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Gene expression programming (GEP) uses simple linear coding to solve complex modeling problems. However, the performance
is limited by the effectiveness of the selected method of evaluating population individuals, the breadth and depth of the search
domain for the solution, and the ability of accuracy of correcting the solution based on historical data.'erefore, a new dual-mode
GEP prediction algorithm based on irregularity and similar period is proposed. It takes measures to specialize origin data to
reserve the elite individuals, reevaluate the target individuals, and process data and solutions via the similar period mode, which
avoids the tendency to get stuck in local optimum and the complexity of the precisions of correcting complex modeling problems
due to insufficiency scope of the search domain, and subsequently, better convergence results are obtained. If we take the leek price
and the sunspot observation data as the sample to compare the new algorithm with the GEP simulation test, the results indicate
that the new algorithm possesses more powerful exploration ability and higher precision. Under the same accuracy requirements,
the new algorithm can find the individual faster. Additionally, the conclusion can be drawn that the performance of new algorithm
is better on the condition that we take another set of sunspot observations as samples, combining the ARIMA algorithm and BP
neural network prediction algorithm for simulation and comparison with the new algorithm.

1. Introduction

In the field of predictive modeling, there are many models.
Many scholars conduct in-depth research in this area. Wang
et al. [1–3] have made great efforts in the optimization of
prediction algorithms and achieved certain results. 'is
paper is mainly to study and improve the GEP model and
use ARIMA and BP-ANN models for experimental
comparison.

Time series prediction is a typical method in data
mining, which is widely used in the fields of financial
economy, meteorology, hydrology, signal processing, and
disaster warning. 'e autoregressive integral moving aver-
age model (ARIMA) is the most common model used for
time series forecasting. Atanu et al. [4] used the ARIMA
model to predict a country’s GDP, and 'iruchelvam et al.
[5] used the ARIMA model to determine the spatial effect of

dengue fever cases on neighboring areas. 'e error back-
propagation (BP) algorithm is also a current method used
for time series forecasting. Li et al. [6] predicted the passive
torque of the human shoulder joint based on BP-ANN
(Artificial Neural Network), and Kianpour et al. [7] used BP-
ANN to predict the acute oral toxicity of organophosphates.
ARIMA is essentially a linear prediction model and requires
data to be stable. And, there exist many anthropogenic
factors in the training of the BP-ANN prediction model.
GEP inherits the advantages of the simple linear coding of
genetic algorithms (GAs) and the expression tree of genetic
programming (GP) and expresses the population from both
the genotype and phenotype [8]. Because of the simplicity,
comprehensibility, and high efficiency of GEP, it has been
widely utilized in data prediction. Oulapour et al. [9] used
GEP to find the best equation for the relationship between
the width and depth of the possible crack area and the
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geometric parameters of the valley cross section. Khan et al.
[10] used GEP to predict the compressive strength of geo-
polymer concrete. Yang et al. [11] proposed a new spectral
model for leaf area index estimation based on GEP. Mallick
et al. [12] used GEP to evaluate the surface average pressure
coefficient of the building surface. Ali et al. [13] used GEP to
predict the air ratio parameters of mineral tailings. Deng [14]
et al. used hybrid GEP to recognize numerical sensitive data
in active distribution networks. Majidifard et al. [15] used
GEP to develop a prediction model of asphalt mixture
derusting depth. Murad [16] et al. used GEP to predict the
shear strength of internal reinforced concrete beam-to-
column joints subjected to cyclic loading.

GEP is based on the principle of survival of the fittest in
biological evolution and the unique mechanism which can
decode the results into functions making it extraordinary in
the family of prediction algorithms. But there exist many
shortcomings, such as tendencies to fall into the local
optimum [17], the slowness of later convergence, and the
complicacy of accuracy correction of nonlinear complex
problem solutions [18, 19]. In this regard, Zhang et al. [20]
used regularization methods to enhance the generalization
ability of GEP, increase gene diversity, and jump out of
local optimality. Jiang et al. [21] accelerated GEP through
measures such as adaptive parameters, population age
stratification, and transplantation of the Spark framework.
Wang et al. [22] introduced a multipreference-driven co-
evolutionary algorithm in GEP to improve the quality of
the target solution, while reducing the complexity of the
algorithm. However, because the above improvements
require the additional constraint information or the in-
tegration of other algorithms, they do not have high
generalization. 'is paper proposes a new dual-mode GEP
(DM_GEP) prediction algorithm based on irregularity and
similar period.'e data processing objects of the first mode
are those that are irregular. 'e data processing objects of
the second mode are those with similar periodic fluctua-
tions. In general, if the data object has similar periodic
fluctuation law, we use the second mode. Otherwise, use
another mode. We compared the results with the basic GEP
algorithm. 'e experimental results prove that DM_GEP
has a wider and deeper search area and convergence effi-
ciency, and thus, it can achieve higher prediction accuracy.
In the experiment, DM_GEP is compared with the ARIMA
model and BP neural network prediction model. 'e ex-
perimental results further verify that DM_GEP has better
prediction performance.

2. Methods

2.1. Gene Expression Programming. GEP is a new type of
adaptive evolution algorithm proposed by Portuguese sci-
entist Candida Ferreira in 2001. GEP inherits the rapidity
and usability of GAs and the variability and versatility of GP.
It can utilize simple coding to solve complex problems [23].
Meanwhile, the separation of genotype and phenotype
makes the evolutionary efficiency of GEP to solve practical
problems’ 2–4 orders of magnitude higher than GA and
GP [24].

2.2. Chromosome. In the process of gene expression pro-
gramming modeling, a random initial population is first
generated, and the population is composed of chromosomes.
'e processing object of GEP is a chromosome composed of
a single gene or multiple genes. Genes consist of linear and
fixed-length strings of symbols, which can be divided into
heads and tails. 'e chromosomes generated according to a
certain rule can be decoded according to the rule to generate
an expression tree. 'e expression tree can be further
transformed into mathematical expressions. So, the essence
of chromosomes is a series of mathematical expressions. If F
is the set of function symbols and T is the set of terminal
symbols, the heads of the genes can be randomly composed
of any symbols in F and T, and the tails of genes can only be
composed of any symbols in T. If we let the length of a gene,
the length of its head and the length of its tail be L,H, and T,
respectively, and the maximum number of operations of the
function in the function symbols contained in the gene is N.
'e following formulas are established:

T � H ×(N − 1) + 1, (1)

L � H + T � N × H + 1. (2)

Figure 1 shows a double-gene chromosome with head
length of 4 and tail length of 5.

'e chromosome in Figure 1 has two open reading
frames (ORF), which correspond to the subtree (sub-ET) of
Figure 2. In the multilevel structure tree, each subexpression
tree is not only an independent evolutionary individual but
also a part of the hierarchical evolution system.

Figure 2 is the expression tree generated by decoding
corresponding to Figure 1, which is connected by “+.”

2.3. Fitness. Fitness is an index to evaluate the ability of an
individual to adapt to the environment. 'e solution step of
fitness needs to decode the chromosome to get the corre-
sponding expression tree and then generate the corre-
sponding mathematical expression. Finally, the value of the
objective function is obtained by substituting the value of the
variable into the mathematical expression. 'e smaller the
gap between the objective function value and the actual
value, the higher fitness that the individual has. According to
the individual’s fitness value, the quality of the individual in
evolution can be evaluated. 'ere are two classic evaluation
models in GEP, absolute error (equation (3)), and relative
error (equation (4)):

Fitness � 
n

i�1
M − Yi − Yi


 , (3)

Fitness � 

n

i�1
M −

Yi − Yi

Yi




 , (4)

where Y is the training dataset which contains n data needed
for modeling, Yi represents the input of the ith group of
training data, Yi represents the predicted value of the cor-
responding ith group of data, and M is a constant repre-
senting the selection range.
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3. A Dual-Mode GEP Prediction Algorithm

If the observation data used for modeling has obvious
similar waveform trends that do not strictly limit the height
of peaks and troughs in intervals with similar spans, we
define that it has a similar period (SP), and this type of data is
nonlinear and often contains high ambient white noise. 'e
basic GEP adopts different individual evaluation standards
for different types of input data, which does not have
generalization. However, if a unified evaluation system is
used to evaluate individuals from different data types, the
situation that the individual fitness value is high but the
regression fitness keeps low is easy to occur. In case of the
search area of the algorithm is small, it would make the
algorithm fall into the local optimum. When the individual
fitness value is approaching the theoretical value, the time
consuming is not proportional to the improved accuracy,
which leads to the slow convergence rate of the algorithm in
the later stage. When processing data with SP characteristics,
the accuracy correction is difficult and the process is
complicated. 'e DM_GEP proposed in this paper is based
on the basic GEP algorithm and consists of the irregular
prediction mode (IPM) and similar period mode (SPM).
Among them, IPM can be used for regression prediction
problems of various types of data. SPM only processes SP
data without complicated and difficult processes, so it has an
improved accuracy compared with IPM.

3.1. General Mode-IPM. On the basis of GEP evolution, a
unified evaluation system is applied to deal with different
types of modeling data, while expanding the search domain

and accelerating the evolution efficiency. IPM is described as
follows, and the pseudocode of the algorithm is shown in
Algorithm 1.

① Appropriately lower the preset solution fitness value
to reduce the huge amount of time it takes to approach
the value in the later stage of model evolution. Reduce
the number of individuals who obtain high fitness but
the regression fitting effect does notmeet the needs, and
accelerate the acquisition of the target solution.
② When evaluating the chromosome, the strict pa-
rameter values are not used as the denominator for a
few parameter values approaching the zero point, and
these parameter values are specially treated to reduce
the impact on the individual in calculating the error
value of prediction effect.
③ If the individual has reached the preset fitness value,
the target individual obtained by the model is re-
evaluated. Use modeling data to calculate the average
error of the individual for regression. If the average
error value is less than the preset limit value, it will be
given as the model result. Otherwise, restart the entire
model to re-evolve and combine with ① and ② to
accelerate the evolution efficiency under the premise of
ensuring the accuracy of the target individual’s
prediction.

'e calculation of BEST-FIT complies with the special
calculation principle in② above. K is the optimal number of
individuals retained to the next generation, and the value
depends on the population size requirements. MAX_FIT is
the ideal fitness.
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Figure 1: Randomly generated dual-gene chromosomes.
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Figure 2: Corresponding expression tree generated by chromosome decoding in Figure 1.
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3.2.DedicatedMode-SPM. IPM can process SP data, but it is
more difficult. 'e SPM proposed in this paper is based on
the larger search domain of IPM and effective convergence
in the later stage. Because it is aimed at the SP data pro-
cessing model and using of compound individuals as so-
lutions, there is no complicated and difficult accuracy
correction process, and the convergence efficiency and ac-
curacy are further improved on the basis of IPM.

3.2.1. Original Data Processing Model

① 'e number of SP data in a group is P, and the
average value L of its “period” is obtained, and G is N
times L (P is rounded down), that is, there are N
“periods” in this group of data. Among them, G, L, and
N are a positive integer.
② 'e sliding size of the SPM window is W, and set
W� L, that is, the coding parameter of a chromosome is
W dimension.
③ A set of modeling data consists of two parts:
continuous L points form W-dimensional calculation
parameters, and the (L + 1)th data is used as the
correction value. For example, the first set of modeling
data Y1 � D1, D2, D3 . . . DL , D(L+1)  . 'e first
(G − L) pieces of data constitute the modeling data,
and the remaining L pieces of data are reserved for
observing the effect of simulation prediction.
④ From the modeling data group, a group of (N − 2)

continuous modeling data with each data interval of L
is selected as the target child chromosome SP modeling
data group. For example, the first target child chro-
mosome modeling dataset Datas [1] � Y1, Y(L+1),

Y(2L+1) . . . Y[(N−3)∗L+1]}, and so on, and the modeling
data set in ③ is assigned to each target child chro-
mosome for evolutionary modeling.

3.2.2. Compound Individual Solutions. SPM uses compound
individuals as the modeling result, that is, an array
containing multiple target child chromosomes is used as a
solution to solve related problems. Suppose the composite
target Com_Chromosme [W] is obtained, that is, there are
W target child chromosomes. According to the Datas
[1 . . . W] constructed in 3.2.1, Com_Chromosme
[1 . . . W] is obtained as the modeling data input into the
IPM submodel in sequence. For the Nth cycle data
D(N−1)∗L, D(N−1)∗L+1 . . . D(N∗L)  reserved for simulation
prediction, it is, respectively, obtained by Com_Chro-
mosme [1 . . . W]. In the same way, predict future data,
and calculate the remainder of L through the historical
data coordinate value of the point to obtain the remainder
i. Select Com_Chromosme [i], and then, predict the point
to get theoretical data.

3.2.3. Model Schematic. 'e ideal periodic function trend
chart is convenient to describe the basic principle of SPM, as
shown in Figure 3, and the pseudocode of the algorithm is
shown in Algorithm 2 below.

where L is the length of the SP period, W is the sliding
size of the SPM window, and P is the number of SP data in a
group.

4. Results

4.1.EvaluationStandard. In this paper, the following criteria
are used to evaluate the algorithm model.

4.1.1. MSE and MAPE. 'e MSE is the average value of the
sum of squares of errors during the fitting process of the
linear regression model, and the value range is [0, +∞). 'e
closer the value approaches to 0, the better the data obtained
from the model fits the original data:

Begin:
(1) CHROMOSME [ ]⟵ produce stochastic original population;
(2) While (True)
(3) While (True)
(4) BEST⟵ find the best one from CHROMOSME [ ];
(5) BEST_FIT⟵ calculate fitness of BEST;
(6) If (BEST_FIT≥MAX_FIT) then
(7) AVE_ERROR⟵ calculate error of BEST;
(8) If (AVE_ERROR≤ LIMIT) then
(9) Return BSET;
(10) End if;
(11) Else Break; //restart evolutionary model
(12) End if;
(13) SONS [ ]⟵ produce empty population same as CHROMOSME [ ];
(14) SONS [ ]⟵ the top K best individuals; //retain dominant individuals
(15) SONS [ ]⟵ Roulette and Genetic manipulation of CHROMOSME [ ];
(16) CHROMOSME [ ]⟵ SONS [ ]; //new population
(17) End While;
(18) End While;

End.

ALGORITHM 1: IPM.
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MSE �
1
m



m

i�1

Yi − Yi 
2
, (5)

where m refers to m samples, i refers to the I dimension of
quantity Y, Yi refers to the original value, and Yi refers to the
predictive value.

'e MAPE is the mean absolute percentage error, and
the value range of MAPE is [0, +∞). 'e closer the value
approaches to 0, the better the data obtained from the model
fits the original data:

MAPE �
100%

m


m

i�1

Yi − Yi

Yi




 . (6)

4.1.2. Coefficient of Determination R2. In some cases, MSE is
not comprehensive and unable to describe the goodness of fit
of the model accurately. If R2 is used in combination, the
performance of the model can be better explained, and the
value range of R2 is [−∞, 1]. 'e value of R2 is divided into
the following situations:
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Figure 3: Principle of SPM.

Begin:
Step1:Data preprocessing

(1) For i� 1 to G-L do//base array
(2) Y datas[i]← Di . . . Di+L−1 , DL+i+1  ;

(3) End for;
(4) For j� 1 to W do//subgoal modeling and forecast sets
(5) Datas [j] ← Y_datas [j]...Y_datas [j+ (N-3) ∗ L];
(6) End for;
(7) Com_Chromosme [W] ← structure container for complex subgoals;

Step2:genetic evolution process
(8) For t� 1 to W do
(9) CHROMOSME [ ] ← stochastic original population using Datas [t];
(10) BEST ← Using IPM algorithm get the best individual;
(11) Com_Chromosme [t] ← BEST
(12) End for;
(13) Return Com_Chromosme [W] as result;

Step3:use compound target
(14) For x� 1 to P do
(15) FORECAST gets using Com_Chromosme [x mod L];
(16) SUM_ERROR +� gets calculate the error;
(17) End for;
(18) AVE_ERROR gets SUM_ERROR/P;

End;

ALGORITHM 2: SPM.
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① R2 �1: ideal model, and the predicted value is equal
to the true value.
② R2 � 0: one possibility is that all predicted values are
equal to the average value of the sample. Of course,
there are other possibilities.
③ R2< 0: predictive ability of the model keeps weak,
which means that the wrong model may be used or the
model assumptions are unreasonable.

R
2

� 1 −


m
i�1 Yi − Yi 

2


m
i�1 Yi − Yi( 

2, (7)

where Y is the sample average.

4.1.3. Residual Diagram. 'e residual diagram is to visually
evaluate the performance of themodel and obtain outliers by
drawing the difference or vertical distance between the true
value and the predicted value. For a good regression model,
the expected error is randomly distributed, and the residuals
are also randomly distributed near the center line.

4.2. Experimental Data. Data group 1 is the daily average
price of leeks in the Jiangnan agricultural and sideline
product market in Guangzhou City, Guangdong Province
from January 1, 2020 to April 20, 2020, obtained from the
national agricultural product price database, with a total of
108 price data.'is piece of data can represent a normal time
series and is used to test the performance of the model.

Data group 2 is taken from NCEI Sun-Geophysics in
Space Weather [25]. 'e sunspot detection data values from
1770–1869, a total of 100. And, its trend is shown in Figure 4.
'e observational value sequence of sunspots has the
characteristics of nonlinearity and multiple time scales [26].
At the same time, due to the large environmental inter-
ference and large noise when observing and collecting
values, it has become a classic use case for testing the ef-
fectiveness and prediction accuracy of predictive model
analysis to solve complex real-world problems.

Data group 3 selects the sunspot data from 1919 to 2018
[25]. Because the sunspot time series observation is a typical
example of detection and prediction model, it is used to test
the performance of several typical algorithms.

For details of the data, please refer to the two documents
in the supplementary materials (available here).

4.3.Experimental Setup. In order to highlight the advantages
of DM_GEP over GEP, the simulation and comparison ex-
periment parameter settings are simplified to the greatest
extent: the function set only selects the most basic four
arithmetic operations, and the chromosome structure and
length are simplified. At the same time, the average value of
multiple experiments is obtained as the conclusion. 'e same
parameter settings of GEP andDM_GEP are shown in Table 1.

BP neural network is a multilayer feedforward neural
network trained according to the error backpropagation
algorithm [27]. 'e gradient descent method is used to

minimize the mean square deviation between the actual
output value and the expected output value of the target
network.'e trained target network can intelligently process
the input information of similar input samples and then
output the information obtained from the linear transfor-
mation with the current minimum error.'e ARIMAmodel
has three heaviest parameters. 'e parameters p, q, and d
represent the autoregressive parameter, moving average, and
order of transforming the original sequence into a stationary
sequence [28]. 'is paper compares BP, ARIMA, and
DM_GEP through a set of time series simulation experi-
ments to verify the advantages of DM_GEP algorithm
performance. Table 2 shows the parameter settings of
ARIMA and BP-ANN as the comparison algorithm. Among
them, the selection of the number of hidden nodes in the BP
neural network refers to the empirical formula that scholars
have obtained for a long time:

h �
�����
m + n

√
+ a, (8)

where h refers to the number of hidden layer nodes,m refers
to the number of input layer nodes, n refers to the number of
output layer nodes, a is a constant and its range is [1, 10]. In
Table 2, logis and purelin refer activation functions.

4.4. GEP and IPM. For the comparison between GEP and
IPM, the data selected in this paper is data group 1, in which
the first 103 data constituted 98 sets of modeling data, and
the last 5 data will be retained for simulation prediction.

'e two target chromosomal individuals representing
the average performance of GEP and IPM are as follows:

① GEP-/d+/+deecdbad [+] bac/e ∗ ebdecbcda [+]
b-cbc/dedcbccdd
② IPM a/e-c ∗ /eeeddbdd [+]-e + e + cabbaeebba [+]
cda ∗ ec-cdabadbe

'e regression prediction effect of leek price data is
shown in Figure 5. 'e trend of the IPM target individual
regression prediction curve basically completely fits the
sample data, and each inflection point changes sensitively
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Figure 4: Trend of sunspot observations from 1770 to 1869.
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with the sample data, and there is no significant mutation
point that deviates from the sample data curve. Although the
GEP target individual can better reflect the fluctuation of the
sample data in the curve trend, it obviously has a certain

delay, and many data points deviate greatly from the sample
data curve.'e residual mean value of the sample data of the
GEP target and IPM target is plotted as a residual diagram, as
shown in Figure 6. And, the conclusion mentioned above

Table 1: GEP and DM_GEP comparison test parameter settings.

Parameter setting GEP/IPM (leek price) GEP/IPM (sunspot) SPM (sunspot)
Head length 7
Population capacity 50 100
Select range 1000
Number of genes 3
Connection function {+}
Symbol set {+, −, ∗, /}
Terminal symbols {a, b, c, d, e} {a, b, c, d, e, f, g, h, i, j}
Mutation rate 0.044
Single-point mutation rate 0.3
Double-point mutation rate 0.3
Gene recombination rate 0.1
Insertion transposition rate 0.1
Root insert transposition rate 0.1
(ROOT) Length of that insert seat {1, 2, 3}
Best fitness value 97900/97800 79100/79000 7900
Number of experiments 1000 50

Table 2: BP neural network and ARIMA experimental parameter settings.

BP-ANN ARIMA
Input layer nodes 10 —
Output layer nodes 1 —
Hidden nodes 15 —
Maximum number of training 5000 —
E-learning efficiency 0.025 —
Target network expected error 0.2 —

Excitation function Hidden layer: logis —Output layer: purelin
p — 10
q — 9
d — 2
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Figure 5: GEP-IPM regression prediction fitting effect of leek price.
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can be demonstrated. 'e IPM target individual residual
data points are concentrated and uniformly and randomly
distributed on the upper and lower sides of the Y� 0 line.
'e number of perfect fit points with an absolute value of 0
for residuals reached 24, accounting for 23.3%. Among
them, data points between 0 and 0.2 accounted for 84.5%.
'e data points between 0 0.4 accounted for 96.2%, and they
have accounted for most of the data points. And, the pro-
portion between 0 and 0.6 is 99.1%. 'e prediction data of
the GEP target is scattered and unevenly distributed on the
upper and lower sides of Y� 0.'e mutation points far away
from the center line account for a relatively large number.
'ere are only 5 perfect fitting points, accounting for 3.9%,
which is between 0 and 0.2. 'e proportion of data points
between 0 and 0.4 is 38.9%, 56.4% is between 0 and 0.4,
which is barely more than half, and the proportion between 0
and 0.6 is 65.1%.

Table 3 shows the average conclusion of the experimental
data. It can be seen that, under the same or even better
evolution time, the MSE and calculation error of the IPM
target is still better than the GEP target. After the IPMmodel
has increased the calculation accuracy by 10%, the time-
consuming is still close to that of GEP, achieving an MSE
close to 0 under a large R2. It is proved that IPM can break
out of the defects of local optimality and precocity better

than GEP and find better target individuals. Setting aside
time constraints, the IPM target prediction error is only
2.71%, and theMSE and R2 are 0.2 and 0.96, respectively.'e
prediction model has basically fitted the actual data. 'is
indicates that IPM has a better ability to explore a wider and
deeper search field and to approach the limits with high
accuracy than GEP.

4.5. GEP, IPM, and SPM. In this paper, data group 2 is
selected as the dataset to compare GEP, IPM, and SPM. 'e
data trend chart is shown in Figure 3. It can be seen that it is
composed of several waveforms with large peak fluctuations,
similar waveforms, and an average time span of 10, which
has obvious SP characteristics and is suitable for detecting
SPM performance. Among the 100 years of data, the first 90
years of data are used to train the model, and the remaining
10 years of data are used to simulate predictions.

'e target chromosomal individuals of GEP, IPM, and
SPM are as follows:

① GEP: /e-ejhibhijeegj [+]-jijbb + ebieejge [+]
jhihhbhbhijeebd
② IPM: j-/fe ∗ fiicjeifj [+]-/+a+e-biigdhij [+] eb
∗-/bfbiicgeje

PerfectLine
GEP

PerfectLine
IPM

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0
RE

SI
D

UA
L

20 40 60 80 100 1200
DAYS

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

RE
SI

D
UA

L

20 40 60 80 100 1200
DAYS

Figure 6: GEP-IPM prediction result residual of leek price.
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③ SPM:

Com_Chromosme[1] -i+i-i-ahaicjij [+] /e+fbj*jacdjgab [+] +j/fcacjacdjgab

Com_Chromosme[2] g+g/i-hecbgbhia [+] /j/*+gejagbaiea [+] -/faigdjedeiiea

Com_Chromosme[3] /dfdfdadjeagbdj [+] /cjgfa/cdedbiab [+] -jce/g-gbbdffia

Com_Chromosme[4] -/ifeccaagdcabd [+] jjiej*jfecdddcd [+] jabcb*ieedchjad

Com_Chromosme[5] jhfhcb-fgjiicig [+] /gja-chabjieahf [+] /d-bc/bdfeggfhe

Com_Chromosme[6] –j+fc/ihfagaig [+] /cbe+gbaeegfabb [+] /jcji/fiabccbac

Com_Chromosme[7] -i-i-ijgfddajhj [+] jh+fifibfghajfc [+] –i-fcadiijgigg

Com_Chromosme[8] -jij-/cajjcchih [+] /h-a+-+aejachih [+] -j/cccjabiegjcf

Com_Chromosme[9] -/ajb/gbgjaedfg [+] -bj///jadfjijee [+] /cj/ec/idfgajhi

Com_Chromosme[10] jhi-g-jehjbcaah [+] /g/e/h-ggbfhjji [+] /b-ggedagchhcgh

Figure 7 shows the forecast data of the set of sunspot data
with the above targets, and it can be seen that all three can
closely follow the trend of the sample data. Although the
GEP target reflects the fluctuation trend of the sample data,
the troughs are not well-fitted and the prediction curves are
abrupt and jagged in many places. On the contrary, the SPM
target has the best effect. 'e entire prediction curve only
appears once with a large abrupt change. Figure 8 shows the
residual mean value of these three models, which shows that
the distribution of GEP residual points is scattered. 'e
mean error values of each data point of the prediction results
of the three models are made into Figure 9 to support the
above discussion.

'e average value of the experimental data conclusions is
made in Table 4, and the performance gap between GEP and
DM_GEP can be analyzed. Under the same experimental
conditions, the performance of SPM and IPM is close. With
only 31% and 25% of the time consumption of GEP, an
accuracy of more than 30% higher than GEP was achieved.
At the same time, MSE improved by more than 700 and R2

improved by more than 15% of the target. With the
knowledge that the DM_GEP dual mode is better than GEP,
analyze the advantages of SPM compared to IPM in SP data;
when the expected accuracy is 0.5, SPM is 56.28 higher than
IPM on MSE, and the rest is close. When the expected
accuracy is 0.35, the experiment shows that this is the
performance bottleneck of the IPM experiment. At the same
time, SPM can achieve a target of 5.68% increase in accuracy
of IPM, 80.41 increase in MSE, and slightly better R2 than
IPM with only 17% of the time consumed by IPM. It shows
that SPM has higher evolution efficiency and better target
exploration ability than IPM when processing SP data to

obtain higher precision targets and has a higher performance
threshold. Exploring the SPM performance threshold, the
experiment shows that the threshold is 0.2, and the average
achieved accuracy is 17.73%.

In summary, SPM is more efficient than IPM and GEP in
processing SP data to obtain individuals with uniform re-
sidual distribution, larger R2 values, lower MSE values, and
higher accuracy thresholds.

4.6. ARIMA, BP-ANN, and DM_GEP. In this paper, data
group 3 is selected as the dataset to compare ARIMA, BP-
ANN, and DM_GEP. Among them, the DM_GEP experi-
ment parameter settings are the same as Table 1, the budget
accuracy of the change is set to 0.2, and the expected fitness is
set to 7850.

'e sliding window of BP neural network and DM_GEP
is 10, and the last 10 data of three models are reserved as
simulation prediction data. Figure 10 shows the experi-
mental fitting effects of the three algorithms. Table 5 shows
the statistical analysis of the experimental results.

It can be seen from Table 5 that the mean absolute
percentage error (MAPE), MSE, and R of the DM_GEP
model are better than the BP neural network and the
ARIMA model in the prediction. It can be seen from Fig-
ure 10 that the regression prediction curve of the DM_GEP
model is basically fitted to the modeling sample data curve,
and the MAPE is 16.27. 'e prediction trend of the last ten
sets of prediction data conforms to the future development
trend, and the effect is the best.

Some scholars have also made up the shortcomings of
ARIMA and BP neural networks: Min et al. [29] used SVM

Table 3: Comparison experiment data of leek price GEP-IPM.

Expected accuracy Average time (ms) MAPE MSE mean R2 mean

GEP — 5.58 15.23 8.325 0.7273
0.15 3.39 9.64 0.4948 0.7251

IPM 0.05 7.89 4.1 0.2959 0.9142
0.03 48.09 2.71 0.2002 0.96

Discrete Dynamics in Nature and Society 9



to map data to a high-dimensional space to try to weaken the
interference caused by nonlinearity. He et al. [30] used BP
neural networks to pass the PSO algorithm that optimizes
the weights of each connection layer accordingly. But in

contrast, DM_GEP has excellent linear and nonlinear
analysis and modeling capabilities, which not only requires
no special requirements for the amount of historical data but
also enables excellent accuracy of regression prediction for
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Figure 9: GEP-IPM-SPM mean error.

Table 4: Sunspot GEP-IPM-SPM comparative test data conclusion.

Expected accuracy Average time (ms) MAPE MSE mean R2 mean
GEP — 8278 75.66 1003.21 0.6515

IPM 0.5 2595 38.16 316.91 0.8294
0.35 63933 34.37 298.85 0.8436

SPM

0.5 2030 39.39 260.63 0.8032
0.35 10442 28.69 218.44 0.8512
0.25 232161 22.91 185.96 0.862
0.2 1870369 17.73 157.72 0.8971
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Figure 7: GEP-IPM-SPM regression prediction fitting effect.
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modeling data that causes large environmental noise without
noise reduction. 'ese characteristics make DM_GEP have
more prospects and better forecast applicability in the field
of forecasting.

5. Conclusion

In the experiment of leek price prediction, the experi-
mental results show that the IPM mode can find better
individuals in a shorter time than ordinary GEP. In the
experiment of predicting the observed value of sunspots,
the SPM mode has higher accuracy and shorter time than
ordinary GEP and IPM mode. In addition, the results of
experiments with ARIMA and BP-ANN in the prediction
of sunspot observations also show that the accuracy of
SPM is higher.

GEP has unique advantages in the family of prediction
algorithms. However, there are shortcomings such as
tendencies to fall into local optimum and difficulties to
regress complex nonlinear data. In this regard, a new
DM_GEP prediction algorithm was proposed in this paper,
which is compatible with the high efficiency of GEP’s re-
gression of simple linear problems and excellent nonlinear
data analysis and construction capabilities. For the sake of
avoiding overly premature models, the algorithm expands the
algorithm search space by reducing the rigor of error judg-
ments for those true values close to 0 and the precomputation
of individuals. By changing the single mode of modeling data
and using specific methods, the complicated and difficult
correction process for SP data was avoided. At the same time,
it improved the deficiencies of GEP, simplified the threshold
of GEP prediction application, and enhanced practicality and
generalization. In the experiment of leek price prediction, the
experimental results show that IPM can find better indi-
viduals in a shorter time than ordinary GEP.

In this thesis, DM_GEP only used simple four
arithmetic operations as a function set and simple

structure chromosome to solve the problem in order to
compare the experimental effect. 'e next research di-
rection is to add a rich set of functions and diverse
connection functions and to study the more general data
preprocessing method to DM_GEP so that the new GEP
algorithm will be more convenient and general, and the
accuracy will be better.
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Figure 10: DM_GEP, ARIMA, and BP neural network simulation comparison experiment fitting effect.

Table 5: Sunspot GEP-IPM-SPM comparative test data conclusion.

Expected accuracy MAPE MSE mean R2 mean
DM_GEP 0.2 16.27 270.459 0.9443
BP-ANN 0.2 160 2436.504 0.39
ARIMA — 46.69 503.012 0.898
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