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)e concept of H-bases, introduced long ago byMacauly, has become an important ingredient for the treatment of various problems
in computational algebra. )e concept of H-bases is for ideals in polynomial rings, which allows an investigation of multivariate
polynomial spaces degree by degree. Similarly, we have the analogue of H-bases for subalgebras, termed as SH-bases. In this paper, we
present an analogue of H-bases for finitely generated ideals in a given subalgebra of a polynomial ring, and we call them “HSG-bases.”
We present their connection to the SAGBI-Gröbner basis concept, characterize HSG-basis, and show how to construct them.

1. Introduction

)e concept of H-bases, introduced long ago by Macaulay
[1], is based solely on homogeneous terms of a polynomial.
In [2], an extension of Buchberger’s algorithm is presented
to construct H-bases algorithmically. Some applications of
H-bases are given in [3]; in addition, many of the problems
in applications which can be solved by the Gröbner tech-
nique can also be treated successfully with H-bases. )e
concept of H-basis for ideals of a polynomial ring over a field
K can be adopted in a natural way to K-subalgebras of a
polynomial ring. In [4], SH-basis (Subalgebra Analogue to
H-basis for Ideals) for the K-subalgebra of K[x1, . . . , xn] is
defined. )e properties of SH-bases are typically similar to
H-basis results [3]. Like H-bases, the concept of SH-basis is
also tied to homogeneous polynomials. In this paper, we will
present an analogue to H-bases for ideals in a given sub-
algebra of a polynomial ring, and we call them “HSG-bases.”

)e paper is organized as follows. In Section 2, we briefly
describe the underlying concept of grading which leads to
SAGBI-Gröbner bases and HSG-basis. )en, we give the
notion of si-reduction, which is one of the key ingredients
for the characterization and construction of HSG-basis.

After setting up the necessary notation, we present the
si-reduction algorithm (see Algorithm 1). Also, here we
present some properties characterizing HSG-basis ()eorem
1). In Section 3, we present a criterion through which we can
check that the given system of polynomials is an HSG-basis
of the subalgebra it generates ()eorem 2), and further on
the basis of this theorem, we present an algorithm for the
construction of HSG-basis (Algorithm 2).

2. HSG-Bases and SAGBI-Gröbner Bases

Here and in the following sections we consider polynomials
in n variables x1, . . . , xn with coefficients from a field K. For
short, we write

P ≔ K x1, . . . , xn . (1)

If G is a subset of subalgebraA inK[x1, . . . , xn], then the
set

I ≔ 
g∈G

hgg|hg ∈ A and only finitely many hg ≠ 0
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(2)
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is the ideal of A in P generated by G and we write it shortly as
〈G〉A. In this section, we want to introduce HSG-bases and
discuss some of their properties. )is concept is very similar to
the concept of SAGBI-Gröbner bases.)erefore, we will briefly
explain the underlying common structure. Let Γ denote an
ordered monoid, i.e., an abelian semigroup under an operation
+, equippedwith a total ordering > such that, for all α, β, c ∈ Γ,

α> β⇒α + c> β + c. (3)

A direct sum,

P � ⊕
c∈Γ

P(Γ)
c , (4)

is called grading (induced by Γ) or briefly a Γ-grading if for
all α, β ∈ Γ,

f ∈ P(Γ)
α , g ∈ P(Γ)

β ⇒f · g ∈ P(Γ)
α+β. (5)

Since the decomposition above is a direct sum, each
polynomial f≠ 0 has a unique representation.

f � 
s

i�1
fci

, 0≠fci
∈ P(Γ)

ci
. (6)

Assuming that c1 > c2 > · · · > cs, the Γ-homogeneous
term fc1

is called the maximal part of f, denoted by
M(Γ)(f): � fc1

, and f − M(Γ)(f) is called the d-reductum
of f. For G ⊂ A, M(Γ)(G): � M(Γ)(g)|g ∈ G .

)ere are two major examples of gradings. )e first one
is grading by degrees:

P(Γ)
d � p ∈ P|p is homogeneous of degreed , ∀d ∈ N.

(7)

Here, Γ � N with the natural total ordering.)is grading is
called the H-grading because of the homogeneous polyno-
mials.)erefore, we also writeH in place of this Γ.)e space of
all polynomials of degree at most d can now be written as

Pd ≔ ⊕
d
k�0P

(H)
k . (8)

)e maximal part of a polynomial f≠ 0 is its homo-
geneous form of highest degree, M(H)(f). For simplicity, let
M(H)(0): � 0.

Definition 1. A subset G � g1, . . . , gs  ⊂ A (subalgebra) is
called HSG-basis for the ideal IA ⊂ A, if for all 0≠f ∈ IA,

∃h1, . . . , hs ∈ A: f � 
s

i�1
higi, deg(f) � maxs

i�1 deg higi(   Note that this condition is not obvious, − x
3
y
3

+ x
4



� x
2

  x
3
y + x

2
  +(− xy) x

4
+ x

2
y
2

  see inK x
2
, xy ). (9)

)e representation for f in (9) is also called its HSG
representation with respect to G.

Note that HSG-basis for ideal in a subalgebra is also a
generating set of it. To obtain more insights into HSG-bases,

we will give some equivalent definitions. First, we need a
more technical notion.

Definition 2. For given f, f1, . . . , fm, we say that
f si− reduces to f with respect to F � f1, . . . , fm  in A if

Input: a subalgebra A, a finite subset G ⊂ A, and a polynomial f ∈ A.
Output: a polynomial h such that f⟶ GA,∗h.

(1) h: � f.
(2) While (h≠ 0 andGh � iaigi|M

(H)(iaigi) � M(H)(h) ≠∅); where ai ∈ A and gi ∈ G.

(3) Choose iaigi ∈ Gh.
(4) h: � h − iaigi and continue at 2.

ALGORITHM 1: Algorithm to compute si-reduction

Input: a subalgebra A and a finite subset G ⊂ A.
Output: HSG-basis H for 〈G〉A.

(1) H: � G, Old(H): � ∅.
(2) H � h1, . . . , hs .
(3)While (H≠ Old(H)) do
(4) Compute Q, an M(H)− generating set for syz(M(H)(H)).
(5) Compute P: � 

s
i�1qihi|(qi)

s
i�1 ∈ Q .

(6) Compute red(P): � final si− reduction viaH of every element of P  − 0{ }.
(7) Old(H): � H∪ red(P).

ALGORITHM 2: Algorithm for the construction of HSG basis.
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f � f − 
m

i�1
aifi, deg(f)< deg(f) (10)

holds with polynomials ai ∈ A satisfying deg(aifi)≤
deg(f). We write it as f⟶ FA

f. By ⟶ FA ,∗ we denote
the transitive closure of the binary relation ⟶ FA

1.

)e concept of si− reduction plays an important role in the
characterization and construction ofHSG-basis. Forf ∈ A and
G ⊂ A, the following algorithm computes h such that f

⟶ GA ,∗h (i.e., f reduces to h completely).
We note that such an element ai in the subalgebraA can

easily be determined as in the case of reduction in poly-
nomial ring. We also note that deg(h − iaigi) is strictly
smaller than the deg(h) (by the choice of iaigi ).)is shows
that Algorithm 1 always terminates.

Theorem 1. Let G � g1, . . . , gs  ⊂ A (subset of subalgebra
A) and IA be an ideal ofA. 9en, the following conditions are
equivalent:

(1) G is an HSG-basis for the ideal IA.
(2) 〈M(H)(g1) , . . . , M(H)(gs) 〉K[M(H)] � 〈M(H)(f)|

f ∈ IA〉K[M(H)].
(3) For all f ∈ I, f⟶ GA ,∗0.

Proof. (1)⇒(2). Let M(H)(p) ∈ 〈M(H)(f)|f ∈ IA〉 for
some p ∈ IA. Since G is an HSG-basis, by (9),
there are some h1, . . . , hs ∈ A so that

p � 
s
i�1 higi and M(H)(p) � M(H)(

s
i�1 higi) �

i∈JM(H)(hi)M
(H)(gi) ∈ 〈M(H)(g1, . . . , M(H)

(gs))〉, where J � i|deg(higi) � deg(p)}.
(2)⇒(3). Let 0≠f ∈ IA. By using Algorithm 1, we get
f⟶ FA

h1⟶ FA
h2 . . .⟶ FA

h, where h is
si− reduced any further with respect to F.
M(H)(f) ∈ 〈M(H)(g1), . . . , M(H)(gs)〉 implies
M(H)(f) � i∈JM(H)(hi)M

(H)(gi); then,
f⟶ GA

f � f −  higi ∈ IA. If we follow the above
process inductively, then f⟶ GA ,∗0.
(3)⇒(1). Let

f0⟶ GA
f1⟶ GA

. . .⟶ GA
fd � 0, (11)

where M(H)(fi− 1) � 
s
j�1 M(H)(hij)M

(H)(gj) , i � 1, 2, . . . ,

d, deg(fi− 1)> deg(fi). )en,

f � 
s

j�1


d

i�1
M

(H)
hij M

(H)
gj . (12)

Note that

deg(f) � deg f∘(  � deg 
s

j�1
M

(H)
h1j M

(H)
gj ⎛⎝ ⎞⎠,

(13)

and

deg 
s

j�1
M

(H)
hij M

(H)
gj ⎛⎝ ⎞⎠> deg 

s

j�1
M

(H)
hi+1,j M

(H)
gj ⎛⎝ ⎞⎠, i � 1, 2, . . . , d. (14)

Hence,

deg(f) � maxi deg 
s

j�1
M

(H)
hij M

(H)
gj ⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (15)

(11) and (15) give the HSG representation. □

)e second major example of gradings leads to the
SAGBI-Gröbner basis concept. Here, Γ � Nn with compo-
nent-wise addition equipped with a total ordering satisfying
(11). In addition, c≥ 0, ∀c ∈ Γ. For arbitrary c �

(c1, . . . , cn) ∈ Γ, the space P(Γ)
c is a vector space of dimension

1, namely,

P(Γ)
c � c · x

c1 . . . x
cn |c ∈ K . (16)

)emaximal part M(Γ)(f) of a polynomial f is a product
of a leading coefficient LC(f) and a leading monomial
LM(f), that is M(Γ)(f) � LC(f) · LM(f),

where LC(f) ∈ K. )e si-reduction f⟶ GA

f is defined if
there exists a polynomial g ∈ G and a ∈ A such that
LM(f) � LM(g)LM(a) and then we set

f: � (f − (M(Γ)(f))/(M(Γ)(g)M(Γ)(a))ag). )e relation
⟶ GA ,∗ is constructed as above.

A SAGBI-Gröbner basis G (with respect to a given
monomial ordering and a given ideal IA in a subalgebra A)
is a set of polynomials generating IA and satisfying one of
the following equivalent conditions:

(i) Every f ∈ IA has a representation:

f � 
s

i�1
higi,

LM(f) � maxs
i�1 LM hi( LM gi(  ,

(17)

where hi ∈ A and gi ∈ G.
(ii) 〈M(Γ)(g)|g ∈ G〉 � 〈M(Γ)(f)|f ∈ IA〉.
(iii) Every f ∈ IA si-reduces to 0 with respect to G.

)e proof of this equivalence and many other equivalent
conditions can be found in [5]. If a monomial ordering is
compatible with the semiordering by degrees,

deg x
c

( > deg x
β

 ⇒c> β, c, β ∈ Nn
, (18)
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then any SAGBI-Gröbner representation as given in (i) is an
HSG representation; in other words, a SAGBI-Gröbner basis
with respect to a degree compatible ordering is an HSG-basis
as well.)e converse is false, as the following example shows.

Example 1. Let f1 � x4 + 2x2y2 + y4 − 1, f2 � x2y2 +

y4 − 2, f3 � 2x2 + y2. )ese polynomials belong to the sub-
algebra A � Q[x2, y2]. )en, we can see that f1, f2, and f3
already constitute an HSG-basis for ideal IA � 〈f1, f2, f3〉 in
A. If we order the monomials by degree lexicographical or-
dering, then 〈M(H)(f)|f ∈ IA〉Q[M(H)(A)] � 〈x4, x2y2,

x2〉Q[M(H)(A)]. Every SAGBI-Gröbner basis G with respect to
this ordering contains at least four elements, for instance, G �

g1, g2, g2, g4  with g1 � x4 + 2x2y2 + y4 − 1 � f1, g2 �

x2y2 + y4 − 2 � f2, g3 � 2x2 + y2 � f3, and g4 � y4 − 4.
Obviously, this SAGBI-Gröbner basis is an HSG-basis as well.

3. Construction of HSG-Bases

In this section, we present an HSG-basis criterion, through
which we can construct HSG-basis. For this purpose, we fix
some notations which are necessary for this construction.
Let A be a K− subalgebra of K[x1, . . . , xn].

(i) We denote A⊕ . . .⊕A(s − times) by ⊕
S
A.

(ii) For a subset G⊆A, we denote M(H)(gi)|gi ∈ G  by
M(H)(G).

Definition 3. For K− subalgebra A of K[x1, . . . , xn] and a
subset G � g1, . . . , gs ⊆A,

(1) syzA(G) � a
→

� (ai)
s
i�1 ∈ ⊕SA| 

s
i�1 aigi � 0 . We

call an element of syzA(G) an A− syzygy of G.
(2) For a

→
� (ai)

s
i�1 ∈ ⊕SA, let M(H)( a

→
) represent the

vector (M(H)(ai)
s
i�1).

Definition 4. We call a subset Q � q1
→

, q2
→

, . . . , qm
�→

  a
M(H)-generating set for syz(M(H)(G)) if
M(H)(qi

→
)|1≤ i≤m  generates the K[M(H)(A)]-module

syz[M(H)(G)], i.e., for a
→ ∈ syz[M(H)(G)], there are some

h1, h2, . . . hm ∈MH(A) such that

M
(H)

ai( 
s

i�1 � 
m

j�1
M

(H)
hj M

(H)
qij 

s

i�1. (19)

In the case of SAGBI-Gröbner bases, there is an algo-
rithm for computing SAGBI-Gröbner bases by means of
syzygies (see [6]) where syzygies and their connection to
SAGBI-Gröbner bases are studied in detail. )e analogue for
constructing HSG-bases by means of syzygies is connected
to the following result [7].

Theorem 2 (HSG-basis criterion). Let G � g1, . . . , gs  be
the subset of a subalgebra A. Let Q be M(H)− generating set
for the syz(M(H)(G)). 9en, G is an HSG-basis for 〈G〉A if
and only if for every qj

→
� (qj,1, . . . , qj,s) ∈ Q, we have


s
i�1 qj,igi⟶ GA,∗

0.

Proof. ⇒: )e statement is a direct result of )eorem 1.
⇐: Take f ∈ 〈G〉A. We need to show that
M(H)(f) ∈ 〈M(H)(G)〉K[M(H)(A)]. For this, we write
f � 

m
i�1 aigi such that p0 � max[M(H)(aigi)] (degree

wise) is minimal among all such representations of f.
We have M(H)(f)≤p0. Suppose that M(H)(f)<p0.
Assume that a1g1, . . . , am0

gm0
are contributing to p0,

i.e., M(H)(aigi) � p0 for all 1≤ i≤m0. If we set
a
→

� (a1, . . . , am0
, 0, . . . , 0), we can see that

M(H)( a
→

) ∈ syz(M(H)(G)). )is implies that there are
b1, . . . , bn ∈ A and Q1

�→
, . . . , Qn

�→
∈ Q

→
such that

M(H)( a
→

) � 
n
j�1 M(H)(bj)M

(H)(Qj

�→
). We may as-

sume that M(H)(bj)M
(H)(qj,i)M

(H)(gi) � p0 for each
j by homogeneity of the syzygies. Now,

f � 
m

i�1
aigi − 

m

i�1


n

j�1
bjqj,i

⎛⎝ ⎞⎠gi + 
n

j�1
bj 

m

i�1
qj,igi

⎛⎝ ⎞⎠

� 
m

i�1
ai − 

n

j�1
bjqj,i

⎛⎝ ⎞⎠gi + 
n

j�1
bj 

m

i�1
pj,igi

⎛⎝ ⎞⎠,

(20)

where 
m
i�1 pj,igi is an HSG representation for 

m
i�1 qj,igi

since 
m
i�1 qj,igi⟶ G0. If we define Hj � max (M(H)(pj,i

gi)), then

Hj � M
(H)

 qj,igi <max M
(H)

qj,igi  , for all j,

(21)

because M(H)(Qj

�→
) ∈ syz(M(H)(G)).

Consider the first sum of equation (20). For i≤m0, we
have M(H)(ai) � M(H)(

n
j�1 bjqj,i), so by the cancellation of

highest terms,

M
(H)

ai − 
n

j�1
bjqj,i

⎛⎝ ⎞⎠gi
⎡⎢⎢⎣ ⎤⎥⎥⎦<M

(H)
aigi(  � p0. (22)

For i>m0, M(H)(aigi)<p0 and


n
j�1 M(H)(bj)M

(H)(qj,i) � 0 implies that

M
(H)



n

j�1
bjqj,igi

⎛⎝ ⎞⎠<maxj M
(H)

bjqj,igi   � p0. (23)

Since

M
(H)

ai − 
n

j�1
bjqj,i

⎛⎝ ⎞⎠gi
⎡⎢⎢⎣ ⎤⎥⎥⎦≤max M

(H)
aigi( , M

(H)


n

j�1
biqj,igi

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
<p0(∀i). (24)
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So, first sum of equation (20) is less than p0. For the
second sum of equation (20), we have

M
(H)



n

j�1
bj 

m

i�1
pj,igi

⎛⎝ ⎞⎠≤maxi,jM
(H)

bjpj,igi 

≤maxj M
(H)

bj Hj 

<maxi,j M
(H)

bjqj,igi   � p0.

(25)

Hence, equation (20) does provide a new representation
for f such that max(M(H)(aigi))<p0, a contradiction.
)erefore, M(H)(f) � p0 and M(H)(f) �


m0
i�1 M(H)(aigi) ∈ 〈M(H)(G)〉. □

On the basis of )eorem 2, now we present an algorithm
which computes HSG-basis from a given set of generators.
)is algorithm is not necessarily terminating but does ter-
minate, if and only if, the considered ideal in the subalgebra
has a finite HSG-basis.

Now we present some examples which show the com-
putation of HSG-basis through Algorithm 2.

Example 2. Let the subalgebra A � Q[x2, xy] and
G � x3y + x2, xy + 2 ⊆A. Consider H � G; then,
M(H)(H) � x3y, xy .

First pass through the while loop:

(i) M(H)(q1)(x3y) + M(H)(q2)(xy) � 0 implies
Q � (− 1, x2) . )en, (− 1)(x3y + x2) + (x2)(xy +

2) � − x3y − x2 + x3y + 2x2 � x2 gives P � x2 .
(ii) As x2 is si-reduced with respect to H,

red(P) � x2 .
(iii) Define: Old(H) � H∪ x2 .

As H≠ Old(H), we repeat the whole process. Now
we have M(H)(H) � x3y, xy, x2 .

Second pass through the while loop:

(i) M(H)(q1)(x3y) + M(H)(q2)(xy) + M(H)(q3) (x2)

� 0 implies (− 1)(x3y) + (0)(xy) +(xy)(x2) � 0.
)erefore, Q � (− 1, x2, 0), (− 1, 0, xy)}. )en,
(− 1)(x3y + x2)+ (0)(xy + 2) + (xy) (x2) � − x3

y − x2 + 0 +x3 y � − x2 gives P � x2, − x2 .
(ii) Now, red(P) � ∅.

Since Old(H) � H, we stop here. )e HSG-basis for
〈G〉A is x3y + x2, xy + 2, x2 .

Example 3. Let A � Q[x2, xy] and G � x3y + x2y2 + x2,

xy + 2}⊆A. Consider H � G; then, M(H)(H) � x3y +

x2y2, xy}.

First pass through the while loop:

(i) M(H)(q1)(x3y + x2y2) + M(H)(q2)(xy) � 0 gives
Q � (− 1, x2 + xy) . )en, from (− 1)(x

3
y +

x
2
y
2

+ x
2
) + (x

2
+ xy)(xy + 2) � − x

3
y −

x
2
y
2

− x
2

+ x
3

y + x
2

y
2

+ 2x
2

+ 2xy � x
2

+ 2xy,
(ii) red(P) � x2 − 4 .
(iii) Define: Old(H) � H∪ x2 − 4 .

As H≠ Old(H), we repeat the whole process. Now we
have M(H)(H) � x3y + x2y2, xy, x2 .

Second pass through the while loop:

(i) From the equation M(H)(q1) (x3y + x2y2) + M(H)

(q2)(xy) + M(H)(q3)(x2) � 0, we have Q � (− 1,{

xy, xy), (− 1, x2 + xy, 0)}. We can compute P

from (− 1)(x
3
y+x

2
y
2
+x

2
)+(xy)(xy+2)+(xy)

(x
2
− 4) � − x

3
y − x

2
y
2
− x

2
+x

2
y
2
+2xy+x

3
y− 4xy

� − x
2
− 2xy.

(ii) Now, red(P) � ∅.

Since Old(H) � H, we stop here. )e HSG-basis for
〈G〉A is x3y + x2y2 + x2, xy + 2, x2 − 4 .

4. Conclusion

In this paper, we presented the theory of HSG-bases, which
are a good basis of an ideal in a subalgebra of a polynomial
ring. We can further develop this theory for an arbitrary
grading for which HSG-bases would be a special case for
degree-based grading.
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