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'eWiener polarity index of a graph G, usually denoted by Wp(G), is defined as the number of unordered pairs of those vertices
of G that are at distance 3. A vertex of a tree with degree at least 3 is called a branching vertex. A segment of a tree T is a nontrivial
path S whose end-vertices have degrees different from 2 in T and every other vertex (if exists) of S has degree 2 in T. In this note,
the best possible sharp lower bounds on the Wiener polarity index Wp are derived for the trees of fixed order and with a given
number of branching vertices or segments, and all the trees attaining this lower bound are characterized.

1. Introduction

A topological index is a numerical quantity calculated from a
graph, which remains unchanged under graph isomorphism
[1]. Topological indices have attracted much attention in
recent years, as many of them provide a good correlation
between the molecular structure of a chemical compound
and its properties. Examples for calculating the topological
indices of particular graphs can be found in [2–4].

'e Wiener polarity index Wp is one of the oldest to-
pological indices, which was proposed in 1947 by the
chemist Harold Wiener [5], for predicting the boiling points
of paraffins. 'e index Wp for a graph G is defined as the
number of unordered pairs of those vertices of G that are at
distance 3. In the previous decade, Wp has attracted much
attention from researchers; for example, see the surveys
[6, 7], papers [8–25], and related references therein.

Before moving further, let us recall some definitions and
notations first. All the graphs considered in this note are
simple and finite. Let G be a graph with the vertex set V(G)

and the set of edges E(G). 'e degree of a vertex u ∈ V(G) is
denoted by du(G) (or simply by du if the graph under
consideration is clear). 'e number of vertices in a graph is

known as its order. A graph of order n is called an n-vertex
graph. A vertex of degree 1 is called pendent vertex, while a
vertex of degree greater than 2 is known as a branching
vertex. Let NG(u) (or N(u)) be the set of all those vertices of
G that are adjacent to the vertex u ∈ V(G). As usual, we
denote by Pn and Sn the path and the star graph of order n,
respectively. A segment S of a tree T is a nontrivial path (that
is, a path of length at least 1) in T with the property that both
the end-vertices of S have degrees different from 2 in T and
every other vertex (if exists) of S has degree 2. A tree ST is
called starlike tree (or generalized star) if it contains exactly
one branching vertex (we call it the central vertex of ST ). A
path P � v0, v1, . . . , vk in a tree T is called a pendent path
(internal path, respectively) of length k, if one of the two
vertices v0, vk is pendent and the other is branching (both the
vertices v0 and vk are branching, respectively) and dvi

� 2 if
1≤ i≤ k − 1. 'e notation and terminology of (chemical)
graph theory that are not defined in this note can be found in
[1, 26–28].

By using the definition of the Wiener polarity index,
Lukovits and Linert [29] demonstrated the quantitative
structure-property relationships in a series of acyclic and
cycle-containing hydrocarbons. Considerable work has been
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done, however, on characterizing the trees that maximize or
minimize Wp under various additional conditions: for ex-
ample, with given order [15], degree sequence [30, 31],
diameter [32], and pendent vertices [33, 34]. Shafique and
Ali [35] gave some structural properties of the trees of fixed
order and with a given number of segments or branching
vertices having maximum/minimum Wp value. Here, in this
note, we are specifically interested in extending the results
obtained in the paper [35].

Du et al. [15] showed that Wp of a tree T can be written
as

Wp(T) � 
uv∈E(T)

du − 1(  dv − 1( , (1)

where uv is the edge connecting the vertices u, v ∈ V(T).
Here, it is important to note that Wp coincides with reduced
second Zagreb index [35–37], for the case of trees.

For fixed integers n and s, denote by STn,s and Tn,b the
classes of all n-vertex trees with s segments and b branching
vertices, respectively, where 1≤ s≤ n − 1 and
1≤ b≤ (n/2) − 1. In this note, we characterize all the trees
attaining minimum Wp value from each of the two classes
STn,s and Tn,b and hence provide the solution of a problem,
left open in [35], concerning the minimum Wp value.

Let T′ be a tree obtained from a tree T after applying a
transformation such that V(T) � V(T′). 'roughout this
note, whenever we consider such trees, by dv and N(v) we
mean the degree and set of neighbors, respectively, of the
vertex v ∈ V(T) � V(T′) in T.

2. Sharp Lower Bound on Wiener Polarity
Index for n-Vertex Trees with a Fixed
Number of Segments

Note that STn,1 consists of only the path graph Pn, and STn,2
is empty. 'us, we proceed in this note with the assumption
3≤ s≤ n − 1. Denote by Sn

s ∈ STn,s the starlike tree with s − 1
pendent paths of length 1 (see Figure 1). Let ST∗n,s ⊂ STn,s be
the class of all n-vertex trees with exactly one internal path
and s − 1 pendent paths of length 1. For the tree(s) having
the minimumWiener Polarity index among all the members
of the class STn,s, we firstly prove some lemmas.

Lemma 1. Let n and s be positive integers such that
3≤ s≤ n − 1. If T ∈ STn,s is a tree such that Wp(T) is min-
imum among all the trees of STn,s, then T contains at most
one pendent path of length greater than 1.

Proof. Suppose, contrarily, that P � v0, v1, . . . , vs and P′ �
v0′, v1′, . . . , vl

′ (l, s≥ 2) are two pendent paths in T, where dv0
�

dv0′
� 1 and dvs

, dvl
′ ≥ 3 (note that the vertices vl

′ and vs may
coincide). If T′ � T − vs−1vs−2  + vs−2v0′ , then T′ ∈ STn,s,
and we have

Wp(T) − Wp T′(  � dvs
− 2> 0, (2)

a contradiction to the choice of T.
Lemma 1 ensures that the trees Sn

3 and Sn
4 have the

minimum Wp value in the classes STn,3 and STn,4,

respectively. Also, it is obvious that the star graph Sn gives
the minimum Wp value (that is, 0) in the class STn,n−1.
'erefore, we proceed with the assumption 5≤ s≤ n − 2.
Denote by ST s ⊂ STn,s the subclass consisting of all starlike
trees. Moreover, by Lemma 1, Sn

s attains the minimum Wp

value in the class ST s. Now, we consider the class STn,s∖ST s

where 5≤ s≤ n − 2. □

Lemma 2. Let n and s be positive integers such that
5≤ s≤ n − 2. If T ∈ STn,s∖ST s is a tree having minimum Wp

value among all the members of STn,s∖ST s, then each pen-
dent path of T is of length 1.

Proof. We contrarily assume that there is a pendent path
P: � v0, v1, . . . , vs of length s≥ 2 in T, where dv0

� 1 and
dvs
≥ 3. Let v ∈ V(T) be a branching vertex different from vs

and let u be the neighbor of vs lying on the vs - v path. Note
that du ≥ 2 and that u may coincide with v. Let
T′ � T − vsu, v0v1  + v0vs, v1u , it can be observed that
T′ ∈ STn,s∖ST s, and we have Wp(T) − Wp(T′) �

(du − 1)(dvs
− 2)> 0, a contradiction to the choice of T. □

Theorem 1. Let n and s be positive integers such that
3≤ s≤ n − 2. If T ∈ STn,s, then

Wp(T)≥ n − 3, (3)

and the equality sign in (3) holds if and only if either T � Sn
s

(see Figure 1) or T ∈ ST∗n,s.

Proof. If T ∈ STn,s contains more than one pendent path of
length at least 2, then by the proof of Lemma 1, there exists a
tree T∗ having at most one pendent path of length at least 2
such that Wp(T)>Wp(T∗). 'us, it is enough to prove the
result when T ∈ STn,s contains at most one pendent path of
length at least 2. In the remaining proof, we assume that
T ∈ STn,s has at most one pendent path of length at least 2.

If either T � Sn
s or T ∈ ST∗n,s, then by elementary cal-

culations, one has Wp(T) � n − 3. We apply induction on s

to prove the desired result. Note that if s � 3 or 4, then by
Lemma 1, it holds that Wp(T)≥ n − 3 with equality if and
only if T � Sn

s . Also, if s � 5, then by using Lemmas 1 and 2,
we have Wp(T)≥ n − 3 with equality if and only if either
T � Sn

5 or T ∈ ST∗n,5. Next, suppose that 6≤ s≤ n − 2 and that
the result holds for every s′ satisfying 3≤ s′ ≤ s − 1.

Let P: w1, w2, . . . , wr be a longest path in T, where r≥ 4.
Note that each of the two vertices w2 and wr−1 has exactly
one nonpendent neighbor in T. Since T contains at most one
pendent path of length at least 2, at least one of the two
vertices w2 and wr−1 is branching.Without loss of generality,
we assume that w2 is branching. Let N(w2) � w1, w3, u1, u2,

. . . , ut} where t≥ 1 and dui
� 1 for every i ∈ 1, 2, . . . , t{ }. Let

Figure 1: 'e graph Sn
s .
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T′ � T − u1 . Note that T′ ∈ STn−1,s−1 when t≥ 2, and
T′ ∈ STn−1,s−2 when t � 1. Hence, by using the inductive
hypothesis, we have

Wp(T) � Wp T′(  + dw3
− 1 

≥ n − 4 + dw3
− 1 

≥ n − 3.

(4)

If t≥ 2, then the equality Wp(T) � n − 3 holds if and
only if dw3

� 2 and either T′ ∈ ST∗n−1,s−1 or T′ � Sn−1
s−1 . If t � 1,

then the equality Wp(T) � n − 3 holds if and only if dw3
� 2

and T′ � Sn−1
s−2 (because in this case, the tree T′ contains a

pendent path of length at least 2). 'us, we conclude that
Wp(T)≥ n − 3 with equality if and only if T � Sn

s or
T ∈ ST∗n,s. 'is completes the induction and hence the
proof. □

3. Sharp Lower Bound on Wiener Polarity
Index for n-Vertex Trees with a Given
Number of Branching Vertices

Recall that Tn,b is the class of all n-vertex trees with b

branching vertices, where 1≤ b≤ (n/2) − 1. For b � 1, the
star graph Sn attains theminimumWp value (see [36]).'us,
throughout this section, we assume 2≤ b≤ (n/2) − 1. Note
that Lemma 3 may be proved in a fully analogous way to that
of Lemma 2.

Lemma 3 (see [35]). Let b and n be positive integers such that
2≤ b≤ (n/2) − 1. If T ∈ Tn,b is a tree having minimum Wp

value among all the members of Tn,b, then every pendent path
of T is of length 1.

Let xi,j be the number of edges in a tree T connecting the
vertices of degrees i and j.

Lemma 4. Let b and n be positive integers such that
2≤ b≤ (n/2) − 1. If T ∈ Tn,b is a tree having minimum Wp

value among all the members of Tn,b and xi,1 ≠ 0 for some i≥ 4,
then T does not contain any pair of adjacent branching
vertices.

Proof. Contrarily, suppose that w, z ∈ V(T) is a pair of
adjacent branching vertices and let v ∈ V(T) be a pendent
vertex adjacent to a vertex u ∈ V(T) of degree at least 4. Note
that u may coincide with either of the vertices w and z. If
T′ � T − vu, wz{ } + wv, vz{ }, then it can be observed that
T′ ∈ Tn,b, and we have

Wp(T) − Wp T′(  � 
x∈N(u),x≠v

dx − 1(  + dwdz − 2dw − 2dz + 3,

(5)

which is positive because of the fact that the function
f(a, b) � ab − 2a − 2b + 3 is strictly increasing in both a and
b where a, b ∈ (3,∞]. 'us, we arrived at a contradiction to
the choice of T. □

Lemma 5. Let b and n be positive integers such that
2≤ b≤ (n/2) − 1. If T ∈ Tn,b is a tree with minimum Wp

among the trees from Tn,b, such that uv ∈ E(T) with du � 1
and dv ≥ 4, then a tree T′ ∈ Tn,b can be obtained from T as
T′ � T − vw{ } + uw{ }, where w is a nonpendent neighbor of v,
such that Wp(T)≥Wp(T′).

Proof. It holds, as it is easy to see that T′ ∈ Tn,b. Also, using
the facts dw ≥ 2 and dv ≥ 4, we have

Wp(T) − Wp T′(  � dv − 1(  dw − 1(  + dv − 1( 


z∈N(v),z≠u,z≠w

dz − 1(  − dw − 1(  − dv − 2(  − dv − 2( 


z∈N(v),z≠u,z≠w

dz − 1( 

� dvdw − 2dv − 2dw + 4 + 
z∈N(v),z≠u,z≠w

dz − 1( ≥ 0,

(6)

which implies Wp(T)≥Wp(T′). □

Lemma 6. Let b and n be positive integers such that
2≤ b≤ (n/2) − 1. If T ∈ Tn,b is a tree having minimum Wp

value among all the members of Tn,b, then every vertex of
degree greater than 3 in T has exactly one nonpendent
neighbor.

Proof. We contrarily assume that the vertex u ∈ V(T), with
N(u) � u1, u2, . . . , uq, uq+1, . . . , ut , has at least two non-
pendent neighbors where t≥ 4. We consider the following
cases: □

Case 1. 'e vertex u has at least one pendent neighbor.
Without loss of generality, we assume that dui

� 1 for
1≤ i≤ q and duj

� dj ≥ 2 for q + 1≤ j≤ t. 'en, t − q≥ 2
because u has at least two nonpendent neighbors. Lemma 4
ensures that dj � 2 for every j satisfying q + 1≤ j≤ t. If
T′ � T − uut  + utu1 , then T′ ∈ Tn,b and hence, because
of the fact t − q≥ 2, we have

Wp(T) − Wp T′(  � t − q − 1> 0, (7)

which is a contradiction.

Case 2. 'e vertex u has nonpendent neighbor.
In this case, we have dui

≥ 2 for every i satisfying 1≤ i≤ t.
Here, Lemmas 3–5 ensure that there is a pendent vertex
v ∈ V(T) having the neighbor w such that dw � 3 for dui

≥ 2,
where 1≤ i≤ t. Let u1 be the neighbor of u that lies on the
unique v - u path. If T′ � T − uut  + vut , then T′ ∈ Tn,b,
and we have

Wp(T) − Wp T′(  � 
x∈N(u),x≠ut

dx − 1(  + du − 2(  dut
− 1  − 2> 0,

(8)

which is again a contradiction to the choice of T.

Theorem 2. Let b and n be positive integers such that
2≤ b≤ (n/2) − 1. If T ∈ Tn,b, then
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WP(T)≥

n + b − 5, 2≤ b<
n − 1
3

,

4b − 4,
n − 1
3
≤ b≤

n

2
− 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

and the equality holds if and only if T ∈ T∗1 , for
2≤ b< (n − 1/3), where T∗1 � T{ : T is a tree whose every
vertex with degree ≥4 has exactly one nonpendent neighbor
and each internal path is of length at least 2}, and T ∈ T∗2 , for
(n − 1/3)≤ b≤ (n/2) − 1, where T∗2 is a class of trees with
degree sequence (3, 3, . . . , 3√√√√√√√√

b

, 2, 2, . . . , 2√√√√√√√√
n−2b−2

, 1, 1, . . . , 1√√√√√√√√
b+2

) such that

each pendent vertex of T ∈ T∗2 is adjacent to some branching
vertex only.

Proof. Denote by Ni the number of vertices of degree i in a
graph G. Let T be a tree that minimizes Wp among the class
Tn,b. Lemma 3 and Lemma 4 conclude that whenever
(n − 1/3)≤ b≤ (n/2) − 1, every branching vertex in T has
degree 3 such that the vertices of degree 2 are placed between
the adjacent vertices of degree 3 in such a way that no two
vertices of degree 2 are adjacent if there are adjacent vertices
of degree 3. Note that, for (n − 1/3)≤ b≤ (n/2) − 1, we have
N3 � b, N1 � b + 2 and N2 � n − 2b − 2. Hence,
Wp(T) � 4b − 4.

Now, Lemmas 3–6 conclude that every internal path has
a length of at least 2. Also, Lemma 5 ensures that, to obtain
minimal graph T, either we have to insert the vertices of
degree 2 between any vertex of degree 2 and vertex of degree
3, or we have to add a starlike pendent vertex in such a way
that every vertex with degree ≥4 has exactly one nonpendent
neighbor that is T � T∗1 . Hence, Wp(T) � n + b − 5, for
2≤ b< (n − 1/3), which completes the proof. □
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