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With the rapid development of Internet technologies and online sharing platforms, sharing economy has become a major trend in
economy.+e entry of sharing economy leads to profound impacts on incumbent industry. We build a dynamic sharing platform
competition model with which agents are bounded rational, and consumer side is heterogeneous. +en, we present the fixed
points and the stability conditions of the bifurcation of the dynamic model.We simulate the adjustment speed of sharing platform,
sharing platform price, and costs of traditional firm effects on system stability, and we present stable area, bifurcation diagram, the
largest Lyapunov exponent, and strange attractor of different parameters, and we give a feedback control method at last. Our main
results are as follows: (1) when adjustment speed of sharing platform increases, the system becomes bifurcation, and finally, the
system goes into a chaotic state; when the system is stable, price of traditional firm and fee decision of sharing platform are
constant. (2) When price of sharing platform increases, sharing platform is more stable while traditional firm is more vulnerable.
Suppose the system is in the stable state; when sharing platform price increases, traditional firm price increases, while sharing
platform fees decreases. (3) When traditional firm cost is small, the system would be more stable. When the system is stable, with
traditional firm cost increasing, traditional firm price increases quicker than sharing platform consumer fee, while sharing
platform seller fee decreases. (4) Feedback control can alleviate the chaotic state of system. With feedback control parameter
increases, the system becomes more stable.

1. Introduction

Sharing economy has become a growing trend in world [1].
With sharing platforms, consumers have access to products/
services which they do not own [2]. Sharing platforms re-
duce transaction costs, such as searching costs and repli-
cation costs [3]. Sharing platforms compete with traditional
firm fiercely, such as the entry of ride-sharing platforms
leads to the significant loss of traditional industry in profit
[4]. +e entry of bike-sharing platforms leads to the intense
competition in China in 2020 and the decrease of 68% in
manufacturers’ profits [1]. However, although sharing
platform improves the resource efficiency, there are lots of
shortages in sharing platform, for example, the business
stealing effect on traditional firms [5] and traffic jam caused
by car-sharing. +erefore, the mechanism behind the chaos,
which is activated by sharing economy, should be
concerned.

Sharing economy is characterized by its accessible
economy through platforms [6]. Its two-sided market
structure becomes the core characteristic factors. Sharing
platform is a two-sided market; one group in one side of
platforms would increase its utility when the other side
group number increases. +e fee decision-making of the
sharing platform is bounded rational [7], for its lack of
information. Sharing platform competition is studied by
many researchers. Pei et al. [8] investigate the sharing
economy B2C and C2C platform price strategy. Tian and
Jiang [9] investigate the different effects of sharing platforms
on retailers and find that, according to their marginal costs,
sharing would benefit more on retailers. +e sharing plat-
forms such as Uber is a two-sided platform, and they have
the intragroup externality between different groups, so they
have to charge two-sided problems, such as multihoming
problems, and conquer and divide strategy. Cachon et al.
[10] compare surge of different pricing policies in ride
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sharing. Seamans and Zhu [11] study the dynamic price in
platform and show the entry of platforms leads to more
difference between newspapers.

Two-sided markets’ theory is first described by Rochet
and Tirole [12]; then, a lot of literature is investigated.
Armstrong [13] analyzes the two-sided market pricing
strategy and finds that pricing is determined by externality,
charging method, and multihoming. Bardey et al. [14] show
that quality affects the price structure in the two-sided
market. Belleflamme and Toulemonde [15] study the
intragroup negative externality model in two-sided market
externality. Ambrus and Argenziano [16] study an asym-
metric network in two-sided markets.

Sharing economy creates many features for government
[17], for it is innovative [18, 19]. We focus on the sharing
platform that have no power on pricing, and it gets maxi-
mum profit by taking the fees on two sides in sharing
platform. Sharing platforms charge for their services on
different sides of the sharing platform. +e price of the
service in the sharing platform is determined by exogenous
factors, such as the secondary books’ exchange. He and Shen
[20] investigate e-hailing service and traditional taxi in a
spatial equilibrium model. Ye et al. [21] show that sharing
platform competes with the traditional firm.

Sharing platforms have to make decisions on how to
charge consumers and developers. However, the current
studies neglect that the sharing platforms are two-sided
markets. Sharing platforms have to attract more consumers
or firms to increase its externality and profits. Sharing
platforms always have access to more consumers than tra-
dition industry.

Another relevant stream of literature is about the chaos
dynamics. Andaluz et al. [22] compare price competition
and quantity competition in evolution game and find that
quantity competition is more stable. Du et al. [23] analyze
the duopoly game with heterogeneous players and find that,
with the output limiter, the system becomes more stable.
Fanti and Gori [24] analyze the duopoly game with het-
erogeneous product, higher degree of product differentia-
tion may lead to a chaotic state, and more fiercer
competitions lead market to be less stable. Dubiel-Tele-
szynski [25] analyzes the diseconomy of scale in competition
and finds that small scale destabilizes the market equilib-
rium. Pyragas [26] describes the new development of
feedback control.

However, to the best of our knowledge, there have been
no attempts to consider the sharing platform competition as
a two-sided platform. We combine the sharing platform
competition and the chaos theory. Zou and He [27] study
technology sharing through technology innovation plat-
form. Our paper is different from their study for ourmodel is
about sharing economy; our model considers sharing
economy as a two-sided market, and the sharing economy
market structure is shown in Figure 1; our model has new
features.

+is paper investigates a nonlinear discrete-time game
model with sharing platform and traditional firm compe-
tition. We assume two players are bounded rationality ex-
pectations. +rough simulation of the complex dynamical

behaviors, we present a feedback chaos control and find that
it can alleviate the chaos state.

+e remainder of this paper is organized as follows. In
Section 2, we present a competition model consisting of a
sharing platform and a traditional firm. In Section 3, we
discuss the Nash equilibrium points and stability region. In
Section 4, numerical simulations are carried out, and we
show the major features of this game. We give the feedback
control for the chaotic state. Finally, a conclusion is given.

2. Model

We illustrate the sharing platform competition model in
Figure 1. Consumer and seller interact with each other
through sharing platform, and sharing platform charges fees
on the consumer and the seller. Traditional firm compete
with the sharing platform in the consumer side.

+ere are new features in our model. First, different from
Pei et al. [8] and Ye et al. [21], we see the sharing platform as
a two-sided market. Consumer utility depends on the
quantity of sellers. Second, we assume the consumer facing a
given product price, which is common in sharing economy.
+e sharing platform has no power on price. +ird, we take
sharing platform’s decision on fee as a whole, and the
sharing platform competes with traditional firm only in the
consumer side.

We assume that sharing platform and traditional firm
compete in a Hoteling model, assuming that consumers
distribute, in a unit interval [0, 1], sharing platform and
tradition firm positioning in two ends. We use 1 to stand for
sharing platform and use 2 to stand for the traditional firm.
+e consumer who in location x buys product incurs
transportation cost t, t> 0. For simplicity, we assume t equals
to 1. As in [28], we assume sharing price p1 in sharing
platform is exogenous. Sharing platform charges consumers’
fee pb1 and sellers’ fee ps1 to maximize its profit. p2 is the
price of traditional product. v is the instinct value that the
consumer consumes the product. +e sharing platform and
firm compete to attract the same group of consumers. +e
consumer who joins sharing platform utility function is

ub1 � v + αqs1 − pb1 − p1 − x, (1)

where α is the network externality parameter; in the sharing
platform, consumer utility depends on sellers quantity who
joins sharing platform, price, and transaction costs.

consumer
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p1

p1
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Figure 1: Market structure.
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+e consumer who joins traditional firm utility function
is

u2 � v − p2 − (1 − x), (2)

where u2 is traditional firm utility and p2 is the price of
traditional firm. In traditional firm, consumer utility de-
pends on price of traditional firm and transaction costs.

In the seller side, we assume the seller’s utility function
that joins sharing platform is

us1 � qb1p1 − ps1 − c1, (3)

where c1 is sellers’ cost.
For simplicity, we assume that seller’s cost distribute in a

unit line [0, 1]. When us1 > 0, the seller will attend the
sharing platform. So, the seller quantity is
qs1 � Pr(qb1p1 − ps1 − c1 > 0); then, we can calculate the
seller’s number is

qs1 � qb1p1 − ps1. (4)

From equations (1) and (2), let ub1 � u2; we can conclude
that

qb1 �
1
2

+
αqs1 + p2 − p1 − pb1

2
, (5)

q2 �
1
2

−
αqs1 + p2 − p1 − pb1

2
. (6)

+e sharing platform makes the decision of the fees on
the consumer side and the developer side as a whole. +e
seller’s fee decision depends on the consumer side’s fee
decision. From equations (4) and (5), we can obtain

qb1 �
1 + p2 − p1 − αps1 − pb1

2 − αp1
,

qs1 �
p1 1 + p2 − p1 − pb1( 􏼁 − 2ps1

2 − αp1
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

+e sharing platform’s profit function is

π1 � pb1qb1 + ps1qs1, (8)

where qb1 is the quantity of the consumer who joins the
sharing platform.

+e traditional firm’s profit function is

π2 � p2 − c2( 􏼁q2, (9)

where q2 is the quantity of traditional firm consumer and c2
is the traditional firm’s marginal costs.

We insert equation (7) in profit function (8), and the
first-order condition for the maximization of the sharing
platform’s profit is

zπ1

zps1
�

p1 1 + p2 − p1( 􏼁 − p1 + α( 􏼁pb1 − 4ps1

2 − αp1
� 0. (10)

+en, the sharing platform seller’s fee reaction function
is

ps1 �
p1 1 + p2 − p1( 􏼁 − p1 + α( 􏼁pb1

4
. (11)

Combine equations (7) and (11), and then, substitute
into equation (8); the first-order condition equation that
maximizes sharing platform profit is

zπ1

zpb1
�

− 8 − α + p1( 􏼁
2

􏼐 􏼑pb1 + 4 − αp1 − p
2
1􏼐 􏼑p2 + p

3
1 − (1 − α)p

2
1 − (4 + α)p1 + 4

4 2 − αp1( 􏼁
. (12)

Combine equations (6) and (11), and then, substitute
into equation (9); the first-order condition equation that
maximizes traditional firm profit is

zπ2
zp2

�
4 − αp1 − α2􏼐 􏼑pb1 − 8 − 2αp1( 􏼁p2 − αp

2
1 − 3α + αc2 − 4( 􏼁p1 − 4c2 + 4

4 2 − αp1( 􏼁
. (13)

As Choi et al. [28], we assume the sharing platform and
traditional firm are bounded rational and obtain the fol-
lowing system:

pb1(t + 1) � pb1(t) + λ1pb1(t)
zπ1

zpb1
,

p2(t + 1) � p2(t) + λ2p2(t)
zπ2

zp2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where λ1 is the sharing platform’s adjustment speed of
consumer fee, λ1 > 0, and λ2 is the adjustment speed of
traditional firm price, λ2 > 0. In the following we will analyze
the equilibrium of the dynamic model.

3. Dynamic Model Analysis

By setting pb1(t + 1) � pb1(t) and p2(t + 1) � p2(t), we can
obtain 4 fixed points:
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E1(0, 0),

E2 0,
4 − 3αp1 − 4c2 − 4p1( 􏼁 − αp1 p1 + c2( 􏼁

8 − 2αp1
􏼠 􏼡,

E3
p
3
1 − (1 − α)p

2
1 − (4 + α)p1 + 4

8 − α + p1( 􏼁
2 , 0⎛⎝ ⎞⎠,

E4
4 − αp1 − p

2
1􏼐 􏼑 12 + 4 − αp1( 􏼁c2 + αp

2
1 − 5αp1 − 4p1􏼐 􏼑

48 + αp1 α + p1( 􏼁
2

− 4 α2 + 6αp1 − p
2
1􏼐 􏼑

,
4 − αp1( 􏼁 8 − α + p1( 􏼁

2
􏼐 􏼑c2 + 4 2 − αp1( 􏼁 6 + 2p1 − α + p1( 􏼁

2
􏼐 􏼑

48 + αp1 α + p1( 􏼁
2

− 4 α2 + 6αp1 − p
2
1􏼐 􏼑

⎛⎝ ⎞⎠.

(15)

System (14) Jacobian matrix is

J �

1 + λ1
zπ1
zpb1

+ pb1
z
2π1

zp
2
b1

􏼠 􏼡 λ1pb1
z
2π1

zpb1zp2

λ2p2
z
2π2

zpb1zp2
1 + λ2

zπ2

zp2
+ p2

z
2π2

zp
2
2

􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

Let Tr be the trace of Jacobian matrix and Det be the
determent of Jacobian matrix. +en, we can obtain

Tr � 2 + λ1
zπ1

zpb1
+ pb1

z
2π1

zp
2
b1

􏼠 􏼡 + λ2
zπ2
zp2

+ p2
z
2π2

zp
2
2

􏼠 􏼡,

Det � 1 + λ1
zπ1

zpb1
+ pb1

z
2π1

zp
2
b1

􏼠 􏼡􏼠 􏼡 1 + λ2
zπ2

zp2
+ p2

z
2π2

zp
2
2

􏼠 􏼡􏼠 􏼡 − λ1λ2pb1p2
z
2π1

zpb1zp2

z
2π2

zpb1zp2
.

(17)

+e determinant equation is

x
2

− Trx + Det � 0. (18)

+e E1 point Jacobian matrix is

1 + λ1
p
3
1 − (1 − α)p

2
1 − (4 + α)p1 + 4

4 2 − αp1( 􏼁
0

0 1 + λ2
4 − 3αp1 − 4c2 − 4p1( 􏼁 − αp1 p1 + c2( 􏼁

4 2 − αp1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

+e characteristic roots are 1 + λ1((p3
1 − (1 − α)p2

1 −

(4 + α)p1 + 4)/4(2 − αp1)) and 1 + λ2((4 − (3αp1 − 4c2 −

4p1) − αp1(p1 + c2))/4(2 − αp1)). For ((p3
1 − (1 − α)p2

1 −

(4 + α)p1 + 4)/4(2 − αp1))> 0 and ((4 − (3αp − 4c2 − 4p)

− αp(p + c2))/4(2 − αp))> 0, so 1 + λ1((p3
1 − (1 − α)p2

1 −

(4 + α)p1 + 4)/4(2 − αp1))> 1 and 1 + λ2((4 − (3αp1 − 4c2
− 4p1) − αp1(p1 + c2))/4(2 − αp1))> 1; E1 is repelling node
[29].

E2(0, (4 − (3αp1 − 4c2 − 4p1) − αp1(p1 + c2))/ (8 − 2α
p1)) point Jacobian matrix is

4 Discrete Dynamics in Nature and Society



1 + λ1
4 − αp1 − p

2
1􏼑p

a
2 + p

3
1 − (1 − α)p

2
1 − (4 + α)p1 + 4􏼐 􏼑

4(2 − αp)
⎛⎝ ⎞⎠ 0

λ2p
a
2
4 − αp1 − p

2
1

4 2 − αp1( 􏼁
1 + λ2p

a
2
4 − αp1 − p

2
1

4 2 − αp1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where pa
2 � (4 − (3αp1 − 4c2 − 4p1) − αp1(p1 + c2))/(8 −

2αp1).
For (((4 − αp1 − p2

1)p
a
2 + p3

1 − (1 − α)p2
1 − (4 + α)p1 +

4)/4(2 − αp))> 0, so 1 + λ1(((4 − αp1 − p2
1)p

a
2 + p3

1 − (1 −

α)p2
1 − (4 + α)p1 + 4)/4(2 − αp))> 1.

For ((4 − αp1 − p2
1)/4(2 − αp1))< 0, pa

2 > 0, so 1 + λ2
pa
2((4 − αp1 − p2

1)/4(2 − αp1))< 1.
So, E2 is a saddle point [29].
E3(((p3

1 − (1 − α)p2
1 − (4 + α)p1 + 4)/8 − (α + p1)

2), 0)

point Jacobian matrix is

1 + λ1p
b
b1
4 − αp1 − α2

4 2 − αp1( 􏼁
λ1p

b
b1
4 − αp1 − α2

4 2 − αp1( 􏼁

0 1 + λ2
4 − αp1 − α2􏼐 􏼑p

b
b1 − αp

2
1 − 3α + αc2 − 4t( 􏼁p1 − 4c2 + 4

4 2 − αp1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where pb
b1 � ((p3

1 − (1 − α)p2
1 − (4 + α)p1 + 4)/8 − (α+

p1)
2).
For pb

b1 > 0, ((4 − αp1 − α2)/4(2 − αp1))< 0, so 1 + λ1
pb

b1((4 − αp1 − α2)/4(2 − αp1))< 1.
When pb

b > ((αp2
1 + (3α + αc2 − 4t)p1 + 4tc2 − 4)/4 − α

p1 − α2), then (((4 − αp1 − α2)pb
b − αp2

1 − (3α + αc2 − 4t)

p1 − 4tc2 + 4)/4(2 − αp1))> 0, so 1 + λ2(((4 − αp1 − α2)
pb

b − αp2
1 − (3α + αc2 − 4t)p1 − 4c2 + 4)/4(2 − αp1))> 1; E3

is the saddle point.
When pb

b < ((αp2
1 + (3α + αc2 − 4t)p1 + 4tc2 − 4)/(4 −

αp1 − α2)), then (((4 − αp1 − α2)pb
b − αp2

1 − (3α + αc2 − 4t)

p1 − 4tc2 + 4)/4(2 − αp1))< 0, so +λ2(((4 − αp1 − α2)pb
b − α

p2
1 − (3α + αc2 − 4t)p1 − 4c2 + 4)/4(2 − αp1))< 1; E3 is an

attracting point, and E3 is stable.

E4(((4 − αp1 − p2
1)(12 + (4 − αp1)c2 + αp2

1 − 5αp1−

4p1)/48 + αp1(α + p1)
2 − 4(α2 + 6αp1 − p2

1)), ((4 − αp1)(8
− (α + p1)

2)c2 + 4(2 − αp1)(6 + 2p1 − (α + p1)
2)/(48 + αp1

(α + p1)
2 − 4(α2 + 6αp1 − p2

1)))) point Jacobian matrix is

1 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
λ1pb1

4 − αp1 − p
2
1

4 2 − αp1( 􏼁

λ2p
c
2
4 − αp1 − α2

4 2 − αp1( 􏼁
1 − λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where pc
b1 � ((4 − αp1 − p2

1)(12 + (4 − αp1)c2 + αp2
1 − 5α

p1 − 4p1)/(48 + αp1(α + p1)
2 − 4(α2 + 6αp1 − p2

1))),

p
c
2 �

4 − αp1( 􏼁 8 − α + p1( 􏼁
2

􏼐 􏼑c2 + 4 2 − αp1( 􏼁 6 + 2p1 − α + p1( 􏼁
2

􏼐 􏼑

48 + αp1 α + p1( 􏼁
2

− 4 α2 + 6αp1 − p
2
1􏼐 􏼑

. (23)

+e trace o and determent of Jacobian matrix (22) is

Tr � 2 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
− λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
,

Det � 1 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
􏼠 􏼡 1 − λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
􏼠 􏼡 − λ1λ2p

c
b1p

c
2
4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁

16 2 − αp1( 􏼁
2 .

(24)

+e characteristic equation is x2 − Trx + Det � 0.
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For Tr2 − 4Det � (λ1pc
b1((8 − (α + p1)

2)/ 4(2 − αp1)) −

λ2pc
2((8 − 2αp1)/4(2 − αp1)))

2 + 4λ1λ2pc
b1p

c
2((4 − αp1 −

p2
1) (4 − 2αp1)/16(2 − αp1)

2)> 0, so the equation roots are
real.

According to the Jury condition [30], the system stable
condition is

(a) 1 − Det> 0,

(b) 1 − Tr + Det> 0,

(c) 1 + Tr + Det> 0.

⎧⎪⎪⎨

⎪⎪⎩
(25)

In equation (25), if condition (a) is not satisfied, there is a
complex conjugate pair of eigenvalues lying outside the unit
circle. If condition (b) is not satisfied, there is a root is less
than − 1. If condition (c) is not satisfied, there is a root is
larger than 1 [28].

Condition (a) in equation (16) is

1 − Det � 1 − 1 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
􏼠 􏼡 1 − λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
􏼠 􏼡

+ λ1λ2p
c
b1p

c
2
4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁

16 2 − αp1( 􏼁
2

� λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
+ λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁

+ λ1λ2p
c
b1p

c
2
4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁 − 8 − α + p1( 􏼁

2
􏼐 􏼑 8 − 2αp1( 􏼁

16(2 − αp)
2 > 0.

(26)

So, the adjustment speed λ1 satisfied

0< λ1 <
− 4 2 − αp1( 􏼁λ2p

c
2 8 − 2αp1( 􏼁

4 2 − αp1( 􏼁p
c
b1 8 − α + p1( 􏼁

2
􏼐 􏼑 + λ2p

c
b1p

c
2 4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁 − 8 − α + p1( 􏼁

2
􏼐 􏼑 8 − 2αp1( 􏼁􏼐 􏼑

. (27)

Condition (b) in equation (16) is

1 − Tr + Det � 1 − 2 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
− λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
􏼠 􏼡

+ 1 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
􏼠 􏼡 1 − λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
􏼠 􏼡 − λ1λ2p

c
b1p

c
2
4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁

16 2 − αp1( 􏼁
2

� λ1λ2p
c
b1p

c
2

8 − α + p1( 􏼁
2

􏼐 􏼑 8 − 2αp1( 􏼁 − 4 − αp1 − p
2
1􏼐 􏼑 4 − 2αp1( 􏼁

16 2 − αp1( 􏼁
2

⎛⎝ ⎞⎠> 0,

(28)

so this condition is easily satisfied.
Condition (c) in equation (16) is
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1 + Tr + Det � 1 + 2 − λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
− λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
􏼠 􏼡 + 1 − λ1p

c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
􏼠 􏼡 1 − λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁
􏼠 􏼡

− λ1λ2p
c
b1p

c
2
4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁

16 2 − αp1( 􏼁
2

� 4 − 2λ1p
c
b1
8 − α + p1( 􏼁

2

4 2 − αp1( 􏼁
− 2λ2p

c
2
8 − 2αp1

4 2 − αp1( 􏼁

+ λ1λ2p
c
b1p

c
2

8 − α + p1( 􏼁
2

􏼐 􏼑 8 − 2αp1( 􏼁 − 4 − αp1 − p
2
1􏼐 􏼑 4 − 2αp1( 􏼁

16 2 − αp1( 􏼁
2

⎛⎝ ⎞⎠> 0.

(29)

So, the adjustment speed of sharing platform λ1 should
satisfy

0< λ1 <
8 8 2 − αp1( 􏼁 − 2λ2p

c
2 8 − 2αp1( 􏼁( 􏼁 2 − αp1( 􏼁

8 2 − αp1( 􏼁p
c
b1 8 − α + p1( 􏼁

2
􏼐 􏼑 − λ2p

c
b1p

c
2 8 − α + p1( 􏼁

2
􏼐 􏼑 8 − 2αp1( 􏼁 − 4 − αp1 − p

2
1􏼐 􏼑 4 − 2αp1( 􏼁􏼐 􏼑

. (30)

We illustrate the stable area in Figure 2.+e blue area I is
the stable area, and this area satisfied all conditions; area II is
the area that satisfied condition (a) and condition (b), area
III is the area that satisfied condition (b). Figure 1 shows that
when the adjustment speed λ1 and λ2 increases, system (14)
becomes flip bifurcation and then becomes a chaotic state.

4. Simulation

In this section, numerical examples are presented to illus-
trate the dynamic behavior of the sharing platform com-
petition model. We present some numerical evidence for the
chaotic of the sharing platform system. In the following, we
illustrate the three factors’ effects on stability of system (14).
+ree factors are adjustment speed of sharing platform’s,
exogenous price, and traditional firm cost.

4.1. Adjustment Speed of Sharing Platform. We first fixed the
parameter set α � 0.1, p1 � 0.7, c2 � 0.5, and λ2 � 0.9; we
then illustrate the λ1 effect on system stability.

Figure 3 describes the bifurcation diagram with respect
to λ1. As shown in Figure 3, pb1, ps1, p2 are stable when λ1 is
small; as λ1 increases, system (14) becomes a bifurcation, and
finally, the system goes into a chaotic state. We can see that
when the system is stable, p2 is larger than pb1, while ps1 is
smaller than zero. Sharing platform’s fee decision shows a
standard two-sided characteristic.

Figure 4 shows largest Lyapunov exponent (LE) with
respect to λ1 corresponding to Figure 3; LE is used to
market the system chaos. When 0< λ1 < 1.648, the LE is
negative; system (14) is in a stable state. When λ1 ≈ 1.648,
the LE equals to zero, which means that system (14) goes
into bifurcation. When λ1 is larger than 2.766, LE is mostly
positive; this means system (14) loses control and enters a

chaotic state. Figure 5 shows strange attractor of system
(14) when λ1 � 2.522. We can see that although system
(14) is in a chaotic state, pb1 and p2 are still in a certain
scale.

4.2. Sharing Platform Price. In this section, we show sharing
platform price effects on system (14) stability. We first fixed
the parameter set α � 0.1, c2 � 0.5, λ1 � 2.6, and λ2 � 0.9.

Figure 6 shows stable area of (λ1, λ2) with different
values of p1. It can be seen that the system stable area
changes with p1; when p1 is small in a certain value, system
(14) would be stable. When p1 increases, the stable area
boundary in λ1 would be larger, while the stable area
boundary in λ2 would be smaller; this means that when p1
increases, system would be more stable in adjustment speed
of the sharing platform, while more vulnerable in adjust-
ment speed of traditional firm.

Figure 7 describes the bifurcation diagram with respect
to p1. As shown in Figure 7, pb1, ps1, p2 are in a chaotic state
when p1 is small; as p1 increases, system (14) goes into 2-
period bifurcation, and finally, the system goes into a stable
state. We can see that when the system is stable, p2 is larger
than pb1. As p1 increases, p2 is larger and pb1 and ps1 are
smaller. +at means higher p1 is a benefit for system sta-
bility, but the sharing platform gets lost in benefit.

Figure 8 shows the largest Lyapunov exponent with
respect to p1 corresponding to Figure 7. When p1 < 0.455,
the LE is mostly positive; system (14) is in a chaotic state.
When λ1 ≈ 0.445, the LE equals to zero, which means that
system (14) changes from the chaotic state into 2-period
bifurcation. When p1 is larger than 0.934, LE is negative;
system (14) is in a stable state. Figure 9 shows the strange
attractor of system (14) when p1 � 0.300.We can see that pb1
and p2 are still in a certain scale.
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4.3. Cost Effects. In this section, we illustrate traditional cost
effects on system (14) stability. We first fixed the parameter
set, α � 0.1, λ1 � 2.6, λ2 � 1.2, andp1 � 0.7.

Figure 10 shows stable area of (λ1, λ2) with different
values of c2. It can be seen that the system stable area changes
with c2; when c2 is small in a certain value, the system (14)
would be stable. When c2 increases, the stable area boundary
would be smaller. +is means that when c2 is lower, the
system would be more stable.

Figure 11 describes the bifurcation diagram with respect
to c2. As shown in Figure 11, pb1, ps1, p2 are stable when c2 is
small; as c2 increases, system (14) goes into 2-period bi-
furcation, and finally, the system goes into a chaotic state.
We can see that when the system is stable, with c2 increasing,
p2 increases quicker than pb1, while ps1 decreases. +at
means traditional firm is more sensitive to c2.

Figure 12 shows the largest Lyapunov exponent with
respect to c2 corresponding to Figure 11. When
0< c2 < 1.367, the LE is negative; system (14) is in a stable
state. When c2 ≈ 1.367, the LE equals to zero, which means
that system (14) changes from stable state into 2-period
bifurcation. When c2 is larger than 1.781, LE is mostly
positive; the system (14) is in a chaotic state. Figure 13 shows
the strange attractor of system (14) when c2 � 1.981. We can
see that pb1 and p2 are still in a certain scale.

4.4. Delay Feedback Control. We can see that when system
(14) is in a chaotic state, the system is of great sensitivity
under initial conditions. When the system becomes chaotic,
it means that the sharing market becomes out of control;
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0
3210
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Figure 2: Stable area of system (14).
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Figure 3: Bifurcation diagram with respect to λ1 when
α � 0.1, p1 � 0.7, c2 � 0.5, and λ2 � 0.9.
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feedback control becomes a general way to control the chaos
state [31].

We use the control mechanism:
F(pb1(t + 1)) � k(pb1(t) − pb1(t + 1)), where k is the
feedback control parameter. +e sharing platform adjusts its
consumer fee to alleviate the chaotic state. +en, the system
becomes

pb1(t + 1) � pb1(t) + λ1pb1(t)
zπ1

zpb1
+ F pb1(t + 1)( 􏼁,

p2(t + 1) � p2(t) + λ2p2(t)
zπ2

zp2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

+en, the feedback control system can be written as

pb1(t + 1) � pb1(t) +
λ1pb1(t)

1 + k

zπ1

zpb1
,

p2(t + 1) � p2(t) + λ2p2(t)
zπ2

zp2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

For controlling the chaotic sharing economy systems, we
use the time-delayed feedback control [26]. We set pa-
rameter: α � 0.1, p1 � 0.7, c2 � 0.5, and λ2 � 0.9 when
λ1 � 2.831; as former simulation in Figure 3, we know that
the system is in a chaotic state.

We simulate feedback control when k � 0.5 and k � 0.8.
Figure 14 shows the original system is in the chaos state after
several periods iteration, while under the delay feedback
control k � 0.5, the system becomes double bifurcation and
the chaos state alleviates; while k � 0.8, the system becomes
stable.
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Figure 12: +e largest Lyapunov exponent with respect to c2 corresponding to Figure 11.
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Figure 13: Strange attractor of system (14) when c2 � 1.981 and α � 0.1, p1 � 0.7, λ1 � 2.6, and λ2 � 1.2.
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Figure 15 shows bifurcation diagram and the largest
Lyapunov exponent with respect to k. Figure 15 shows that
when the adjustment speed becomes higher, the chaos state
alleviates to double bifurcation in k ≈ 0.093 and becomes a
stable state in k ≈ 0.721. +is indicates that system (14) can
get rid of chaos successfully when the controlling parameter
becomes larger.

5. Conclusion

Sharing economy has become a major trend in recent years.
Sharing platform reduces transaction costs and enhances

consumer welfare. +e competition between sharing econ-
omy and traditional firm becomes a major concern of many
researchers. Our paper focuses on two factors: the first is
sharing platform’s two-sided market structure; the second is,
in sharing platform competition, sharing platform and
traditional firm are both bounded rational.

We build a dynamic sharing platform competition
model and then present the fixed points and the stability
conditions of the bifurcation of the dynamic model. At last,
we simulate the adjustment speed of sharing platform,
sharing platform price, and costs of traditional firm effects
on system stability. With the aid of stable area, bifurcation
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Figure 14: Delay feedback control when k � 0.5, 0.8.
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diagram, the largest Lyapunov exponent, and strange
attractor, we present the following main conclusions:

(1) Adjustment speed of sharing platform has a positive
effect on system stability. When adjustment speed of
sharing platform increases, the system is more likely
to be in a chaotic state.

(2) Price of the sharing platform has a bilateral effect on
system stability. When it increases, in sharing
platform side, the system is more stable while the
traditional firm is more vulnerable. Sharing platform
changes with traditional firm price in the reverse
direction.

(3) Traditional firm cost has a positive effect on system
stability. Traditional firm cost has positive effects on
traditional price but has a bilateral effect on sharing
platform fees.

(4) Feedback control can alleviate the chaotic state of the
system. By adjusting the feedback control parameter
k, the sharing platform and traditional firm canmake
the system stable.
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