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-e segmentation of weak boundary is still a difficult problem, especially sensitive to noise, which leads to the failure of
segmentation. Based on the previous works, by adding the boundary indicator function with L2,1 norm, a new convergent
variational model is proposed. A novel strategy for the weak boundary image is presented. -e existence of the minimizer for our
model is given, by using the alternating direction method of multipliers (ADMMs) to solve the model. -e experiments show that
our new method is robust in segmentation of objects in a range of images with noise, low contrast, and direction.

1. Introduction

Image segmentation [1–6] is the process of separating ob-
jects of interest from each other or backwards to find
boundaries of objects. It has become increasingly important
in the last decade, due to being a fast-expanding field of
applications in image analysis and computer vision. Not
only that, it is a fundamental problem in the field of
computer vision, because recognition and reconstruction
often rely on this information [7, 8]. -ere are many cir-
cumstances affecting the segmentation results such as the
noise, weak edge, and directional texture information, and
these effects lead the segmentation problem to be a typical
structural ill-posed problem. Many approaches exist to deal
with this problem including histogram analysis, region
growth, and edge detection [9, 10]. Up to now, although
there are many existing segmentationmethods, they still lack
the universality. Over the last decade, researchers are con-
stantly exploring new segmentation methods to make image
segmentation results as good as possible and variational
methods and partial differential equation (PDE) base
techniques have been introduced to image segmentation. In
this paper, we present a classical method of variation for
these problems. Specially, these methods are divided into

three methods: threshold-based segmentation [11–13], re-
gion-based segmentation [8, 14], and edge-based segmen-
tation [7, 15, 16]. Here, we mainly consider the region-based
method and edge-based method, which are uniformed with
the most common segmentation method.

-e edge-based models such as the GAC model [15–18]
mainly utilize the gradient information to direct the con-
tours toward the boundaries of desired objects and then
obtain the segmentation image. -erefore, these classes of
models are very sensitive to the noise and also show difficulty
to detect the weak boundaries. -at is to say, when there is
strong noise in the image, the boundary between the target
and the background must not be obvious enough and the
segmentation will fail. In order to overcome this drawback,
one way to process a noisy image is by adding a smoothing
step prior to segmentation, but doing this also smooths
image edges. Moreover, the segmentation result generated
by these models is highly dependent on the initial contour
placement due to the nonconvexity of the proposed model.
For the region-based models [8, 14], they mainly incorporate
region information so that the image within each region has
uniform characteristics such as intensities and textures.
-en, these models are more suitable for segmentation of the
image with weak boundaries or noise. Furthermore, they are
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also less sensitive to the location of the initial contour. -e
well-known Mumford–Shah (MS) variational model [7] can
achieve both goals simultaneously by using a piecewise
smooth representation of an image [19, 20] and separate
different regions by using a set of close contours (curves in
2D and surfaces in 3D). However, due to an unknown set of

boundaries and its nonconvexity, the numerical experiment
of this model has made very hard. With the assumptions of
the segmentation regions to be piecewise constant, the
Mumford–Shah model can be simplified as the Chan–Vese
(CV) model [8, 21, 22]:

min
c1 ,c2 ,Γ

λ1􏽚
inside(C)

I0 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx + λ2􏽚

outside(C)
I0 − c2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx + ] · length(Γ), (1)

where ], λ1, and λ2 are positive parameters, c1 and c2 are the
intensity averages of the original image I0 inside and outside
the contour Γ, respectively, dx is the region element, and the
term of length is to regularize the contour C. Original CV
model (1) only considers to segment two phases as the
foreground and the background and then it extends to the
multiphase image segmentation problem [23]. Obviously,
the CV model can generally get satisfactory results for the
images with intensity homogeneity. Simultaneously, the
level set method was also proposed to solve problem (1) in
[8]. However, due to the nonconvexity of problem (1), we
only get the local minima which may lead to wrong levels of
detail and scale and then show the sensitivity to the
placement of initial contour. Hence, some global minimi-
zation active contour models had been proposed to avoid
this problem for obtaining the segmentation regions when
fixing intensity averages c1 and c2. Chan et al. [14] proposed
a convex relaxation method of the CV model. Bresson et al.
[24] further established theorems to determine the existence
of global minimization of the active contour/snake model.
Wang et al. [25] proposed a novel global minimization
hybrid active contour model. By designing a convex energy

functional and the dual algorithm, Xu et al. [26] proposed a
global and local active contour model.

Motivated by the Euler–Lagrange equation of problem
(1) by introducing the level set function, Chan et al. [14]
transformed to consider the following global segmentation
model as

min
0≤u≤1

􏽚
Ω

|∇u|dx
􏽼√√√√􏽻􏽺√√√√􏽽
≔ TV(u)

+λ􏽚
Ω

I0 − c1( 􏼁
2

− I0 − c2( 􏼁
2

􏼐 􏼑udx,
(2)

where λ is an arbitrary positive parameter, Ω ⊂ RN is an
open set representing the image domain, and TV(u) is the
total variation norm of the function u. Although the model
has the ability of global segmentation, the segmentation for
gray-scale inhomogeneous images is invalid. Later, a large
number of scholars made a number of improvements to the
model, but there are still some problems in the segmentation
of image gray-scale unevenness. Recently, Bresson et al. [24]
proposed to determine a global minimum of the snake
model by enhancing model (2). -e enhancement is realized
by unifying it with the classic GAC model [27], and then,
they considered the following model:

min
u∈[0,1]

􏽚
Ω

g(x)|∇u|dx
􏽼√√√√√√􏽻􏽺√√√√√√􏽽
≔ TVg( 􏼁(u)

+λ􏽚
Ω

I0 − c1( 􏼁
2

− I0 − c2( 􏼁
2

􏼐 􏼑udx

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (3)

where g(x) is the edge indicator function as defined in the
above. Obviously, compared with model (2), model (3)
segments the image more robustly due to the term g(x). In
order to calculate the problem easily, similar to the case in

[28], Bresson et al. [24] transform the above constraint
problem into an unconstrained problem at-eorem 3, and it
needs to compute the minimization of the function:

E c1, c2, u( 􏼁 � 􏽚
Ω

g(x)|∇u|dx + λ􏽚
Ω

I0 − c1( 􏼁
2

− I0 − c2( 􏼁
2

􏼐 􏼑u + α](u)dx, (4)

where ](ξ) ≔ max 0, 2|ξ − (1/2)| − 1{ } is an exact penalty
function provided that the constant α is chosen large
enough compared to λ such as
α> (λ/2)‖(I0 − c1)

2 − (I0 − c2)
2‖L∞(Ω). Because problem

(4) is unconstrained, it includes a nonsmoothing term

and a nonlinear term which lead to numerical difficulties
by directly employing numerical methods. One efficient
method is to introduce a constrained variable v ≔ u and
then get the following form based on the penalty
method:
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E c1, c2, u, v( 􏼁 � 􏽚
Ω

g(x)|∇u|dx +
1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
I0 − c1( 􏼁

2
− I0 − c2( 􏼁

2
􏼐 􏼑v + α](v)dx, (5)

where θ> 0 is the penalty parameter. Furthermore, in order
to overcome numerical difficulties generated by the L1-norm
term, an alternative minimization scheme was introduced by
adding some auxiliary variables in [24]. However, the
convergence analysis of this scheme is lost.

In this section, based on (5), let Ω ∈ Rn be a bounded
open set with Lipschitz boundary and u be a given image.We
propose a new model based on Bresson’s method [24] as
follows:

E c1, c2, u, v( 􏼁 � 􏽚
Ω

‖G∇u‖2,1dx +
1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
I0 − c1( 􏼁

2
− I0 − c2( 􏼁

2
􏼐 􏼑v + α](v)dx􏼚 􏼛, (6)

where I0, c1, and c2 are defined in (1) and ](v) is defined in
(4). Also,

G �
gx 0

0 gy

⎛⎝ ⎞⎠,

‖ξ‖2,1 �

�����������

ξx( 􏼁
2

+ ξy􏼐 􏼑
2

􏽲

,

∇g � gx, gy􏼐 􏼑.

(7)

-e minimizing energy function E(c1, c2, u, v) is as
follows:

min
c1 ,c2 ,u,v

E c1, c2, u, v( 􏼁. (8)

Our novel contribution is to put an edge indication function
into the L2,1 norm, and a novel strategy for the image with
weak boundaries is present. -e existence of the minimizer
for (8) is given as follows.

-e alterative scheme to solve the minimizer model (8) is
as follows:

(1) Choose the original value for c01, c02, u0, and v0, and
set n ≔ 0.

(2) When the stop criterion is not satisfied, compute the
following iteration:

argmin
c1

λ􏽚
Ω

I0 − c1( 􏼁
2
vdx,

argmin
c2

λ􏽚
Ω

− I0 − c2( 􏼁
2
vdx,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

argmin
u

‖G∇u‖
2
2 +

1
2θ

u − v
n− 1����

����
2
2,

argmin
v

1
2θ

u
n

− v
����

����
2
2 + λ􏽚

Ω
r1 x, c1, c2( 􏼁v + αv(v)dx.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

-e rest of this paper is organized as follows: In
Section 2, the general framework of the proposed method

and the concrete solution to each subproblem are pre-
sented. In Section 3, numerical algorithm and experi-
mental results to illustrate the effectiveness of our model
in image segmentation are given. Finally, we conclude the
paper in Section 4.

2. The Weighted Chan–Vese Model

In this section, we mainly show the related definitions and
properties and solve every subproblem in model (8).

2.1. BasicNotations. Without loss of generality, we present a
gray image as an N × N matrix, that is,
Ω � 1, 2, . . . , N{ } × 1, 2, . . . , N{ }. -e Euclidean space RN×N

is denoted as W, let H: W × W, and we define the gradient
operator ∇: W⟶ H, for ∀ v ∈W, where ∇v denotes the
gradient operator in the discrete context.

‖u‖2,1 � 􏽘
N

i�1
􏽘

N

j�1
ui,j􏼐 􏼑

2⎛⎝ ⎞⎠

(1/2)

,

‖u‖2 � 􏽘
N

i�1
􏽘

N

j�1
ui,j􏼐 􏼑

2⎛⎝ ⎞⎠

(1/2)

.

(10)

Let X � RN×N be a finite-dimensional vector space
equipped with a standard scalar product for u, v ∈ X:

〈u, v〉X � 􏽚
Ω

uvdx,

〈v, v〉X � ‖v‖2,1.

(11)

For discretization of the gradient operator ∇u, we use
standard the finite difference operators with periodic
boundary condition as follows:

(∇u)i,j �
∇+

xu( 􏼁i,j

∇+
yu􏼐 􏼑

i,j

⎛⎜⎝ ⎞⎟⎠, (12)

where
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∇+
xu( 􏼁i,j �

ui+1,j − ui,j, if 1≤ i<N, 1≤ j≤N,

u1,j − ui,j, if i � N, 1≤ j≤N,

⎧⎨

⎩

∇+
yu􏼐 􏼑

i,j
�

ui,j+1 − ui,j, if 1≤ i≤N, 1≤ j<N,

ui,1 − ui,j, if 1≤ i≤N, j � N,

⎧⎨

⎩

∇−
xu( 􏼁i,j �

ui,j − ui− 1,j, if 1< i≤N, 1≤ j≤N,

ui,j − uN,j, if i � 1, 1≤ j≤N,

⎧⎨

⎩

∇−
yu􏼐 􏼑

i,j
�

ui,j+1 − ui,j, if 1≤ i≤N, 1< j≤N,

ui,j − ui,N, if 1≤ i≤N, j � 1.

⎧⎨

⎩

(13)

Furthermore, we define the discrete divergence operator
div p: H⟶W by using the divergence theorem [27].

〈∇u, p〉H � − 〈u, div p〉W, (14)

for ∀ u ∈ RN×N, where p ∈ RN×N × RN×N and div denotes
the adjoint operator of ∇; then, we have

div pi,j � ∇−
xp( 􏼁i,j + ∇−

yp􏼐 􏼑
i,j

,

∇ui,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

������������������

∇+
x( 􏼁i,j􏼐 􏼑

2
+ ∇+

y􏼐 􏼑
i,j

􏼒 􏼓
2

􏽳

.

(15)

2.2. ,e Minimization Problem. In this section, we first
review some definitions and facts which will be used in our
convergence analysis Algorithm 1. -ese related contents
can be found in the books [29, 30]. We use ADMM to solve
every subproblem.

2.2.1. Energy Minimization with respect to c1 and c2. We
fixed u and v in order to determine an exact solution of c1
and c2; then, the minimization of E(c1, c2, u, v) with respect
to c1 and c2 is as follows:

argmin
c1

λ􏽚
Ω

I0 − c1( 􏼁
2
vdx,

argmin
c2

λ􏽚
Ω

− I0 − c2( 􏼁
2
vdx.

(16)

-en, we can obtain

c1 � c2 �
􏽒 I0

􏽒 I
. (17)

2.2.2. Energy Minimization with respect to u and v. For any
given c1 and c2, we have the problem

argmin
u,v

≔ 􏽚
Ω

‖G∇u‖2,1dx +
1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
I0 − c1( 􏼁

2
− I0 − c2( 􏼁

2
􏼐 􏼑v + α](v)dx􏼚 􏼛. (18)

Problem (18) is convex and is not strictly convex about u

and v, so its local minimizer is also the global minimizer.
One of the effective methods is to change it into an un-
constrained minimization problem according to the theo-
rems in [14, 24].

Obviously, it is easy to find that the objective function in
problem (18) is strictly convex and coercive, so it owns a
unique solution (u∗, v∗). Formally, problem (18) including
two variables u and v as a coupled problem, and the classical
method is to divide it into two subproblems. -us, we
alteratively consider the following minimization problem:

S(v) ≔ u � min
u

‖G∇u‖
2
2 +

1
2θ

‖u − v‖
2
2, (19)

T(u) ≔ v � min
v

1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
I0 − c1( 􏼁

2
− I0 − c2( 􏼁

2
􏼐 􏼑v + αv(v)dx. (20)

Theorem 1. ,e following assertions hold:

(1) ,e solution of problem (19) is given by

u � v − PθS(v), (21)

where P is the project operator and S is defined by

S � closure divξ(x): ξ(x) ∈ C
1
c Ω, R

2
􏼐 􏼑, |ξ(x)|≤g(x), ∀x ∈ Ω􏽮 􏽯. (22)

(2) ,e solution of problem (17) satisfies
v � min max u − θλr1 x, c1, c2( 􏼁, 0􏼈 􏼉, 1􏼈 􏼉, (23)
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where r1(x, c1, c2) � (I0 − c1)
2 − (I0 − c2)

2.

Remark 1. Obviously, problem (19) is a generated ROF
model by adding a weighted function g(x) to the regula-
rization term and so we can get the solution based on the
scheme in [27,31,32]. For problem (20), it is similar to what
happens in [28] for this circumstance; we notice that it is
equivalent to the following minimization problem:

min
v

1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
r1 x, c1, c2( 􏼁u + δC(v)dx, (24)

where δ is the indicator function defined by

δ(x) �
0, if x ∈ C,

+∞, if x ∉ C,
􏼨 (25)

with C � [0, 1]. -us, we can easily find that the solution of
problem (20) satisfies condition (23).

Definition 1. -e proximal operator of a proper, convex,
semicontinuous function φ on Rn is defined for x ∈ Rn by

proxcφ∘Bx ≔ argmin
y∈Rn

1
2c

‖y − x‖
2
2 + φ(By)􏼨 􏼩, (26)

where B: Rn⟶ Rn is a bounded linear operator. Fur-
thermore, when B � I, it is the classical proximal operator
defined in [33].

Definition 2. Let φ be a real-value convex function on Rn.
-e subdifferential of φ at x ∈ Rn is defined by

zφ(x) ≔ y: y ∈ R
n andφ(z)≥φ(x) +(y, z − x)∀ z ∈ R

n
􏼈 􏼉.

(27)

-e elements in zφ(x) are called subgradients. Espe-
cially, zφ(x) � ∇φ(x) when φ(x) is differential.

Definition 3. An operator Q: Rn⟶ Rn is firmly non-
expansive if it satisfies one of the following equivalent
conditions:

(i) ‖Qx − Qy‖22 ≤ (Qx − Qy, x − y),∀ (x, y) ∈ Rn × Rn

(ii) ‖Qx − Qy‖22 ≤ ‖x − y‖22 − ‖(I − Q)x − (I − Q)y‖22,

∀ (x, y) ∈ Rn × Rn

Definition 4. An operator Q: Rn⟶ Rn is nonexpansive if
for any (x, y) ∈ Rn × Rn, we have

‖Qx − Qy‖2 ≤ ‖x − y‖2. (28)

It follows that a firmly nonexpansive operator P is
nonexpansive. Based on the proof of the proximal operator
in [34], we obtain the similar result of the proximal operator
defined in Definition 1.

Lemma 1. ,e proximal operator proxcφ∘B defined in Defi-
nition 1 is firmly nonexpansive.

Proof. Following the definition of the proximity in Defi-
nition 1 and the chain rule, we can get

φ B ∘ proxcφ∘By􏼐 􏼑 − φ B ∘ proxcφ∘Bx􏼐 􏼑≥
1
c

x − proxcφ∘Bx, proxcφ∘By − proxcφ∘Bx􏼐 􏼑,

φ B ∘ proxcφ∘Bx􏼐 􏼑 − φ B ∘ proxcφ∘By􏼐 􏼑≥
1
c

y − proxcφ∘By, proxcφ∘Bx − proxcφ∘By􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

We obtain

proxcφ∘Bx − proxcφ∘By
�����

�����
2

2
≤ proxcφ∘Bx − proxcφ∘By, x − y􏼐 􏼑,

(30)

which implies the nonexpansion of the operator
proxcφ∘B. □

Corollary 1. ,e operator S defined in minimization
problem (19) is nonexpansive.

Proof. Based on above definitions, set B � g(x)|∇u|; then,
the operator T is the proximal operator of 􏽒Ωg(x)|∇u|dx.
Furthermore, we can getS � pro|·|L1 ∘B

. According to Lemma
1, the operator S is nonexpansive. □

(1)Choose the original value u0 and v0, and set n ≔ 0.
(2) While the stop criterion is not satisfied, compute the following iteration:

argminu‖G∇u‖
2
2 + (1/2θ)‖u − v

n− 1
‖
2
2

argminv(1/2θ)‖u
n

− v‖
2
2 + λ􏽚

Ω
r1(x, c1, c2)v + αv(v)dx

⎧⎪⎨

⎪⎩

ALGORITHM 1: -e alterative scheme to solve the minimizer models (19) and (20).
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Lemma 2. Assume that C ⊂ Rn is a closed convex set and
PC(·): Rn⟶ C is a projection operator; then, the projector
PC(·) is firmly nonexpansive.

Proof. Let x ∈ Rn and ∀y ∈ C; we have

y − PC(x), x − PC(x)( 􏼁≤ 0. (31)

Since PC(y) � y while y ∈ C, we can get

PC(y) − PC(x), x − y + PC(y) − PC(x)( 􏼁≤ 0. (32)

-is yields

PC(x) − PC(y)
����

����
2
2 ≤ x − y,PC(x) − PC(y)( 􏼁≤ 0.

(33)

□

Corollary 2. ,e operator T defined in minimization
problem (20) is firmly nonexpansive.

Proof. Obviously, from-eorem 1 and Remark 1, we derive
that

T(u) ≔ v � P[0,1] u − θλr1 x, c1, c2( 􏼁( 􏼁. (34)

It follows from Lemma 2 that T is firmly
nonexpansive. □

In view of the above results, we know that
R1(·) � S(T(·)) and R2(·) � T(S(·)) are firmly
nonexpansive.

Lemma 3. Let u(k) and v(k) be generated by (2) and (3),
respectively. ,en, 􏽐

∞
k�0 ‖u(k) − u(k+1)‖

2
L2 and 􏽐

∞
k�0 ‖v(k) −

v(k+1)‖2L2 are convergent.

Proof. Denote E1(u, v) � ‖u − v‖2L2 and E2(v) � ‖∇xv‖L1 +

‖∇yv‖L1. We have

E(u, v) � 􏽚
Ω

u + ge
− u

( 􏼁dxdy + β1E1(u, v) + β2E2(v).

(35)

Hence,

E u
(k+1)

, v
(k)

􏼐 􏼑 − E u
(k+1)

, v
(k+1)

􏼐 􏼑 � β1 E1 u
(k+1)

, v
(k)

􏼐 􏼑 − E1 u
(k+1)

, v
(k+1)

􏼐 􏼑􏼐 􏼑 + β2 E2 v
(k)

􏼐 􏼑 − E2 v
(k+1)

􏼐 􏼑􏼐 􏼑. (36)

Consider the Taylor series expansion of E1(u, v) in the
second variable, i.e.,

E1 u
(k+1)

, v
(k)

􏼐 􏼑 � E1 u
(k+1)

, v
(k+1)

􏼐 􏼑 + v
(k)

− v
(k+1)

􏼐 􏼑
TzE1

zv
u

(k+1)
, v

(k+1)
􏼐 􏼑

+
1
2

v
(k)

− v
(k+1)

􏼐 􏼑
Tz

2
E1

zv
2 u

(k+1)
, v

(k+1)
􏼐 􏼑 v

(k)
− v

(k+1)
􏼐 􏼑.

(37)

Here, xT denotes the transpose of x. We notice that E1 is
quadratic about v. -en, (z2E1/zv2) ≡ 2I where I is the
identity matrix. Moreover, since E2 is a convex function, we
get

E2 v
(k)

􏼐 􏼑≥E2 v
(k+1)

􏼐 􏼑 + v
(k)

− v
(k+1)

􏼐 􏼑
TzE2

zv
v

(k+1)
􏼐 􏼑. (38)

Combining (36), (37), and (38), we obtain

E u
(k+1)

, v
(k)

􏼐 􏼑 − E u
(k+1)

, v
(k+1)

􏼐 􏼑≥ u
(k)

− u
(k+1)

􏼐 􏼑
T

β1
zE1

zv
u

(k+1)
, v

(k+1)
􏼐 􏼑􏼠

+ β2
zE2

zv
v

(k+1)
􏼐 􏼑􏼡 + β1 v

(k)
− v

(k+1)
�����

�����
2

L2 .

(39)

-e subdifferential of E with respect to v is equivalent to
the vector sum of the subdifferential of E1 and E2 about v,
i.e.,

zE

zv
� β1

zE1

zv
+ β2

zE2

zv
. (40)

Since v(k+1) is the minimizer of E(u(k+1), v), we have
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zE

zv
u

(k+1)
, v

(k+1)
􏼐 􏼑 � 0, (41)

that is

β1
zE1

zv
u

(k+1)
, v

(k+1)
􏼐 􏼑 + β2

zE2

zv
z

(k+1)
, v

(k+1)
􏼐 􏼑 � 0. (42)

-erefore, the first term in the right hand side of (39) is
zero. When we solve successive minimization problems (19)
and (20), we note that E(u(k), v(k))≥E(u(k+1), v(k)). Hence,
we get

E u
(k)

, v
(k)

􏼐 􏼑 − E u
(k+1)

, v
(k+1)

􏼐 􏼑≥E u
(k+1)

, v
(k)

􏼐 􏼑 − E u
(k+1)

, v
(k+1)

􏼐 􏼑≥ β1 v
(k)

− v
(k+1)

�����

�����
2

L2 . (43)

It follows that the partial sum of the sequence

‖v(k) − v(k+1)‖
2
L2􏼚 􏼛
∞

k�0
is bounded. -us, the infinite series

􏽐
∞
k�0 ‖v(k) − v(k+1)‖

2
L2 is convergent.

Let E3(u) � 􏽒Ω(u + ge− u)dxdy. By considering
E(u(k), v(k)) − E(u(k+1), v(k)) and using the similar method,
we can prove that 􏽐

∞
k�0 ‖u(k) − u(k+1)‖

2
L2 is convergent. □

Definition 5. A operator P: Rn⟶ Rn is asymptotically
regular if for any x in Rn, the sequence Pk+1x − Pkx􏽮 􏽯 tends
to zero as k⟶∞.

Based on Lemma 3, we get the following result.

Lemma 4. For any initial values v(0) and u(0), assume u(k)

and v(k) are generated by (19) and (20), respectively; then,T1
and T2 are asymptotically regular.

Proof. According to Lemma 3, we obtain

lim
k⟶∞

v
(k)

− v
(k+1)

�����

�����
2

L2 � 0,

lim
k⟶∞

u
(k)

− u
(k+1)

�����

�����
2

L2 � 0.

(44)

As v(k) � T1(v(k− 1)) and u(k) � T2(u(k− 1)), by using the
recurrence method, we have

v
(k)

� T
k
1 v

(0)
􏼐 􏼑,

u
(k)

� T
k
2 u

(0)
􏼐 􏼑.

(45)

-erefore, we get

lim
k⟶∞

T
k+1
1 v

(0)
􏼐 􏼑 − T

k
1 v

(0)
􏼐 􏼑

�����

�����L2 � 0,

lim
k⟶∞

T
k+1
2 u

(0)
􏼐 􏼑 − T

k
2 u

(0)
􏼐 􏼑

�����

�����L2 � 0.
(46)

-is indicates that T1 and T2 are asymptotically
regular. □

Lemma 5. Suppose the unique minimizer of E(u, v) is
(u∗, v∗). ,en, u∗ and v∗ are the unique fixed points of T2
and T1, respectively.

Proof. Since E(u, v) is differentiable with respect to u and v

separately, we obtain

zE

zu
u
∗
, v
∗

( 􏼁

zE

zv
u
∗
, v
∗

( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0

0
⎛⎝ ⎞⎠. (47)

-is implies that

u
∗

� R v
∗

( 􏼁 � argmin
u

E u, v
∗

( 􏼁,

v
∗

� S u
∗

( 􏼁 � argmin
v

E u
∗
, v( 􏼁.

(48)

We easily get u∗ � R(v∗) � T2(u∗) and
v∗ � S(u∗) � T1(v∗). -erefore, u∗ and v∗ are the corre-
sponding fixed points of T1 and T2. □

On the other hand, we note that E(u, v) is strictly convex
and differentiable about u and v, respectively. -erefore, the
fixed points ofT1 andT2 are the minimizers of E(u, v). By
virtue of the uniqueness of the minimizer of E(u, v),T1 and
T2 show a unique fixed point separately. -at is to say, that
u∗ and v∗ are the unique fixed points of T2 and T1,
respectively.

According to -eorem 1 in [7], we get the following
result.

Theorem 2. ,e sequence (un, vn){ } generated by Algo-
rithm 1 converges to the solution (u∗, v∗) of problems (19) and
(20).

Proof. We should first notice the fact that

v
n

� min
v

F u
n− 1

, v􏼐 􏼑

u
n

� min
u

F u, v
n

( 􏼁,
(49)

so we can get

F u
n
, v

n
( 􏼁≤F u

n− 1
, v

n
􏼐 􏼑≤F u

n− 1
, v

n− 1
􏼐 􏼑. (50)

In particular, the sequence F(un, vn) is
nonincreasing. □
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Theorem 3. For any initial values v(0) and u(0), assume u(k)

and v(k) are generated by (2) and (3), respectively; then
u(k) and v(k) converge to the corresponding fixed points ofT2
and T1, i.e., (u(k), v(k)) converges to (u∗, v∗) which is the
unique minimizer of E(u, v), as k⟶∞.

Proof. In view of Lemmas 1–5, we know that
T1: Rn⟶ Rn andT2: Rn⟶ Rn are nonexpansive as-
ymptotically regular mappings and have fixed points. By
using -eorem 1 in [7], we get that u(k) and v(k) converge,

respectively, to the fixed points ofT2 andT1, i.e., (u(k), v(k))

converges to (u∗, v∗) which is the unique minimizer of
E(u, v), as k⟶∞. □

3. General Framework of the Proposed Model

Now, we discuss the solution to each variable separately;
without loss of generality, we use the ADMM method to
solve minimization problem (18).

u ≔ min
u

􏽚
Ω

‖G∇u‖2,1dx +
1
2θ

‖u − v‖
2
2, (51)

v ≔ min
v

1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
I0 − c1( 􏼁

2
− I0 − c2( 􏼁

2
􏼐 􏼑v + α](v)dx. (52)

-en, in the following sections, we obtain the solutions
to problems (51) and (52).

3.1. Algorithm for Solving (51). In this section, we solve
model (51) about u; because the model is not easy to solve,
we use ADMM to solve problem (51). We can take w � ∇u
and T � Gw in our model, and by introducing two variables,
we can obtain the following constrained problem:

min
u,w,T

􏽚
Ω

‖T‖2,1dx +
1
2θ

‖u − v‖
2
L2

s.t. w � ∇u,T � Gw,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(53)

where

w ≔
wx

wy

⎛⎝ ⎞⎠ �
ux

uy

⎛⎝ ⎞⎠,

T ≔
Tx

Ty

⎛⎝ ⎞⎠ �
gx 0

0 gy

⎛⎝ ⎞⎠
wx

wy

⎛⎝ ⎞⎠.

(54)

By using the augmented Lagrangian method to turn the
constrained problem into the unconstrained problem, we
have the augmented Lagrangian function as follows:

L u,w,T; β1, β2( 􏼁 � 􏽚
Ω

‖T‖2,1dx +
1
2θ

‖u − v‖
2
L2

+〈β1,w − ∇u〉 +
c1

2
‖w − ∇u‖

2
L2

+〈β2,T − Gw〉 +
c2

2
‖T − Gw‖

2
L2

,

(55)

where β1 and β2 are Lagrangian multiplier that can alter-
natively be regarded as the dual variables of problemw andT
and c1 > 0 and c2 > 0 are penalty parameters which are

constant that should be chosen properly. We convert it into
the maximum minimization problem and simplify

min
u,w,T

max
β1 ,β2

􏽚
Ω

‖T‖2,1dx +
1
2θ

‖u − v‖
2
L2

+
c1

2
w − ∇u +

β1
c1

��������

��������

2

L2

+
c2

2
T − Gw +

β2
c2

��������

��������

2

L2

. (56)
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In the following, we use ADMM to solve each sub-
problem about (56). First, the minimum energy function
E(u,w,T) is as follows:

min
u,w,T

E(u,w,T). (57)

-e maximum energy function E(β1, β2) is as follows:

max
β1 ,β2

E β1, β2( 􏼁. (58)

-en, we solve minimization and maximization prob-
lems by using ADMM.

(1) Subminimization with respect to. T. We fixed u andw in
order to determine an exact solution of T; then, we have the
minimization of T with respect to u andw as follows:

lim
T

􏽚
Ω

‖T‖21dx +
c2

2
T − Gw +

β2
c2

��������

��������

2

L2

. (59)

In order to solve T, we use the soft threshing operator
defined in [35] and obtain

T � max Gw −
β2
c2

��������

��������1
−

1
c2

, 0􏼨 􏼩
Gw − β2/c2( 􏼁

Gw − β2/c2( 􏼁
����

����1
. (60)

For the corresponding Lagrangian multiplier β2, we
update it by using the gradient ascent method:

β2 � β2 + c2(T − Gw). (61)

(2) Subminimization with respect to w. We fixed u andT in
order to determine an exact solution of w; the minimization
of T with respect to u andw is as follows:

min
w

c1

2
w − ∇u +

β1
c1

��������

��������

2

L2

+
c2

2
T − Gw +

β2
c2

��������

��������

2

L2

, (62)

and then we calculate the equation about the w and obtain

(a) (b) (c) (d)

(i) (j) (k) (l)

(m) (n) (o) (p)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 1: Illustration of without noisy image and three noisy image and the performance of all the threemodels by 3000 iterations. First row:
the result of three methods for the original image segmentation without noise. Second row: the result of three methods for the original image
segmentation with 0.1 noise. -ird row: the result of three methods for the original image segmentation with 0.15 noise. Fourth row: the
result of three methods for the original image segmentation with 0.2 noise.
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c1 w − ∇u +
β1
c1

􏼠 􏼡 − c2G
T T − Gw +

β2
c2

􏼠 􏼡 � 0. (63)

Simplifying equation (63), we can obtain

w �
c2G T + β2/c2( 􏼁( 􏼁 + c1 ∇u − β1/c1( 􏼁( 􏼁

c1 + c2G
2 . (64)

For the corresponding Lagrangian multiplier β1, we
update it by using the gradient ascent method:

β1 � β1 + c1(w − ∇u). (65)

(3) Subminimization with respect to u. We fixed T andw in
order to determine an exact solution of u; we begin by con-
sidering the minimization of (55) with respect to u, and then,

min
u

1
2θ

‖u − v‖
2
L2

+
c1

2
w − ∇u +

β1
c1

��������

��������

2

L2
. (66)

-en, using the divergence theorem in the equation about u,
we obtain

1
θ

(u − v) + c1 div w − ∇u +
β1
c1

􏼠 􏼡 � 0. (67)

Similarly, due to periodic boundary condition being
imposed, we can solve u efficiently by the fast Fourier
transform (FFT). -is yields the following solution:

u � F
− 1 F(v) − θc1F(div) w + β1/c1( 􏼁( 􏼁

1 − θc1F(Δ)
􏼠 􏼡. (68)

with F being the FFT operator and F− 1 being the complex
conjugate. In (68), Fdiv(w + (β1/c1)) � F((∇)1+) ∘F
(wx + (β1x/ c1)) + F((∇)2+) ∘F(wy + (β1y/c1)), where “ ∘ ”
denotes the componentwise multiplication and the division
is also componentwise.

(a) (b) (c) (d)

(i) (j) (k) (l)

(m) (n) (o) (p)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 2: Illustration of without noisy natural image and three noisy image and the performance of all the three models by 3000 iterations.
First row: the result of three methods for the original image segmentation without noise. Second row: the result of three methods for the
original image segmentation with 0.1 noise. -ird row: the result of three methods for the original image segmentation with 0.15 noise.
Fourth row: the result of three methods for the original image segmentation with 0.2 noise.
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3.2. Algorithm for Solving (52). In this section, we solve
model (52) about v:

v ≔ min
v

1
2θ

‖u − v‖
2
2 + λ􏽚

Ω
I0 − c1( 􏼁

2
− I0 − c2( 􏼁

2
􏼐 􏼑v + α](v)dx. (69)

-e details are as follows: as introduced in (23) and since
the constrained variable v � u, we calculate the minimiza-
tion problem and get

θλ I0 − c1( 􏼁
2

− I0 − c2( 􏼁
2

􏼐 􏼑 +(v − u) � 0, (70)

that is,

v(x) � u(x) − θλ I0 − c1( 􏼁
2

− I0 − c2( 􏼁
2

􏼐 􏼑. (71)

-us, the v-minimization can be achieved through the
following update:

v(x) � min max u(x) − θλ I0 − c1( 􏼁
2

− I0 − c2( 􏼁
2

􏼐 􏼑, 0􏽮 􏽯, 1􏽮 􏽯.

(72)

-en, the framework of the algorithm which solves
problem (52) can be illustrated as follows.

In this section, we give experimental justification of our
proposed model and compare it with ACWE model [8] and
Bresson method [24]. -ese experiments show that our
method is robust in segmentation of objects in a range of
images that have noise, have low contrast, and are direc-
tional.-e proposed model was implemented byMatlab7 on
a computer with Intel Core2 Duo2.2 GHz CPU, 2GB RAM,
and Windows XP operating system. In numerical imple-
mentations, we only consider to use proposed model (52) for

(a) (b) (c) (d)

(i) (j) (k) (l)

(m) (n) (o) (p)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 3: Illustration of without noisy natural image as well as three noisy image and the performance of all the three models by 3000
iterations. First row: the result of three methods for the original image segmentation without noise. Second row: the result of three methods
for the original image segmentation with 0.1 noise. -ird row: the result of three methods for the original image segmentation with 0.15
noise. Fourth row: the result of three methods for the original image segmentation with 0.2 noise.
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the basic image segmentation problems. In fact, our model
has been applied to synthetic and real images in this section.

3.3. Experimental Results of Real Images. In this section, the
effectiveness of the segmentation models and algorithms is
verified by some synthetic images. We first segment every
original image into four images by adding 0.1, 0.15, and 0.2
random noise. -e computer is Windows 7, a 64-bit operating
system. -e four original images with their three-level noise

have been processed, and the results are illustrated in Figures
1–4. Slight tuning of model parameters is necessary between
images (but not between models for a single image).

Figure 5 gives four original images which will be seg-
mented. Figures 1–4 show the segmentation results of the
proposed method and the related methods. -e first line of
Figure 1 shows the segmentation of the original pictures, and
the second and third lines are the segmentation results by
adding 0.1 noise and 0.15 noise to the original image, re-
spectively; we can see that our method can be used to

(a) (b) (c) (d)

(i) (j) (k) (l)

(m) (n) (o) (p)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 4: Illustration of without noisy natural image as well as three noisy image and the performance of all the three models by 3000
iterations. First row: the result of three methods for the original image segmentation without noise. Second row: the result of three methods
for the original image segmentation with 0.1 noise. -ird row: the result of three methods for the original image segmentation with 0.15
noise. Fourth row: the result of three methods for the original image segmentation with 0.2 noise.

cell lion plane zebra

Figure 5: -e given four original images.
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successfully segment for the bottom part of the image, and the
other two methods all failed; from the fourth line, although we
have not fully segmented, we can see that our segmentation is
more full at several locations below the image.

Figure 2 shows that our method is successful when the
image has no noise and 0.1 random noise.When the image is
added 0.15 random noise and 0.2 random noise, the CV
method failed in the three methods, and compared with the
Bressonmethod, we can see (l) and (p) provide more details
in the lion’s neck. In Figure 3, compared with the CV
method, we have a more obvious advantage for the arc of the
aircraft’s tail and the head of the aircraft. And compared

with the Bresson method, for the letter A on the tail, we are
more clear. From Figure 4, we can see that our method is
better.

3.4. Experimental Results of Synthetic Images. We give three
synthetic images and add three different degrees of random
noise in this part, and the effectiveness of the segmentation
models and algorithms proposed in the following is verified
by comparison with related models. We test four typical real
images and tested each image with three different degrees of
random noise. Figure 6 shows that the size of the synthetic

(a) (b) (c)

Figure 6: Sizes of the synthetic images is 128 × 128; the pixel values of these images are only 0.4 and 0.8.

(a) (b) (c) (d)

(i) (j) (k) (l)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 7: Segmentation results to the synthetic image by using Bresson method [24], Chan–Vese [8], and our Algorithm 2 for different
levels of noises. First row: the result of three methods for the original image segmentation with 0.1 noise. Second row: the result of three
methods for the original image segmentation with 0.15 noise. -ird row: the result of three methods for the original image segmentation
with 0.2 noise.
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(a) (b) (c) (d)

(i) (j) (k) (l)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 8: Segmentation results to the synthetic image by using Bresson method [24], Chan–Vese [8], and our Algorithm 2 for different
levels of noises. First row: the result of three methods for the original image segmentation with 0.1 noise. Second row: the result of three
methods for the original image segmentation with 0.15 noise. -ird row: the result of three methods for the original image segmentation
with 0.2 noise.

(a) (b) (c) (d)

(i) (j) (k) (l)
Original image Chan – Vese method Bresson method Our method

(e) (f) (g) (h)

Figure 9: Segmentation results to the synthetic image by using Bresson method [24], Chan–Vese [8], and our Algorithm 2 for different
levels of noises. First row: the result of three methods for the original image segmentation with 0.1 noise. Second row: the result of three
methods for the original image segmentation with 0.15 noise. -ird row: the result of three methods for the original image segmentation
with 0.2 noise.

14 Discrete Dynamics in Nature and Society



images is 128 × 128 and the pixel values of these images are
only 0.4 and 0.8.

Before doing these experiments, we make some expla-
nations as follows:

(1) For the above three synthetic images, we have two
pixel values of 0.4 and 0.8.

(2) We use the index error rate (err) to measure the
similarity of the initial image and the segmen-
tation, which are defined as follows, where P

represent the test image, I represent the initial
image:

err(P, I) �
|P≠ I|

|I|
. (73)

From the definition, we can obtain that the closer the
value of err is to 0, the closer the image P is to the image I

(Figures 7–9).
-e error rate for Figure 7 by using Algorithm 2 is shown

in Table 1.

-e error rate for the synthetic image is shown in Table 2.
-e error rate for the synthetic image is shown in Table 3.
-e closer the value of err is to 0, the better the quality of

the segmentation is. -e err tests can be seen in Tables 1 to 3
where all the three models are tested on simple synthetic
images, and these results validate quantitatively the out-
standing performance of the Chan–Vese model and the
Bresson method in comparison with the competing models.

4. Discussion

In this paper, we have proposed a new variational model
suitable for segmentation a range of images with a blurred
edge, a certain degree of noise, and a directional texture. L2,1
norm is made for the boundary indication function, and
different weights are taken for the x direction and y di-
rection of the boundary at a certain place of the image.
Experimental results on both real and synthetic images
demonstrated that our method is very robust and efficient.
We will further improve the proposed model to extract the
colorful image in our future work.

Input θ, c1, c1 > 0, set the starting values w � T, c1 � c2, the constants c1 and c2 are updated periodically every 10 iterations, let
k � 0 and start k − th iteration, which includes the following steps, until a stopping criterion max(|un+1 − un|, |vn+1 − vn|)≤ ε is
satisfied:

(i) Update T by using Tk+1 � max ‖Gwk − (βk2/c2)‖1 − (1/c2), 0􏽮 􏽯((Gwk − (βk2/c2))/‖Gwk − (βk2/c2)‖1),
(ii) Update β2 by using βk+1

2 � βk2 + c2(T
k+1 − Gwk),

(iii) Update the w, solving wk by using wk+1 � (c2G(Tk+1 + (βk+1
2 /c2)) + c1(uk − (βk1/c1))/(c1 + c2G

2)),
(iv) Update β1 by using βk+1

1 � βk1 + c1(wk − ∇uk),
(v) Update u by using u � F− 1((F(vk) − θc1F(div)(wk+1 + (βk+1

1 /c1)))/(1 − θc1F(Δ))),
(vi) Update v by using v � min max uk+1 − θλ((I0 − c1)

2 − (I0 − c2)
2), 0􏽮 􏽯, 1􏽮 􏽯,

(vii) Let k � k + 1 go to the k + 1 iteration until converge.

ALGORITHM 2: Solving the model (52).

Table 1: -e err value in Figure 7 by using the Algorithm 2.

Image with 0.1 noise Image with 0.15 noise Image with 0.2 noise
Chan − Vesemethod 0.0085 0.0150 0.0356
Bressonmethod 8.5 449e − 04 0.0031 0.0143
Ourmethod 7.3 242e − 04 0.0029 0.0120
Bold indicates that the err rate is the smallest compared with other two methods.

Table 2: -e err value in Figure 8 through Algorithm 2.

Image with 0.1 noise Image with 0.15 noise Image with 0.2 noise
Chan − Vesemethod 0.0139 0.0331 0.0598
Bressonmethod 0.0031 0.0114 0.0199
Ourmethod 0.0014 0.0093 0.0190

Table 3: -e err value in Figure 9 by Algorithm 2.

Image with 0.1 noise Image with 0.15 noise Image with 0.2 noise
Chan − Vesemethod 0.0090 0.0244 0.0422
Bressonmethod 0.0013 0.0045 0.0114
Ourmethod 0.0010 0.0040 0.0109
-e bold values illustrate that our method is the most effective since it is smallest.
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