∈ R,

α 1 + c
2

􏼐 􏼑≤ β,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where yt is the return, μ is the unconditional mean, σ is the
unconditional standard deviation, σt is the conditional
standard deviation, εt is the residual with mean 0, and zt is
the standardized residual with mean 0 and variance 1.

*e conditional variance σ2t+1 can be interpreted as the
asymmetric information shock item (ε2t − σ2t + 2cσtεt) plus
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the weighted average of unconditional variance σ2 and
lagged conditional variance σ2t . *is equation makes the
parameter representation clearer. Parameter α can control
the dynamics of the conditional variance: the larger α, the
stronger the dynamics of the conditional variance. In par-
ticular, when α� 0, the model is a constant volatility model.
Parameter β can control the clustering and mean reversion
of the conditional variance: when β is close to 1, the con-
ditional variance shows stronger clustering and weaker
mean reversion; when β is close to 0, the conditional var-
iance shows weaker clustering and stronger mean reversion.
Parameter c can control the asymmetric dynamics of the
conditional variance: when c> 0, the conditional variance
has a positive asymmetry; when c < 0, the conditional
variance has a negative asymmetry, and the negative value
impacts more on the conditional variance than the same
degree of a positive one. In particular, when c � 0, the model
is the GARCHmodel.*e conditional variance equation can
also be expressed as

σ2t+1 � (1 − β)σ2 + β − α 1 + c
2

􏼐 􏼑􏽨 􏽩σ2t + α εt + cσt( 􏼁
2
. (7)

Clearly, all conditional variances can be insured to be
greater than 0 under given parameter constraints.

In terms of parameter estimation, we adopt the quasi-
maximum likelihood (QML) method to estimate the pa-
rameters of the NAGARCH model, that is, to apply the
maximum likelihood (ML) method to conduct the esti-
mation of the parameters of the NAGARCH-normal
model.

*e NAGARCH model is used to filter the return series
to obtain the standardized residual series. *en, using the
empirical cdf, we transform the standardized residual series
into the uniform scores. For a standardized residual series
zt􏼈 􏼉

T

t�1, the empirical cdf is

FE(z) �
1

T + 1
􏽘

T

t�1
I zt ≤ z( 􏼁, (8)

where I(·) is the indicator function. *e uniform scores can
be applied to further model the dependence structures.

2.3.MultivariateNCCNDistribution andMultivariateNCCN
Copula. We firstly introduce the multivariate NCCN dis-
tribution. Because the location and scale parameters of the
multivariate NCCN distribution cannot influence the
multivariate NCCN copula [23], this paper does not take the
location and scale parameters into account when defining
the multivariate NCCN distribution.

Let ϕ(x) and Φ(x) be the pdf and cdf of the univariate
standard normal distribution N(0, 1), ϕ2(x, y; ρ) and
Φ2(x, y; ρ) be joint the pdf and joint cdf of the bivariate
standard normal distribution N2(0, 0, 1, 1, ρ) with the linear
correlation coefficient ρ, and ϕd(x; R) and Φd(x; R) be the
joint pdf and joint cdf of the multivariate standard normal
distribution Nd(0, R) with the linear correlation matrix R.
ϕ(x), ϕ2(x, y; ρ), and ϕd(x; R) can be expressed as:

ϕ(x) �
1
���
2π

√ exp −
1
2
x
2

􏼒 􏼓, x ∈ R,

ϕ2(x, y; ρ) �
1

2π
�����

1 − ρ2
􏽱 exp −

x
2

− 2ρxy + y
2

2 1 − ρ2􏼐 􏼑
⎛⎝ ⎞⎠, (x, y)∈R2

,

ϕd(x; R) �
1

(2π)
d/2

|R|
1/2 exp −

1
2
x′R− 1

x􏼒 􏼓, x ∈ Rd
.

(9)

*e multivariate NCCN distribution can be interpreted
as a multivariate noncentral normal scale mixture distri-
bution [24].*e stochastic representation of the multivariate
NCCN distribution can be given by

X � X1, . . . , Xd( 􏼁′ �
��
W

√
Z,

Z � Z1, . . . , Zd( 􏼁′ ∼ Nd(c, R),

P(W � a) � 1 − p,

P(W � b) � p,

a ∈ (0, 1),

p ∈ (0, 1),

c � c1, . . . , cd( 􏼁′ ∈ Rd
,

(1 − p)a + pb � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where the random vector X follows the NCCN distribution.
*e random vector Z follows the multivariate noncentral
normal distribution with correlation matrix R and non-
central parameter vector c. *e random variable W is a two-
point distribution with probability parameter p, shape pa-
rameter a, and mean 1. Z and W are independent of each
other.

*e multivariate NCCN distribution can also be inter-
preted as a simplified mixture of two multivariate normal
distributions [25]. *e stochastic representation of the
multivariate NCCN distribution can also be given by

X � X1, . . . , Xd( 􏼁′,

P
X
��
a

√ ∼ Nd(c, R)􏼢 􏼣 � 1 − p,

P
X
�
b

√ ∼ Nd(c, R)􏼢 􏼣 � p,

a ∈ (0, 1),

p ∈ (0, 1),

c � c1, . . . , cd( 􏼁′∈ R
d
,

(1 − p)a + pb � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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*e parameters of the multivariate NCCN distribution
can be divided into three parts: (1) a correlation matrix R, (2)
two tail parameters a and p, and (3) a skewness vector c.
According to the two stochastic representations, the joint cdf
and pdf of the multivariate NCCN distribution can be easily
given by

NCCNd(x; R, a, p, c) � (1 − p)Φd

x
��
a

√ − c; R􏼠 􏼡

+ pΦd

x
�
b

√ − c; R􏼠 􏼡,

nccnd(x; R, a, p, c) �
1 − p

a
d/2 ϕd

x
��
a

√ − c; R􏼠 􏼡

+
p

b
d/2ϕd

x
�
b

√ − c; R􏼠 􏼡,

(12)

where x � (x1, . . . , xd)′∈ R
d, (1 − p)a + pb � 1, R is a

correlation matrix, a ∈ (0, 1), p ∈ (0, 1), and
c � (c1, . . . , cd)′∈ R

d. *e multivariate NCCN distribution
family includes multivariate contaminated normal (CN)
distribution when c � 0 and multivariate normal distribu-
tion Nd(c, R)when a⟶ 1 orp⟶ 1.

*e mean vector, covariance matrix, and linear corre-
lation matrix of the multivariate NCCN distribution are,
respectively, given as equations (13)–(15):

E(X) � E(
��
W

√
)c � [(1 − p)

��
a

√
+ p

�
b

√
]c, (13)

Cov(X) � E(XX′) − E(X)E(X)′ � R + D(
��
W

√
)cc′,

(14)

Corr(X) � diag(Cov(X))
− (1/2)Cov(X)diag(Cov(X))

− (1/2)
.

(15)

Obviously, matrix R is not the linear correlation matrix
of the multivariate NCCN distribution. For the multivariate
CN distribution, E(X) � 0, Cov(X) � Corr(X) � R, Mar-
dia’s skewness is 0 and Mardia’s kurtosis is d(d + 2) E(W 2)

� d(d + 2)[1 + (1 − a)2((1/p) − 1)] ∈ (d(d + 2), +∞).
As to the two stochastic representations, any bivariate

marginal distribution of the multivariate NCCN distri-
bution is a bivariate NCCN distribution. *e joint cdf and
pdf of the bivariate NCCN distribution can be easily
given by

NCCN2 x1, x2; ρ, a, p, c1, c2( 􏼁 � (1 − p)Φ2
x1��

a
√ − c1,

x2��
a

√ − c2; ρ􏼠 􏼡 + pΦ2
x1�

b
√ − c1,

x2�
b

√ − c2; ρ􏼠 􏼡,

nccn2 x1, x2; ρ, a, p, c1, c2( 􏼁 �
1 − p

a
ϕ2

x1��
a

√ − c1,
x2��

a
√ − c2; ρ􏼠 􏼡 +

p

b
ϕ2

x1�
b

√ − c1,
x2�

b
√ − c2; ρ􏼠 􏼡,

(16)

where (x1, x2) ∈ R2, (1 − p)a + pb � 1, ρ ∈ (− 1, 1),
a ∈ (0, 1), p ∈ (0, 1), and (c1, c2) ∈ R2. Note that this bi-
variate NCCN distribution can be regarded as the simplified
bivariate mixed-normal distribution.

*e linear correlation coefficient of the bivariate NCCN
distribution is

Corr X1, X2( 􏼁 �
ρ + D(

��
W

√
)c1c2������������

1 + D(
��
W

√
)c

2
1

􏽱 ������������

1 + D(
��
W

√
)c

2
2

􏽱 . (17)

Although the correlation parameter ρ is not equal to the
linear correlation coefficient of the bivariate NCCN distri-
bution, it changes in the same direction as the linear cor-
relation coefficient. *e two skewness parameters have a
substantial influence on the linear correlation coefficient:
when c1 � c2→ ± ∞, Corr(X1, X2) � 1; when c1 � c2 � 0,
Corr(X1, X2) � ρ; and when c1 � − c2→ ± ∞,
Corr(X1, X2) � − 1. *e two tail parameters have a sub-
stantial influence on the linear correlation coefficient: when
a→ 1 or p→ 1, Corr(X1, X2) � ρ.

Each univariate marginal distribution of the multivariate
NCCN distribution obviously follows the univariate NCCN
distribution. *e cdf and pdf of the univariate NCCN dis-
tribution are, respectively,

NCCN(x; a, p, c) � (1 − p)Φ
x
��
a

√ − c􏼠 􏼡 + pΦ
x
�
b

√ − c􏼠 􏼡,

nccn(x; a, p, c) �
1 − p

��
a

√ ϕ
x
��
a

√ − c􏼠 􏼡 +
p
�
b

√ ϕ
x
�
b

√ − c􏼠 􏼡,

(18)

where x ∈ R, (1 − p)a + pb � 1, a ∈ (0, 1), p ∈ (0, 1), and
c ∈ R. It is difficult to simplify the quantile function of the
univariate NCCN distribution, NCCN− 1 (u; a, p, c),

u ∈ [0, 1]. According to the cdf and pdf of the univariate
NCCN distribution, the quantile function can be calculated
by Newton’s method. Note that this univariate NCCN
distribution can be regarded as the univariate mixed-normal
distribution without location and scale parameters.

*e mean, variance, skewness, and kurtosis of the
univariate NCCN distribution are
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E(X) � [(1 − p)
��
a

√
+ p

�
b

√
]c,

E X
2

􏼐 􏼑 � 1 + c
2
,

E X
3

􏼐 􏼑 � 3c + c
3

􏼐 􏼑 (1 − p)a
3/2

+ pb
3/2

􏽨 􏽩,

E X
4

􏼐 􏼑 � 3 + 6c
2

+ c
4

􏼐 􏼑 (1 − p)a
2

+ pb
2

􏽨 􏽩,

D(X) � E X
2

􏼐 􏼑 − E(X)
2
,

skewness(X) �
E X

3
􏼐 􏼑 − 3E(X)E X

2
􏼐 􏼑 + 2E(X)

3
􏽨 􏽩

D(X)
3/2 ,

kurtosis(X) �
E X

4
􏼐 􏼑 − 4E(X)E X

3
􏼐 􏼑 + 6E(X)

2
E X

2
􏼐 􏼑 − 3E(X)

4
􏽨 􏽩

D(X)
2 .

(19)

For the univariate CN distribution, E(X) � 0, D(X) � 1,
skewness(X) � 0, and kurtosis(X) � 3 + 3(1 − a)2 ((1/p)

− 1) ∈ (3, +∞). Clearly, the two tail parameters a and p

inversely change with the kurtosis.
According to the above description, the flexibility of the

univariate, bivariate, and multivariate CN distributions are
similar to that of the univariate, bivariate, and multivariate t-
distributions, respectively. *e flexibility of the univariate,
bivariate, and multivariate NCCN distributions are similar
to that of the univariate, bivariate, and multivariate skew-t
distributions, respectively.

According to Sklar’s theorem, the multivariate NCCN
copula function and its pdf can be easily expressed as

C u1, . . . , ud; R, a, p, c( 􏼁 � NCCNd NCCN− 1
u1; a, p, c1( 􏼁, . . . ,NCCN− 1

ud; a, p, cd( 􏼁; R, a, p, c􏼐 􏼑,

c u1, . . . , ud; R, a, p, c( 􏼁 �
nccnd NCCN− 1

u1; a, p, c1( 􏼁, . . . ,NCCN− 1
ud; a, p, cd( 􏼁; R, a, p, c􏼐 􏼑

􏽑
d
i�1 nccn NCCN− 1

ui; a, p, ci( 􏼁; a, p, ci􏼐 􏼑,

(20)

where (u1, . . . , ud) ∈ [0, 1]d, R is a correlation matrix,
a ∈ (0, 1), p ∈ (0, 1), and c � (c1, . . . , cd)′∈ R

d. Similar to
the multivariate NCCN distribution, subclasses of the
multivariate NCCN copula include multivariate normal
copula and multivariate CN copula. Clearly, the multivariate

NCCN copula cannot be regarded as a mixture of two
multivariate normal copulas.

*e bivariate NCCN copula function and its pdf can be
expressed as

C u1, u2; ρ, a, p, c1, c2( 􏼁 � NCCN2 NCCN− 1
u1; a, p, c1( 􏼁,NCCN− 1

u2; a, p, c2( 􏼁; ρ, a, p, c1, c2􏼐 􏼑,

c u1, u2; ρ, a, p, c1, c2( 􏼁 �
nccn2 NCCN− 1

u1; a, p, c1( 􏼁,NCCN− 1
u2; a, p, c2( 􏼁; ρ, a, p, c1, c2􏼐 􏼑

nccn NCCN− 1
u1; a, p, c1( 􏼁; a, p, c1􏼐 􏼑nccn NCCN− 1

u2; a, p, c2( 􏼁; a, p, c2􏼐 􏼑
,

(21)

where (u1, u2) ∈ [0, 1]2, ρ ∈ (− 1, 1), a ∈ (0, 1), p ∈ (0, 1),
and (c1, c2) ∈ R2. *e bivariate NCCN copula density
function diagrams are given in Figures 1 and 2.

According to the bivariate NCCN copula density
function diagrams, the meaning of parameters can be easily
understood. *e correlation parameter ρ can affect global
dependence: when ρ is larger, the negative dependence is
weaker, and the positive dependence is stronger.*e two tail
parameters a and p can affect the tail dependence: when they
are smaller, the tail dependence is stronger. *e two
skewness parameters can affect the asymmetric dependence:
when c1 < 0 and c2 < 0, the lower-lower tail dependence is
stronger than the upper-upper tail dependence; when c1 > 0

and c2 > 0, the upper-upper tail dependence is stronger than
the lower-lower tail dependence; when c1 < 0 and c2 > 0, the
lower-upper tail dependence is stronger than the upper-
lower tail dependence; and when c1 > 0 and c2 < 0, the
upper-lower tail dependence is stronger than the lower-
upper tail dependence.

2.4. Time-Varying NCCN Copula. For the multivariate
NCCN copula, this paper further considers that the corre-
lation matrix may change over time and does not consider
the dynamics of other parameters.

*e DCC model is a basic dynamic correlation model.
*is study presents the DCC model as
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Q1 � Q �
1
T

􏽘

T

t�1
ztzt
′,

Qt+1 � (1 − β)Q + βQt + α ztzt
′ − Qt( 􏼁,

Rt � diag Qt( 􏼁
− (1/2)

Qt diag Qt( 􏼁
− (1/2)

,

α≥ 0, β ∈ (0, 1), α≤ β,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where T is the sample size, zt � (z1t, . . . , zdt)′ is the
standardized residual vector, Rt is the conditional cor-
relation matrix of zt, Qt is similar to the conditional

covariance matrix, and Q is similar to the unconditional
covariance matrix and can be estimated by using the
sample mean of ztzt

′. Note that Qt+1 can be interpreted as
an information shock term plus the weighted average of Q

and Qt.
Parameter α controls the dynamics of the conditional

correlation matrix: when α is large, the dynamics of the
conditional correlation matrix are strong. In particular,
when α� 0, the model degenerates into the constant
conditional correlation (CCC) model. Parameter β
controls the clustering and mean reversion of the
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Figure 1: *e bivariate NCCN copula density function. (a) ρ� − 0.5, a� 0.5, and p� 0.5. (b) ρ� 0.5, a� 0.5, and p� 0.5. (c) ρ� 0.5, a� 0.5,
and p� 0.5. (d) ρ� − 0.5, a� 0.9, and p� 0.5. (e) ρ� 0, a� 0.9, and p� 0.5. (f ) ρ� 0.5, a� 0.9, and p� 0.5. (g) ρ� − 0.5, a� 0.5, and p� 0.9. (h)
ρ� 0, a� 0.5, and p� 0.9. (i) ρ� 0.5, a� 0.5, and p� 0.5.
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conditional correlation matrix: when β is close to 1, the
conditional correlation matrix shows strong clustering
and weak mean reversion; when β is close to 0, the
conditional correlation matrix shows weak clustering and
strong mean reversion. *e renewal equation of Qt can
also be expressed as

Qt+1 � (1 − β)Q +(β − α)Qt + αztzt
′ . (23)

In this renewal equation, Qt+1 can be interpreted as the
weighted average of Q, Qt, and ztzt

′. Under the given parameter
constraints,Rt can be guaranteed to be a true correlationmatrix.

*e common DCC-normal copula model can be given by

ut � u1t, . . . , udt( 􏼁′ ∼ C ut; Rt( 􏼁,

zt � z1t, . . . , zdt( 􏼁′, zit � Φ− 1
uit( 􏼁,

Q1 � Q �
1
T

􏽘

T

t�1
ztzt
′,

Qt+1 � (1 − β)Q + βQt + α ztzt
′ − Qt( 􏼁,

Rt � diag Qt( 􏼁
− (1/2)

Qt diag Qt( 􏼁
− (1/2)

,

􏽢θ � argmax
θ

􏽘

T

t�1
lnϕd zt; Rt( 􏼁 − 􏽘

d

i�1
lnϕ zit( 􏼁⎛⎝ ⎞⎠,

θ � (α, β), α≥ 0, β ∈ (0, 1), α≤ β,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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Figure 2: *e bivariate NCCN copula density function. (a) c1 � − 2; c2 � 2. (b) c1 � 2; c2 � 2. (c) c1 � − 2; c2 � − 2. (d) c1 � 2; c2 � − 2.
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where ut follows the multivariate normal copula with time-
varying parameter matrix Rt and zt follows the standardized
multivariate normal distribution with time-varying linear
correlationmatrix Rt. For a sample of uniform scores ut􏼈 􏼉

T
t�1,

we can employ the ML method to estimate the parameter set
θ.

Similar to the DCC-normal copula model, the DCC-
NCCN copula model can be given by

ut � u1t, . . . , udt( 􏼁′ ∼ C ut; Rt, a, p, c( 􏼁, xt � x1t, . . . , xdt( 􏼁′,

xit � NCCN− 1
uit; a, p, ci( 􏼁,

zt � s
− 1

xt − m( 􏼁,

Q1 � Q �
1
T

􏽘

T

t�1
ztzt
′,

Qt+1 � (1 − β)Q + βQt + α ztzt
′ − Qt( 􏼁,

R
∗
t � diag Qt( 􏼁

− (1/2)
Qt diag Qt( 􏼁

− (1/2)
,

Rt � sR
∗
t s + mm′ − cc′,

􏽢θ � argmax
θ

􏽘

T

t�1
ln nccnd xt; Rt, a, p, c( 􏼁 − 􏽘

d

i�1
ln nccn xit; a, p, ci( 􏼁⎛⎝ ⎞⎠,

m � [(1 − p)
��
a

√
+ p

�
b

√
]c, s � Id + diag cc′ − mm′( 􏼁􏼂 􏼃

1/2
, (1 − p)a + pb � 1,

θ � (a, p, c, α, β),

a ∈ (0, 1),

p ∈ (0, 1),

c � c1, . . . , cd( 􏼁′ ∈ Rd
,

α≥ 0, β ∈ (0, 1), α≤ β,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where Id is an identity matrix, ut follows the multivariate
NCCN copula with time-varying parameter matrix Rt, xt

follows the multivariate NCCN distribution, and zt follows
the standardized multivariate NCCN distribution with time-
varying linear correlation matrix R∗t . Because the meaning
of Rt is not very clear, we first portray time-varying R∗t and
then get time-varying Rt.

Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) can be used to compare the fitting
effect of differentmodels.*e expressions for AIC and BIC are

AIC � − 2LL + 2k,

BIC � − 2LL + k ln n,
(26)

where LL is the log-likelihood, k is the number of param-
eters, and n is the sample size. *e smaller the AIC and BIC
are, the better the model is when we compare the models.

3. Empirical Results

3.1. Descriptive Statistics. *is study employs the Hang Seng
Index (HSI), Hang Seng China Enterprises Index (CEI), and
Hang Seng China-Affiliated Corporations Index (CCI) from

the Hong Kong stock market as our sample, abbreviated as
HSI, CEI, and CCI thereafter, respectively. We obtained three
daily closing price series from the period from Jan 1, 2005, to
Dec 31, 2018, with 3451 data, respectively. *e data source can
be found at https://cn.investing.com, and we calculate the daily
logarithmic return, yt � 100 × (lnPt − lnPt− 1), where Pt is
the daily closing price at time t, and we have 3 return series,
with 3450 observations each.

*e relative price (Pt/P1) series are given in Figure 3.
*e graph shows that all price series have strong dy-

namics and an upward trend. Considering long-term in-
vestment, CCI is the best choice, and HSI is the worst choice.
*e return series are given in Figure 4.

Return series have significant dynamic characteristics,
and the dynamic process shows significant mean reversion.

*e univariate descriptive statistics of returns are pre-
sented in Table 1.

As expected, the minimum values are negative, and the
maximum values are positive. *e range of all returns is
large. *e median and mean values are close to zero, where
the mean values are less than the median values. *e
standard deviation values are greater than 1. According to
skewness, HSI is skewed to the left, and CEI and CCI are
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skewed to the right. *e kurtosis values are significantly
larger than 3, implying that returns have fatter tails than the
normal distribution. *e skewness and kurtosis tests show
that the returns cannot follow the normal distribution.

Using the Ljung-Box Q(5) test method, the autocorre-
lation tests of the first four moments of returns are reported
in Table 2.

As for the tests, the autocorrelation of returns is weak,
but the autocorrelation of second-order, third-order, and
fourth-order moments of returns is strong, indicating that
the returns cannot have serial independence. *e autocor-
relation of squared returns is particularly prominent, in-
dicating that the dynamic of volatility (variance or standard
deviation) is the most important.
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Figure 4: Return series. (a) HSI. (b) CEI. (c) CCI.
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Figure 3: Relative price series.
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Using window length 2 × 30 + 1 � 61, the moving
sample standard deviation series of returns are given in
Figure 5.

For each return series, the time-varying volatility can be
easily observed.

3.2. Fitting of the Marginal Distribution. We employ the
NAGARCH model to describe the dynamics of the return
series. Table 3 shows the estimation results of the
NAGARCH model.

*e values of parameter α are greater than 0.05, indi-
cating significant time-varying volatility. *e values of pa-
rameter β are close to 1, showing strong clustering and weak
mean reversion. *e values of parameter c are less than 0,
exhibiting volatility asymmetry. *e standard deviation
series of the NAGARCH model are given in Figure 6.

*e standard deviation series of the NAGARCH model
are consistent with the moving sample standard deviation
series, indicating that the NAGARCH model can effectively
describe the time-varying volatility. Based on the
NAGARCH model, we can obtain the standardized residual
series. *e univariate descriptive statistics of standardized
residuals are given in Table 4.

Compared with the return series, the range of stan-
dardized residual series is significantly reduced. *e sample
mean values of standardized residuals are almost equal to 0,
and the sample standard deviation is almost equal to 1,
which can meet the theoretical requirements. *e skewness
values of standardized residuals are quite different from
returns. *e kurtosis values of standardized residuals are
smaller than returns. Based on the skewness and kurtosis
tests, standardized residuals cannot follow a normal
distribution.

Using the Ljung-Box Q(5) test method, the autocorre-
lation tests of the first four moments of standardized re-
siduals are reported in Table 5.

Based on the tests, the autocorrelation of the first four
moments of standardized residuals is not strong. *e
standardized residual series can basically meet the serial
independence. In general, the NAGARCH model can ef-
fectively portray the dynamics of each return series.

Using the empirical cdf to transform standardized re-
siduals into uniform scores, uniform scores satisfy the serial
independence and follow a uniform distribution on [0,1].

3.3. Descriptive Analysis of Dependence Structures. To per-
form some sample analyses of the bivariate dependence
structures, the sample bivariate dependence measures of
uniform scores are reported in Table 6.

*e bivariate global dependence measures are positive.
*e bivariate global dependence is the smallest for CEI-CCI
and largest for HSI-CEI. *e bivariate lower tail dependence
measures are larger than the upper ones, implying that the
bivariate dependence structures have stronger lower tail
dependence. *e upper-lower and lower-upper tail depen-
dence measures are very close to zero. *e Gaussian
skewness tests show that the bivariate dependence structures
are significantly asymmetric. *e Gaussian skewness is the
smallest for HSI-CCI and largest for HSI-CEI. *e Gaussian
kurtosis values are larger than 8, implying that the bivariate
dependence structures have stronger tail dependence than
the bivariate normal copula. *e Gaussian kurtosis is the
smallest for HSI-CCI and largest for HSI-CEI. *e Gaussian
skewness and kurtosis tests show that the bivariate depen-
dence structures cannot follow the normal copula.

*e bivariate scatter plots of uniform scores are given in
Figure 7.

*e points are mainly concentrated around the main
diagonal.*e points in the lower-lower and upper-upper tail
regions are dense, but the points in the lower-upper and
upper-lower tail regions are sparse.

To understand the bivariate local dependence of uniform
scores, the sample quantile dependence curves of uniform scores
are given in Figure 8. *e horizontal axis shows quantile levels,
and the vertical axis shows bivariate quantile dependence
coefficients.

*e sample quantile dependence curves show the fol-
lowing features: (1) LLQD and UUQD curves are signifi-
cantly higher than ULQD and LUQD curves, indicating that
all bivariate dependence structures have a strong positive
dependence. (2) LLQD and UUQD curves are obviously not
coincident, and the LLQD curve is significantly higher than

Table 1: Univariate descriptive statistics of returns.

Min Max Median Mean Std. Skewness p value Kurtosis p value
HSI − 13.582 13.407 0.067 0.017 1.483 − 0.009 0.829 12.571 ≤0.001
CEI − 15.087 15.606 0.032 0.022 1.893 0.026 0.535 10.805 ≤0.001
CCI − 10.059 12.953 0.058 0.028 1.693 0.103 0.014 8.691 ≤0.001

Table 2: Autocorrelation tests of the first four moments of returns.

Statistics p value
Q1(5) Q2(5) Q3(5) Q4(5) Q1(5) Q2(5) Q3(5) Q4(5)

HSI 7.85 1838.73 534.72 1304.44 0.165 ≤0.001 ≤0.001 ≤0.001
CEI 9.18 1725.55 385.99 848.21 0.102 ≤0.001 ≤0.001 ≤0.001
CCI 11.01 1446.67 241.22 386.80 0.051 ≤0.001 ≤0.001 ≤0.001
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the UUQD curve at the low quantile levels, indicating that all
bivariate dependence structures are asymmetric, and the
lower tail dependence is significantly higher than the upper
tail dependence. (3) ULQD and LUQD curves are almost
coincident.

Using window length 2 × 30 + 1 � 61, moving sample
bivariate Kendall’s tau series of uniform scores are given in
Figure 9.

*e time-varying bivariate global dependence can be
easily observed. From 2005 to 2007, the global dependence of
HSI-CCI is the largest. However, since 2008, the global
dependence of HSI-CEI is the largest.

3.4. Fitting of Dependence Structures. *is paper considers
CCC-N, CCC-CN, CCC-NCCN, DCC-N, DCC-CN, and
DCC-NCCN copula models. Considering that the asym-
metric dependence between uniform scores is mainly in the
upper and lower tail, we can constrain all skewness

parameters of the NCCN copula to be equal. In addition, we
consider three common Archimedean copulas, namely,
Clayton, Gumbel, and Frank copulas.

(1) Clayton copula function:

C(u, v; θ) � u
− θ

+ v
− θ

− 1􏼐 􏼑
− (1/θ)

, (27)

where θ> 0. Kendall’s tau of Clayton copula is
(θ/(θ + 2)).

(2) Gumbel copula function:

C(u, v; θ) � exp − (− ln u)
θ

+(− ln v)
θ

􏽨 􏽩
1/θ

􏼚 􏼛, (28)
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Figure 5: Moving sample standard deviation series. (a) HSI. (b) CEI. (c) CCI.

Table 3: Parameter estimation of the NAGARCH model.

α β c LL AIC BIC
HSI 0.0704 0.9877 − 0.6550 − 5479.13 10964.27 10982.71
CEI 0.0813 0.9875 − 0.3187 − 6407.51 12821.01 12839.45
CCI 0.0664 0.9894 − 0.4152 − 6093.35 12192.7 12211.14
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Figure 6: Standard deviation series of NAGARCH model. (a) HSI. (b) CEI. (c) CCI.

Table 4: Univariate descriptive statistics of standardized residuals.

Min Max Median Mean Std. Skewness p value Kurtosis p value
HSI − 5.423 5.153 0.044 0.003 0.987 − 0.241 ≤0.001 4.072 ≤0.001
CEI − 4.619 4.466 0.007 0.004 0.989 − 0.036 0.391 3.967 ≤0.001
CCI − 5.719 5.736 0.022 − 0.001 0.991 − 0.108 0.010 4.402 ≤0.001

Table 5: Autocorrelation tests of the first four moments of standardized residuals.

Statistics p value
Q1(5) Q2(5) Q3(5) Q4(5) Q1(5) Q2(5) Q3(5) Q4(5)

HSI 7.29 15.38 7.24 0.70 0.200 0.009 0.204 0.983
CEI 16.22 16.38 3.86 7.69 0.006 0.006 0.570 0.174
CCI 11.46 6.33 3.44 0.06 0.043 0.275 0.633 1.000

Table 6: Sample bivariate dependence measures of uniform scores.

Kendall’s tau 10% LLQD 10% UUQD 10% ULQD 10% LUQD Gaussian skewness p value Gaussian kurtosis p value
HSI-CEI 0.747 0.809 0.701 ≤0.001 ≤0.001 0.155 ≤0.001 10.439 ≤0.001
HSI-
CCI 0.728 0.780 0.655 ≤0.001 ≤0.001 0.083 ≤0.001 8.759 ≤0.001

CEI-CCI 0.672 0.728 0.609 ≤0.001 ≤0.001 0.101 ≤0.001 9.160 ≤0.001
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Figure 7: Bivariate scatter plots of uniform scores. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 8: Sample quantile dependence curves of uniform scores. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 9: Continued.
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where θ≥ 1. Kendall’s tau of Gumbel copula is
1 − (1/θ).

(3) Frank copula function:

C(u, v; θ) � −
1
θ
ln 1 +

e
− θu

− 1􏼐 􏼑 e
− θv

− 1􏼐 􏼑

e
− θ

− 1
⎡⎢⎣ ⎤⎥⎦, (29)

where θ≠ 0. Kendall’s tau of Frank copula is
1 − (4/θ)[1 − (1/θ) 􏽒

θ
0(t/(et − 1))dt].

For the Clayton, Gumbel, and Frank copulas, sample
Kendall’s tau can be used to estimate their parameters. For
other copulas, the maximum likelihood estimation (MLE)
can be used.

To compare the fitting effect, the CCC-N copula model
can be used as the benchmark model. *en, the parameter
increment ∆P and LL increment ∆LL of each copula model
can be calculated. Also, the models can be ranked by LL,
AIC, and BIC, respectively. *e fitting results of bivariate
copula models are given in Tables 7–9.

*e values of parameter α are greater than 0.02, and
the values of parameter β are close to 1. *e values of two
tail parameters are not close to 1, implying that all bi-
variate dependence structures have stronger tail depen-
dence than the normal copula. *e values of the skewness
parameter are negative, implying the lower tail depen-
dence is stronger than the upper tail dependence for each
bivariate dependence structure. *e ∆LL values show that
the fitting of Clayton, Gumbel, Frank, CCC-N, CCC-CN,
CCC-NCCN, DCC-N, DCC-CN, and DCC-NCCN

copula models is improved in turn. In terms of ranking,
the DCC-NCCN copula model is the best.

To easily understand the fitting effect of the bivariate
local dependence, the quantile dependence curves of bi-
variate copula models are given in Figures 10–15.

Compared with the sample QD curves, the bivariate
Clayton copula model overestimates the degree of asym-
metric dependence in the upper and lower tails. *e bi-
variate Gumbel copula model has a wrong asymmetric
direction on the upper and lower tail dependence, and it
overestimates the strength of the asymmetric tail depen-
dence.*e bivariate Frank copula model cannot describe the
asymmetric dependence and seriously underestimates the
strength of the upper and lower tail dependence. *e bi-
variate CCC-N copula model cannot describe the asym-
metric dependence and significantly underestimates the
degree of the lower tail dependence. *e bivariate CCC-CN
copula model cannot describe the asymmetric dependence.
*e bivariate CCC-NCCN copula model is basically correct.

To easily understand the fitting effect of the bivariate
time-varying global dependence, Kendall’s tau series of the
bivariate DCC-NCCN copula model are given in Figure 16.

Kendall’s tau series of the bivariate DCC-NCCN copula
model is basically consistent with moving sample Kendall’s
tau series. *e results illustrate that the bivariate DCC-
NCCN copula model can better depict the bivariate time-
varying global dependence.

*e 10% QD coefficient series of the bivariate DCC-
NCCN copula model are given in Figure 17. Note that the
10% ULQD and 10% LUQD coefficient series are omitted
because their values are very close to 0.
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Figure 9: Moving sample Kendall’s tau series of uniform scores. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.

Table 7: Fitting results of bivariate copula models (HSI-CEI).

Copula model α β a p c ∆P ∆LL LL AIC BIC
Clayton 0 − 542.16 9 9 9
Gumbel 0 − 198.62 8 8 8
Frank 0 − 159.71 7 7 7
CCC-N 0 0 6 6 6
CCC-CN 0.4569 0.3015 2 127.49 5 5 5
CCC-NCCN 0.4325 0.3197 − 0.9133 3 162.49 4 4 4
DCC-N 0.0365 0.9955 2 375.83 3 3 3
DCC-CN 0.0374 0.9960 0.5593 0.4275 4 405.52 2 2 2
DCC-NCCN 0.0359 0.9962 0.7094 0.2338 − 1.8581 5 428.98 1 1 1
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*e dynamic characteristics of 10% LLQD and 10%
UUQD coefficient series are consistent with Kendall’s tau
series. For each bivariate dependence structure, the time-
varying lower and upper tail dependence can be easily
observed.

In comparison with the fitting effects of the multivariate
copula models, the fitting results of multivariate copula
models are given in Table 10.

*e fitting results of the multivariate copula models

are consistent with the fitting results of the bivariate
copula models. Based on LL values, the time-varying
dependence, tail dependence, and asymmetric depen-
dence all play an important role in improving the fitting
effect of a multivariate dependence structure. *e mul-
tivariate DCC-NCCN copula model is the best choice.

Some diagrams of the multivariate CCC-NCCN
copula and DCC-NCCN copula models are given in
Figures 18–20. Compared with bivariate CCC-NCCN and
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Figure 10: QD curves of bivariate Clayton copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.

Table 8: Fitting results of bivariate copula models (HSI-CCI).

Copula model α β a p c ∆P ∆LL LL AIC BIC
Clayton 0 − 670.24 9 9 9
Gumbel 0 − 264.77 8 8 8
Frank 0 − 231.43 7 7 7
CCC-N 0 0 6 6 6
CCC-CN 0.3845 0.6094 2 41.47 5 5 5
CCC-NCCN 0.5012 0.4108 − 1.3943 3 68.54 4 4 4
DCC-N 0.0283 0.9885 2 94.51 3 3 3
DCC-CN 0.0303 0.9892 0.4162 0.6339 4 123.37 2 2 2
DCC-NCCN 0.0312 0.9893 0.5994 0.3433 − 1.9381 5 153.51 1 1 1

Table 9: Fitting results of bivariate copula models (CEI-CCI).

Copula model α β a p c ∆P ∆LL LL AIC BIC
Clayton 0 − 504.67 9 9 9
Gumbel 0 − 222.81 8 8 8
Frank 0 − 153.91 7 7 7
CCC-N 0 0 6 6 6
CCC-CN 0.6251 0.2729 2 47.38 5 5 5
CCC-NCCN 0.5638 0.3176 − 1.5486 3 78.63 4 4 4
DCC-N 0.0357 0.9921 2 146.24 3 3 3
DCC-CN 0.0357 0.9926 0.7740 0.1827 4 167.95 2 2 2
DCC-NCCN 0.0358 0.9919 0.6832 0.2964 − 2.0066 5 191.36 1 1 1
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Figure 11: QD curves of bivariate Gumbel copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 12: QD curves of bivariate Frank copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 13: QD curves of the bivariate CCC-N copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 16: Continued.
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Figure 14: QD curves of bivariate CCC-CN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 15: QD curves of bivariate CCC-NCCN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 16: Kendall’s tau series of the bivariate DCC-NCCN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 17: Continued.
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Figure 17: 10% QD coefficient series of the bivariate DCC-NCCN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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Figure 18: QD curves of multivariate CCC-NCCN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.

Table 10: Fitting results of multivariate copula models (HSI-CEI-CCI).

Copula model α β a p c ∆P ∆LL LL AIC BIC
CCC-N 0 0 6 6 6
CCC-CN 0.5206 0.3727 2 152.02 5 5 5
CCC-NCCN 0.5139 0.3564 − 1.3371 3 217.24 4 4 4
DCC-N 0.0310 0.9936 2 485.46 3 3 3
DCC-CN 0.0315 0.9943 0.5892 0.4450 4 546.89 2 2 2
DCC-NCCN 0.0314 0.9938 0.6669 0.3115 − 2.0710 5 601.18 1 1 1
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Figure 19: Continued.
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Figure 20: Continued.
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Figure 19: Kendall’s tau series of the multivariate DCC-NCCN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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DCC-NCCN copula models, the effects of the multi-
variate CCC-NCCN copula and DCC-NCCN copula
models have no significant differences.

4. Conclusion

*is study examines the effects of the DCC-NCCN copula
model and some other copula models on fitting dependence
structures of Hong Kong stock markets. *e main conclusions
in this paper are as follows:

First, according to descriptive statistics and fitting re-
sults of the marginal distribution, return series of HSI,
CEI, and CCI all reveal significant time-varying vola-
tility. NAGARCH model can well depict the dynamic
characteristics of returns.
Second, descriptive statistics and fitting results show that
the bivariate dependence structures have strong positive
dependence, asymmetric dependence, tail dependence,
and time-varying dependence. For each bivariate depen-
dence structure, the lower tail dependence is higher than
the upper tail dependence.
*ird, through the comparison of theDCC-NCCN copula
model and some other copula models, the DCC-NCCN
copula model can well describe the bivariate dependence
structures, but other copula models are not good. Con-
sidering the flexibility and complexity, the DCC-NCCN
copula model is a relatively ideal copula model.
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