Research Article

Hamilton-Connected Mycielski Graphs

Yuanyuan Shen, Xinhui An, and Baonyindureng Wu

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
Correspondence should be addressed to Baonyindureng Wu; baoywu@163.com

Received 1 June 2021; Revised 8 August 2021; Accepted 25 August 2021; Published 15 September 2021

Academic Editor: Zuonong Zhu

Copyright © 2021 Yuanyuan Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jarnicki, Myrvold, Saltzman, and Wagon conjectured that if G is Hamilton-connected and not K_2, then its Mycielski graph $\mu(G)$ is Hamilton-connected. In this paper, we confirm that the conjecture is true for three families of graphs: the graphs G with $\delta(G) > |V(G)|/2$, generalized Petersen graphs $GP(n, 2)$ and $GP(n, 3)$, and the cubes G^3. In addition, if G is pancyclic, then $\mu(G)$ is pancyclic.

1. Introduction

All graphs considered in this paper are simple and finite. For notations and terminologies not defined here, we refer to Bondy and Murty [1]. A spanning cycle (path) of a graph is called Hamilton cycle (Hamilton path). A graph which contains a Hamiltonian path between every two vertices of G is called Hamilton-connected (HC). Mycielski [2] proved that the chromatic numbers of triangle-free graphs can be arbitrarily large by introducing a graph transformation as follows. For a graph G on vertices $V = \{v_1, v_2, \ldots, v_n\}$, its Mycielski graph, denoted by $\mu(G)$, is the graph on vertices $X \cup Y \cup \{z\} = \{x_1, x_2, \ldots, x_n\} \cup \{y_1, y_2, \ldots, y_n\} \cup \{z\}$ with edges zy_i for all i and edges x_ix_j, y_ix_j, and x_iy_j for all edges v_iv_j in G. In recent years, a number of papers are devoted to various properties of Mycielski graphs, such as Hamilton-connectivity, Hamiltonicity [3–7], total chromatic number [8, 9], circular chromatic number [10–14], and connectivity [15, 16]. Fisher et al. [4] obtained the following results.

Theorem 1 (see Fisher et al. [4]). The following results hold for a graph G:

1. If G is Hamiltonian, then $\mu(G)$ is Hamiltonian
2. If G is not connected, then $\mu(G)$ is not Hamiltonian
3. If G has at least two pendant vertices, then $\mu(G)$ is not Hamiltonian

Cheng, Wang, and Liu studied Hamiltonicity and Hamilton-connectedness in Mycielski graphs of bipartite graphs.

Theorem 2 (see Cheng et al. [3]). For a bipartite graph G, the following are true:

1. If $\mu(G)$ is Hamiltonian, then G is balanced
2. If $\mu(G)$ is Hamiltonian, then G has a Hamilton path

In 2017, Jarnicki et al. [17] established the following results for $\mu(G)$ being Hamilton-connected or not.

Theorem 3 (see Jarnicki et al. [17]). The following results hold for a graph G:

1. If G is an odd cycle, then $\mu(G)$ is Hamilton-connected
2. If G is a Hamilton-connected graph with order odd, then $\mu(G)$ is Hamilton-connected
3. If G is an even cycle, then $\mu(G)$ is not Hamilton-connected

They posed the following conjecture.

Conjecture 1 (see Jarnicki et al. [17]). If G is Hamilton-connected and not K_2, then $\mu(G)$ is Hamilton-connected.

In this paper, we confirm that the conjecture is true for three families of graphs: the graphs G with $\delta(G) > |V(G)|/2$,
generalized Petersen graphs $GP(n, 2)$ and $GP(n, 3)$, and the cubes G^3. In addition, if G is pan cyclic, then $\mu(G)$ is pan cyclic.

2. Mycielski Factor

Let G be a connected graph of order n even, and $v_1 \in V(G)$. We call a connected spanning subgraph of G to be a Mycielski factor starting at v_1 if it consists of an even number of odd cycles C_1, \ldots, C_k (possibly $s = 0$) and an even cycle C_{2s+1} with the chord (possibly empty), joined by $2s$ edges e_1, \ldots, e_{2s}, where $e_i = v_i v_{i+1}$ for each $i \in \{1, \ldots, 2s\}$ such that $v_i v_{i+1} \in V(C_i)$ for each $i \in \{1, \ldots, 2s + 1\}$, and the chord joins v_{2s+1}^1 and a vertex at distance even on C_{2s+1}.

Lemma 1. Assume that a graph G is Hamilton-connected. If, for any $v \in V(G)$, there exists a Mycielski factor starting at v, then $\mu(G)$ is Hamilton-connected.

Proof. As in the assumption, let G be HC. Trivially, G has a Hamilton cycle. By Theorem 3 (2), $\mu(G)$ is HC if the order of G is odd. So, it remains to tackle the case when the order is even. Let $V(G) = \{v_1, \ldots, v_{2n}\}$, where $n \geq 2$. Recall that $V(\mu(G)) = X \cup Y \cup \{z\}$. Take any two vertices $A, B \in V(\mu(G))$. We consider five cases in terms of the location of A and B in X, Y, and $\{z\}$.

Case 1. $A \in X$ and $B \in X$.

Without loss of generality, let $A = x_1$ and $B = x_{2n-1}$. Since G is HC, there exists a Hamilton path P connecting v_1 and v_{2n} in G. We shall find a Hamilton path of $\mu(G)$ depending on P as follows. Zigzag up from x_1, until y_{2n} is reached. Then, jump via z to y_1, and zigzag right until x_2n is reached. Formally, it is

$$x_1 - y_2 - x_3 - \cdots - x_{2n} - z - y_1 - x_2 - \cdots - x_{2n-2}$$

as shown in Figure 1.

Case 2. $A \in Y$ and $B \in Y$.

Without loss of generality, let $A = y_1$ and $B = y_{2n}$. Since G is HC, there exists a Hamilton path P connecting v_1 and v_{2n} in G. Thus, there exists a neighbor, say y_{2n}, of y_1. Zigzag up from y_{2n} to y_1 and then back to x_2 and zigzag up to x_{2n-1} and then up to x_{2n}, and zigzag left to y_1 and then up to z and y_{2n}, as shown in Figure 2. Formally,

$$y_1 - x_2 - y_3 - \cdots - y_{2n} - x_1 - y_2 - \cdots - y_{2n-2} - z - y_{2n}$$

If $s \geq 1$, for every integer $i \in \{1, \ldots, 2s\}$, label the vertices of C_i in the clockwise order $u_i, u_i+1, \ldots, u_{2k+1}$. One can find a Hamilton path P_i of $\mu(C_i)$ as follows:

$$x_1, y_2, x_3, y_4, \ldots, x_{2k+1}, y_1, x_2, y_3, x_4, \ldots, y_{2k+1},$$

where $u_i = v_i$ and $u_{2k+1} = v_i$.

Case 3. $A \in X$ and $B \in Y$.

Without loss of generality, let $A = x_1$. Since G is HC, G has a Hamilton cycle C. Label the vertices of C as $v_1 v_2, \ldots, v_{2n} v_1$. We are able to find a Hamilton path joining A and B: zigzag from y_1 to x_2, and then go to x_1, and then zigzag right to y_2, and finish at z, as shown in Figure 3. Formally, it is

$$y_1 - x_2 - y_3 - \cdots - x_{2n} - x_1 - y_2 - \cdots - y_{2n} - z$$

where $w_i = v_i$ and $w_{2n} = v_i$.

Thus, $(\cup_{i=1}^{2s} P_i) \cup (\cup_{1 \leq i \leq 2s}) \cup \{y_{2n} - z\}$ is a Hamilton path of $\mu(G)$ from joining x_1 and z.

3. Hamiltonian Connectedness

Theorem 4. Assume that G is a Hamilton-connected graph of order $n \geq 3$. If $\delta(G) \geq (n/2) + 1$, then $\mu(G)$ is Hamilton-connected.

Proof. Let v be a vertex of G. We consider a Hamilton cycle C of G. Let u be a neighbor of v on C. Since $d(u) \geq (n/2) + 1$, it has a neighbor at distance even on C. By Lemma 1, $\mu(G)$ is HC.

The kth power of a graph G, denoted by G^k, is a graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is at most k. Thus,
$G^3 = G$. We need the following result due to Karaganis [18].

Theorem 5 (see Karaganis [18]). **The cube** G^3 of every connected graph G of order $n \geq 3$ is Hamilton-connected.

Theorem 6. For any connected graph G of order $n \geq 3$, $\mu(G^3)$ is Hamilton-connected.

Proof. By Theorem 5, G^3 is HC for G. Since $\mu(H^3)$ is a spanning subgraph of $\mu(G^3)$ for any spanning graph H of G, to show $\mu(G^3)$ is HC, it suffices to show that $\mu(T^3)$ is HC for any tree T of order $n \geq 3$. Since T^3 is HC, by Theorem 3 (1), we may assume that n is even. By Lemma 1, it remains to show that T^3 has a Mycielski factor starting from each vertex $v \in V(T)$.

Let w be a neighbor of v in T, and let T_v and T_w be the components of $T - vw$ containing v and w, respectively. Let n_v and n_w be the order of T_v and T_w, respectively. Let v' be a neighbor of v in T_v and let w' be a neighbor of w in T_w.

- **Case 1:** both n_v and n_w are at least 3.
 - **Subcase 1.1:** both n_v and n_w are odd.
 - By Theorem 5, both T_v^3 and T_w^3 are HC. Let C_v and C_w be Hamilton cycles of T_v and T_w, respectively. One can see that $C_v \cup C_w + v'w'$ is a Mycielski factor of T^3 starting at v.
 - **Subcase 1.2:** both n_v and n_w are even.
 - By the induction hypothesis, T_v^3 has a Hamilton path $P_{v_v'}$ joining v and v', and T_w^3 has a Hamilton path $P_{w_w'}$ joining w and w'. One can see that $P_{v_v'} \cup P_{w_w'} + vw + v'w' + v'w'w$ is a Mycielski factor of T^3 starting at v.

- **Case 2:** $\min\{n_v, n_w\} \leq 2$.

 Subcase 2.1: $\min\{n_v, n_w\} = n_v = 2$.
 - Since $n_v + n_w = n$ is an even number at least 3, n_w is an odd number at least 3. By Theorem 5, let $C_{vw'}$ be a Hamilton cycle of T_v^3 containing vw. It is easy to see that $C_{vw'} + vw + vw'$ is a Mycielski factor of T_v^3 starting at v.
 - **Subcase 2.1.1:** $\min\{n_v, n_w\} = n_w = 2$.
 - If $n_w = 2$, then $n = 4$. Trivially, $T^3 = K_4$ has a Mycielski factor starting at v.
 - If $n_w \neq 2$, then n_w is an even number at least 4. By Theorem 5, let $P_{vw'}$ be a Hamilton path of T^3_w. It can be seen that $P_{vw'} + vw + w' + v'w$ is a Mycielski factor starting at v.

 Subcase 2.2: $\min\{n_v, n_w\} = n_w \leq 2$.

 - If $T \equiv K_{1,n-1}$, then $T^3 \equiv K_n$ has a Mycielski factor starting at v. Next, we assume that $T \neq K_{1,n-1}$. We can choose a neighbor w of v such that $n_w \geq 2$. Combining with our assumption that $\min\{n_v, n_w\} = n_w \leq 2$, we have $n_w = 2$. By Theorem 5, let $P_{vv'}$ be a Hamilton path of T^3_v. It can be checked that $P_{vv'} + vw + wv' + v'w + v'w$ is a Mycielski factor starting at v.

In 1969, Watkins [19] introduced the notion of the generalized Petersen graph $GP(n, k)$, $1 \leq k \leq n$, as follows. The vertex set is $\{u_i, v_i : 1 \leq i \leq n\}$, and the edge set is $\{u_iu_{i+1}, v_iv_{i+k}, u_iv_i\}$, where the subscript arithmetic performs modulo n. The Petersen graph $GP(5, 2)$ is vertex-transitive if and only if $k^2 \equiv \pm 1 \pmod{n}$ or $(n, k) = (10, 2)$. Next, we consider the Hamilton-connectedness of the generalized Petersen graph $GP(n, 2)$ and $GP(n, 3)$.

Theorem 7 (see Alspach and Liu [21]). **The generalized Petersen graph** $GP(n, 2)$ with $n \geq 6$ is Hamilton-connected if and only if $n \equiv 1, 2, 3 \pmod{6}$.

Theorem 8. If $GP(n, 2)$ is Hamilton-connected for $n \geq 6$, then $\mu(GP(n, 2))$ is Hamilton-connected.

Proof. In view of Lemma 1, it suffices to show that $GP(n, 2)$ has a Mycielski factor starting at any $v \in V(GP(n, 2))$. We consider two cases:

- **Case 1:** $n \equiv 1$ or $3 \pmod{6}$.
 - Since n is odd, $GP(n, 2)$ is vertex-transitive, and we may assume that $v = u_1$, without loss of generality. Let C_1 and C_2 be the outer cycle and inner cycle of $GP(n, 2)$. Let v be a vertex of $GP(n, 2)$. It is clear that $C_1 \cup C_2 + u_i, v_j$ is a Mycielski factor of $GP(n, 2)$ starting at v.

- **Case 2:** $n \equiv 2 \pmod{6}$.
 - By the symmetry, it suffices to tackle two possibilities according to the location of v in $GP(n, 2)$: v lies on the outer cycle or inner cycle of $GP(n, 2)$. Without loss of generality, let $v = u_1$ or $v = v_1$. First, for the case when $n = 8$, we can find a Mycielski factor F_n of $GP(n, 2)$ as follows:
By the symmetry, it suffices to tackle two possibilities according to the location of \(v \) in \(GP(n, 3) \): \(v \) lies on the outer cycle or inner cycle of \(GP(n, 3) \). Without loss of generality, let \(v = u_1 \) or \(v = v_1 \).

First, for the case when \(n = 9 \), we can find a Mycielski factor \(F_n \) of \(GP(n, 3) \) starting at \(v \) as follows:

\[
F_n = \begin{cases}
C_9 + u_1v_1 & \text{if } v = u_1, \\
C_9 + u_1v_2 & \text{if } v = v_1,
\end{cases}
\]

(7)

where

\[
C_9 = \begin{cases}
u_1v_1v_2u_1v_3v_4v_5u_2v_6v_7u_3v_8v_1 & \text{if } v = u_1, \\
v_1v_2v_3v_4v_5v_6v_7v_8v_1 & \text{if } v = v_1.
\end{cases}
\]

(8)

For \(n = 14 \), by inserting 12 new vertices to \(C_9 \) of \(F_8 \), we get \(C_{14} \) as illustrated in Figures 5–7 for the case that \(v \) lies in the outer cycle and for the case that \(v \) lies in the inner cycle as illustrated in Figures 6, 8, and 9. For the case when \(n \geq 20 \), by inserting 12 new vertices to \(F_{n-6} \) with type A insertion, we obtain a Mycielski factor \(F_n \) of \(GP(n, 2) \) starting at \(v \).

Theorem 9 (see Alspach and Liu [21]). The generalized Petersen graph \(GP(n, 3) \) with \(n \geq 6 \) is Hamilton-connected if and only if \(n \) is odd.

Theorem 10. If \(GP(n, 3) \) is Hamilton-connected, then \(\mu(GP(n, 3)) \) is Hamilton-connected.

Proof. Since \(GP(n, 3) \) is Hamilton-connected, by Theorem 9, \(n \) is an odd number at least 7. Let \(v \) be a vertex of \(GP(n, 3) \). In view of Lemma 1, it suffices to show that \(GP(n, 3) \) has a Mycielski factor starting at \(v \). We consider two cases:

Case 1: \(n \equiv 1 \) or \(5 \) (mod 6).

Since \(n \) is odd, \(GP(n, 3) \) is vertex-transitive; by the symmetry, we may assume that \(v = u_1 \), without loss of generality. Let \(C_1 \) and \(C_2 \) be the outer cycle and inner cycle of \(GP(n, 3) \). It is clear that \(C_1 \cup C_2 + u_2v_2 \) is a Mycielski factor of \(GP(n, 3) \) starting at \(v \).

Case 2: \(n \equiv 3 \) (mod 6).

4. Pancyclicity

In this section, we show that if a graph \(G \) is pancyclic, then \(\mu(G) \) is also pancyclic.

Theorem 11. If \(G \) is pancyclic, then \(\mu(G) \) is pancyclic.

Proof. Let \(G \) be a pancyclic graph of order \(n \). Since \(\mu(G) \) contains \(G \) as its subgraph, \(\mu(G) \) contains a cycle of length \(l \) for each \(l \in \{3, \ldots, n\} \).

Now, we find a cycle of length \(n + 1 \) in \(\mu(G) \). Take a cycle \(C \) of length \(n - 2 \) in \(G \). Without loss of generality, let \(P = v_1v_2, \ldots, v_{n-2} \) be a path resulting from \(C \) deleting an edge. It can be seen that \(x_1x_2, x_2x_3, \ldots, x_{n-2}z \) is a cycle of length \(n + 1 \), as illustrated in Figure 13. In a similar way, one can find a cycle of length \(n + 2 \) in \(\mu(G) \) in terms of a cycle of length \(n - 1 \) in \(G \).

Next, we will find a cycle of length \(n + k \) in \(\mu(G) \) for each \(k \in \{3, \ldots, n + 1\} \). Take a Hamilton cycle \(C \). Without loss of
generality, let $C = v_1v_2, \ldots, v_nv_1$ in G. We consider two cases according to the parity of k:

Case 1: k is odd.

One can find a cycle of length $n+k$ in $\mu(G)$, as shown in Figure 14. Formally, it is

$$x_1 - y_2 - x_3 - \cdots - y_{k-1} - z - y_1 - \cdots - x_{k-1} - x_k - \cdots - x_n - x_1.$$ \hspace{1cm} (10)

Case 2: k is even.

Zigzag up from x_1 to x_{k-1} and left to x_{k-2}, then zigzag left to y_1, z, y_{k-1}, and x_k, and go right to x_n and back to x_1, as shown in Figure 15. Formally, it is

$$x_1 - \cdots - x_{k-2} - x_{k-1} - y_{k-2} - \cdots - y_1 - z - y_{k-1} - x_k - \cdots - x_n - x_1.$$ \hspace{1cm} (11)
Figure 10: \(F_9 \) from \(u_1 \) to \(v_1 \) in \(GP(9, 3) \).

Figure 11: Type B insertion.

Figure 12: \(F_{15} \) obtained from \(F_9 \) by type B insertion in \(GP(9, 3) \).

Figure 13: Finding a cycle \(C_{n+1} \) in \(\mu(G) \) from a cycle \(C_{n-2} \) in \(G \).

Figure 14: A cycle of length \(n+k \) in \(\mu(G) \) if \(k \) is odd.

Figure 15: A cycle of length \(n+k \) in \(\mu(G) \) if \(k \) is even. \(\Box \)
5. Conclusion

In this paper, we introduce the notion of the Mycielski factor of a graph. If a graph G has a Mycielski factor starting at v for any $v \in V(G)$, then $\mu(G)$ is Hamilton-connected. Applying this result, we are able to show that if a graph G belongs to three (well-defined) families of graphs, then $\mu(G)$ is Hamilton-connected. However, the full conjecture of Jarnicki, Myrvold, Saltzman, and Wagon is not yet solved. We also prove that if G is pancyclic, then $\mu(G)$ is pancyclic.

One of the reviewers proposed the following two interesting problems.

Zhong et al. [7] showed that the line graph of the generalized Petersen graph $GP(n,k)$ is always Hamilton-connected. Is it easy to show that the Mycielski graph of $L(GP(n,k))$ is Hamilton-connected?

It is known that the line graph of a Hamilton-connected graph G is also Hamilton-connected. Is $\mu(L(G))$ Hamilton-connected if $L(G)$ is Hamilton-connected? [22].

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Key Laboratory Project of Xinjiang (2018D04017), NSFC.(No.12061073, 11801487), and XJEDU20191001.

References