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*e purpose of this paper is to develop an effective edge indicator and propose an image scale-space filter based on anisotropic
diffusion equation for image denoising. We first develop an effective edge indicator named directional local variance (DLV) for
detecting image features, which is anisotropic and robust and able to indicate the orientations of image features.We then combine
two edge indicators (i.e., DLV and local spatial gradient) to formulate the desired image scale-space filter and incorporate the
modulus of noise magnitude into the filter to trigger time-varying selective filtering. Moreover, we theoretically show that the
proposed filter is robust to the outliers inherently. A series of experiments are conducted to demonstrate that the DLV metric is
effective for detecting image features and the proposed filter yields promising results with higher quantitative indexes and better
visual performance, which surpass those of some benchmark models.

1. Introduction

Image denoising is an important and fundamental issue in
the field of computer low-level vision and has received
considerable attention from scholars and practitioners. *e
goal of such task is to remove noise while preserving po-
tential image features and further acquire a clean image
which can be reliably used for subsequent vision tasks such
as edge detection and object segmentation and fusion.

In the last two decades, the topic for image denoising has
been well studied in the literature (see, e.g., the work of
Tomasi and Manduchi [1], Buades et al. [2], Dabov et al. [3],
Zhang et al. [4], He et al. [5], Zuo et al. [6], Zhang et al. [7],
and Dong et al. [8] and references therein). Apart from the
mentioned methods, a kind of anisotropic diffusion models
based on nonlinear partial differential equations are also
attractive and effective for image denoising. *ese methods
are pioneered by Perona and Malik [9] for proposing the
well-known PM model. Since then, growing interests have

focused on its alternatives (see the works of Catte et al. [10],
Alvarez et al. [11], Black et al. [12], Weickert [13], You and
Kaveh [14], Gilboa et al. [15], Lysaker et al. [16], Gilboa et al.
[17], and Wang et al. [18]). Recently, anisotropic diffusion
models are still popular in the academic community, e.g.,
Chen [19] proposes an adaptive smoothing via local and
contextual discontinuities. Chen et al. [20] present the ramp
preserving PM model which is an effective tool for ramp
preservation and speckle reduction. Chao and Tsai [21] and
Li et al. [22] show that the local gray-level variance is an
effective edge indicator for detecting image features by
which they propose their modified PM models for feature
preservation, respectively. Hajiaboli [23] and Chen and Gao
[24] develop their anisotropic fourth-order diffusion models
for feature preservation and addressing staircase artifacts
caused by most second-order anisotropic diffusion models.
Lefkimmiatis et al. [25] formulate the regularization model
via Hessian-based norm for medical image denoising. Guo
et al. [26] design an adaptive PM model called the dynamic
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α-PM (D-α-PM) model which switches between isotropic
diffusion and anisotropic diffusion in terms of an edge
indicator based on local spatial gradient. Yang et al. [27] use
nonlocal means theory to revise the PM model for feature
preservation and mitigating staircase artifacts. Prasath et al.
[28] propose a spatially varying edge coherence exponent-
based Tikhonov total variation for achieving similar goals as
in [27]. Chen and He [29] establish a novel filtering
mechanism via an adaptive weighted anisotropic diffusion
model. Siddig et al. [30] and Yang et al. [31] study their
adaptive fourth-order diffusion models to reduce the over-
smoothness for image features. Yao et al. [32] study a
fractional diffusion equation for removing multiplicative
noise. For more anisotropic diffusion models, we refer the
reader to the comprehensive survey [33].

Most mentioned anisotropic diffusion models merely use
the spatial gradient as their sole edge indicator. Nevertheless,
noise corruption can generate discontinuities as well; hence, the
local spatial gradient lacks robustness due to ambiguity be-
tween noise and image features. Chao et al. [21] and Li et al.
[22] investigate that the local gray-level variance (LV) metric is
a good alternative to the spatial gradient and can be effectively
used to capture some important image features such as high-
contrast edge features and low-contrast fine features, and they
further propose their modified anisotropic diffusion models
using this metric. However, the LV metric has two inherent
drawbacks as follows. First, it is essentially isotropic and cannot
indicate the orientations of image features. Moreover, it suffers
from so-called dilution effect in the computing window, which
degrades the performance of suchmetric for some low-contrast
fine features. In this paper, we aim to address these drawbacks
by introducing a directional local variance (DLV) metric and
develop an image scale-space filter based on anisotropic dif-
fusion by simultaneously utilizing the spatial gradient andDLV
metric for image denoising.

*e rest of the paper is organized as follows. In Section 2,
we briefly describe some related works in this paper. In
Section 3, we present the DLVmetric and develop the aimed
image scale-space filter for image denoising. In Section 4, we
conduct experimental comparisons with some benchmark
models. In Section 5, we conclude the paper.

2. Related Works

In this section, we describe some related works in this paper.

2.1. PM Model. To simplify notations, we denote image
intensity of pixel p at iteration t as It

p, the four-nearest
spatial neighborhood of pixel p as Np, and the magnitude as
‖ · ‖. *en, the PM model introduced by Perona and Malik
[9] can be expressed as

I
t+1
p � I

t
p + τ 

q∈Np

g ∇It
p,q

�����

�����, K ∇It
p,q, (1)

where ∇It
p,q ≔ It

q − It
p for ∀q ∈ Np, τ is the time step size

satisfying τ ∈ [0, 0.25], and the diffusivity function g(s, K)

with the threshold parameter K> 0 has two commonly used
forms:

g(s, K) �
1

1 + s
2/K2

 
, (2)

g(s, K) � e
− s2/K2( ). (3)

It is well known that the spatial gradient as an edge
indicator can sensitively capture any local intensity change,
and this merit plays a crucial role in the PM model and its
most variants. Nevertheless, such an edge indicator is not
reliable and robust as mentioned before, and this fact would
degrade the performance of the PM model and most vari-
ants, e.g., some outliers are falsely recognized and preserved
as image features while some potential fine features are
mistaken as noise and then smoothed out. Consequently, the
PM model equipped with sole spatial gradient needs to be
modified into another form which considers both spatial
gradient and more robust edge indicator.

2.2. LV-PMModel. Let ηp be a square spatial neighborhood
of fixed radius R(R> 0 andR ∈ Z) and centered at the pixel
p. *en, we can compute the local variance (LV) of ηp as (see
[21])

V
t
p �

1
(2R + 1)

2 
q∈ηp

I
t
q − M

t
p 

2
, (4)

where the local mean Mt
p is given by

M
t
p �

1
(2R + 1)

2 
q∈ηp

I
t
q. (5)

Utilizing the local variancemetric (4), Chao and Tsai [21]
propose an adaptive threshold for the PM model as follows:

K
t
p �

K0
V

t

p

, (6)

where K0 is a positive constant and V
t

p is the normalized
local variance, and it is formulated as

V
t

p � 1 + 254 ×
V

t
p − Vmint

Vmaxt − Vmint

, (7)

where Vmint and Vmaxt denote the minimum and maximum
values of local variance across an image at iteration t,
respectively.

*e local variance metric (4) is shown to be an effective
edge indicator for capturing contextual features such as
textures and low-contrast fine features; hence, it is a good
alternative to the spatial gradient [21]. Specifically, this edge
indicator has two inherent merits as follows. First, more
neighboring pixels around a given pixel are participated to
compute the value of the local variance; they can offer more
contextual information; thus, it is not like the spatial gra-
dient that merely considers the difference of two adjacent
pixels. Furthermore, the local mean Mt

p involved in (4) can
be used to measure the average intensity magnitude of
neighboring pixels, whereas the spatial gradient has no such
special form. Hence, these facts indicate that the local
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variance metric is more robust than the spatial gradient and
able to reduce ambiguity between noise and significant
features. Nevertheless, this metric has two main inherent
drawbacks as follows. First, it is essentially an isotropic edge
indicator which cannot indicate the orientations of image
features. On the contrary, it may fail to some low-contrast
fine features due to the dilution effect which happened in the
computing window.

3. Methodology

3.1. Directional Local Variance. To simplify notations, let
Np denote the eight-nearest spatial neighborhood of pixel p

and ηp,q denote 1-dimensional (1D) directional spatial
semineighborhood of fixed radius R(R> 0 andR ∈ Z) and
started at the pixel p along the q-direction, where q ∈Np.
*en, we propose the directional local variance (DLV)
metric, q ∈Np, as follows:

V
t
p,q �

1
R + 1



q′∈ηp,q

I
t
q′ − M

t
p,q 

2
, (8)

where Mt
p,q is the directional local mean and defined by

M
t
p,q �

1
R + 1



q′∈ηp,q

I
t
q′ . (9)

Apart from the merits inheriting from the traditional
local variance metric (4), the proposed metric (8) has two
main inherent merits. First, it is an anisotropic edge in-
dicator which is essentially different from the isotropic
one (4). Consequently, the proposed metric can detect any
local intensity changes in all directions and offers a “road
map” to specify the orientations of important image
features. Additionally, unlike metric (4), the dilution
effect is anticipated to be mitigated by the proposed
metric.

Below, we use three types of typical regions to intuitively
illustrate the characteristics of the DLV metric. Patch-1 in
Figure 1(b) shows that all DLV values are smaller while they
are very similar. Hence, this patch more likely corresponds
to a relatively homogenous region. Patch 2 in Figure 1(c)
shows that the DLV values along the NE, E, SE, S, and SW
directions are smaller, whereas the DLV values along other
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Figure 1: Illustrative plots of directional local variance metric. (a) Lena. (b) Patch-1. (c) Patch-2. (d) Patch-3.
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directions are larger. Hence, the central pixel and its
neighbors more likely locate in an interobject boundary
(edge) which stretches along the NE and SW directions.
Patch 3 in Figure 1(d) shows that all DLV values are similar
to each other while they are relatively larger. Consequently,
the central pixel and its neighbors more likely correspond to
the fine feature.

3.2. Image Scale-Space Filter via Anisotropic Diffusion.
Motivated by the paradigm of anisotropic diffusion [19], we
combine the spatial gradient and directional local variance
defined by (8) to formulate the desired image scale-space
filter as follows:

I
t+1
p � I

t
p + λt

p

q∈Np
v

t
p,qw

t
p,q∇I

t
p,q

q∈Np
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, (10)
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w
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�����

�����, K , (13)

where λt is the variable time step size defined by the local
variance metric Vt with the tunable positive constant C and
noise variance Vt

Noi estimated from image It, vt is the
weighting function defined by the directional local variance
Vt, and wt is the weighting function defined by the mag-
nitude of spatial gradient ‖∇It‖ with the threshold K> 0.
Furthermore, the generic nonnegative monotonically de-
creasing function g(·, ·) used in (11), (12), and (13) is given
by (2) or (3). *e weighting function wt is simple to un-
derstand without further explanations, and the rationalities
of the weighting function vt can be explained using statistical
theory. From the law of large numbers in probability theory
(see e.g., [34]), the value of the local variance in the ideal
homogenous region generally behaves like Vt

p⟶ Vt
Noi if

the size of the region is large enough. Consequently, we can
roughly use Vt

Noi as a threshold to achieve the separation of
significant features and homogenous regions under noisy
circumstance. Alternatively, a pixel p more likely locates in
the potential homogenous region when Vt

p ≤Vt
Noi holds.

Otherwise, it more likely corresponds to the potential image
feature.

From (10), we know that the proposed image scale-
space filter (10) are driven by the overall effects of two
weights vt and wt in which vt embeds the effect of robust
directional local variance for contextual features while wt

embeds the effect of sensitive local spatial gradient for
local features. Compared to the conventional anisotropic
diffusion models such as the PM model (1), below, we
show that the proposed filter has a different diffusion
behavior. Without loss of generality, we simply consider
1D case and denote

I
t
p−1 ≔ I,

I
t
p ≔ I,

I
t
p+1 ≔ I,

(14)

where I and I denote arbitrary image intensities and I

represents an outlier which means I≫I or I≪I.
Furthermore, assume that the ground truth of Ip isI. *en,
the proposed filter shows

I
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p � I

t
p + λt

p

v
t
p,p−1w

t
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t
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t
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t
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� I + λt
p(I − I) � 1 − λt

p  I + λt
pI,

(15)

which reads as the weighted average of I andI with adaptive
weights 1 − λt

p and λt
p, respectively. Since 0< λt

p ≤ 1 holds,
hence, It+1

p goes to its ground truth I in an iterative manner.
Specifically, It+1

p approaches I with higher convergence rate
for fast noise removal due to the facts λt

p⟶ 1 and Vt
p⟶ 0

if the pixelp being an outlier locates in the homogenous region,
and It+1

p approaches I with lower convergence rate for edge
preservation due to the facts λt

p⟶ 0 and Vt
p⟶∞ if the

pixel p locates at an edge. Factually, the above discussions are
not limited to the outliers and applicable to more general
situations. Furthermore, the variable time step size λt

p in (11)
behaves like λt

p⟶ 0 due to the fact limt⟶∞Vt
Noi⟶ 0 for a

desired filter so that the diffusion rate of the proposed filter (10)
temporarily tends to be slow for inhibiting over-smoothness
when noise magnitude becomes smaller. Contrarily, the PM
model shows

I
t+1
p � I + τ[g(‖I − I‖, K)(I − I) + g(‖I − I‖, K)

(I − I)] ≈ I,

(16)

which holds due to the fact g(‖I − I‖, K) ≈ 0 for an
outlier. Consequently, the PM model cannot effectively
handle the outliers except for larger threshold K which yet
causes the problem of undesired over-smoothness, and these
facts have been confirmed by the experimental results in
[26].

Finally, we show that the proposed filter (10) maintains
unconditional stability. To this end, we denote themaximum
and minimum intensities across an image by Imax and Imin,
respectively. Since 0< λt

p ≤ 1 always holds, we derive that

I
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(17)
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Also, we obtain

I
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p � 1 − λt

p I
t
p + λt

p

q∈Np
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t
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t
q

q∈Np
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t
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t
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≤ 1 − λt
p Imax + λt

pImax ≤ Imax.

(18)

Hence, we obtain It+1
p ∈ [Imin, Imax] which confirms the

unconditional stability of the proposed filter.

4. Experimental Results

In this section, we conduct several experiments to assess the
effectiveness of the proposed filter and compare it with some
competitive benchmark models: local variance-based PM
model (LV-PM) [21], D-α-PM model [26], and recent
fourth-order anisotropic diffusion model (FAD) [30]. To
achieve the comparison, five commonly used digital images
which are given in Figure 2 are used for the experiments.
Furthermore, we use additive white Gaussian noise
(AWGN)with noise variance σ to generate corrupted images
and set R � 6 for computing both LV and DLV metrics
throughout the experiments.

4.1. Test for the DLV Metric. Before assessing the proposed
filter for image denoising, we first test the effectiveness of the
DLV metric proposed in this paper for detecting image
features and compare it with the LV metric. *e experi-
mental results for the noisy Lena image (σ � 0.01) are il-
lustrated in Figures 3(b)–3(j), where brightness indicates
potential image features and the labelVd denotes DLV map
along the d-direction.

It is evident that the edges along the S and N directions
within extracted Patch 1 and Patch 2 in Figure 3(c) are
much cleaner than the corresponding patches in
Figure 3(d) whose edges are desirably masked out by the
DLV metric; these facts confirm that the proposed DLV
metric is an effective and anisotropic edge indicator which
enables an anisotropic diffusion filter to achieve less
normal smoothing for edge preservation and achieve
more tangential smoothing for sharpening edges. It can be
seen from Figure 3(b) that some edges (see, e.g., edges
within Patch 2) are almost blurred due to the dilution
effect caused by the isotropic LV metric in its computing
window ηp. Hence, we can conclude that the proposed
DLV metric outperforms the classical LV metric for
capturing image features.

4.2. Test for the Proposed Filter. In this experiment, we
compare the proposed filter with the mentioned benchmark
models for image denoising. To achieve that, we set C � 1,
use the algorithm in [35] to estimate the noise variance Vt

Noi,
and adjust the parameter K for a specific application. *e
whole experiment consists of three tests in which the first
test uses the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) (see, e.g., [36]) to evaluate the models. *e
PSNR index is defined as

PSNR � 10 log10
2552

MSE
 , (19)

where MSE � (1/|Ω|)p∈Ω(Ip − Ip)2, here Ω represents the
image domain with size |Ω| (i.e., the number of pixels) and I

is the ground-truth image. *e SSIM index reads as

SSIM �
2μω1

μω2
+ C1  2σω1ω2

+ C2 

μ2ω1
+ μ2ω2

+ C1  σ2ω1
+ σ2ω2

+ C2 
, (20)

where μω1
and μω2

are the estimated mean intensities of two
windows ω1 and ω2, σω1

and σω2
are the standard deviations,

σω1ω2
is the covariance between ω1 and ω2, and C1 and C2 are

the stabilization parameters.*e SSIM value lies in the range
[0, 1] where larger value means higher structural similarity
between two images, and more details about this index can
be seen in [36]. To be fair, the maximum iteration number is
set to be 1000 so that themaximum scores of the quantitative
indexes can be reported for eachmodel.*e evaluated scores
of quantitative indexes are given in Table 1, from which we
observe that the PSNR and SSIM values of the proposed filter
are higher than those of the benchmark models in most
cases. *us, we can conclude that the proposed filter out-
performs the benchmark models with respect to the ob-
jective quantitative indexes.

*e purpose of the second test is to show the evolutions
of PSNR and SSIM indexes using noisy Lena image with
σ � 0.01. From Figure 4, we observe that the proposed filter,
compared to the benchmark models, uses less iterations to
achieve its maximum PSNR and SSIM scores. Furthermore,
the stability of the proposed filter is also validated.

*e third test aims to illustrate the conceptual perfor-
mance of the proposed filter for the corrupted images with
σ � 0.01. *e denoising results are given in Figures 5–8,
where Figure 6 for a fragment of Lena image is to more
clearly demonstrate the conceptual performance. From
Figures 5–8, we can conclude the following facts. Although

(a) (b) (c) (d) (e)

Figure 2: Ground-truth images. (a) Lena. (b) Peppers. (c) Monarch. (d) Cat. (e) Goldhill.
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Figure 3: LV and DLV maps. (a) Noisy. (b) V. (c) VE. (d) VS. (e) VW. (f ) VN. (g) VSE. (h) VSW. (i) VNW. (j) VNE.
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the LV-PM model can preferably preserve most image
features, it tends to leave some significant outliers at the
interobject boundaries before blurring some low-contrast
fine features. *e reasons for this poor performance are just
that the LV metric inherently belongs to an isotropic edge
indicator that causes the dilution effect in the computing
window as shown earlier. Although the D-α-PM model can
preserve and even enhance the high-contrast edge features, it
causes over-smoothness for some low-contrast fine features
as more intuitively seen in Figure 6(d). One possible reason
for this fact is just that the model is a hybrid one that
combines an isotropic diffusion model and the PM model
through an adaptive variable exponent-based diffusivity

function which cannot effectively recognize the low-contrast
fine features by using Gaussian prefiltered spatial gradient as
an edge indicator. For the FAD model, it shows similar
behaviors to the D-α-PM model as more clearly shown in
Figure 6(e) since the employed Gaussian prefiltering would
blur the low-contrast fine features prior to the spatial gra-
dient estimation. Finally, we can see that the proposed filter
equipped with directional local variance metric and local
spatial gradient achieves more impressive conceptual per-
formance among the comparative models with clearer edges
(high-contrast edges and low-contrast fine features) and
cleaner homogenous regions which can be more intuitively
seen in Figure 6(f).

Table 1: Maximal PSNR (dB) and SSIM scores of comparative models.

Images σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena
0.01 20.03 0.277 29.69 0.857 29.56 0.860 29.29 0.836 30.56 0.866
0.015 18.30 0.216 29.12 0.845 28.76 0.845 28.58 0.818 29.66 0.851
0.02 17.10 0.179 28.37 0.834 28.13 0.834 28.03 0.795 28.93 0.839

Peppers
0.01 20.15 0.299 29.54 0.832 29.66 0.841 29.21 0.827 30.28 0.848
0.015 18.44 0.236 28.74 0.824 28.83 0.832 28.47 0.808 29.41 0.836
0.02 17.27 0.199 28.04 0.811 28.20 0.817 27.85 0.788 28.68 0.826

Monarch
0.01 20.07 0.463 26.22 0.839 26.96 0.874 24.36 0.825 27.18 0.877
0.015 18.42 0.401 25.48 0.829 26.05 0.852 23.98 0.799 26.31 0.855
0.02 17.25 0.357 24.88 0.816 25.35 0.834 23.51 0.781 25.44 0.839

Cat
0.01 21.31 0.477 26.23 0.763 26.40 0.768 23.99 0.701 26.84 0.808
0.015 19.67 0.398 25.11 0.710 25.24 0.719 23.74 0.682 25.80 0.771
0.02 18.45 0.345 24.19 0.670 24.32 0.676 23.44 0.654 25.06 0.742

Goldhill
0.01 20.41 0.332 28.67 0.764 28.75 0.769 27.96 0.730 28.89 0.771
0.015 18.77 0.260 27.85 0.741 27.88 0.743 27.38 0.710 28.13 0.749
0.02 17.60 0.215 27.16 0.720 27.22 0.720 26.88 0.690 27.52 0.727
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Figure 4: Evolutions of PSNR and SSIM indexes using Lena image. (a) Evolution of PSNR index. (b) Evolution of SSIM index.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Denoising results using Lena image. (a) Ground truth. (b) Noisy. (c) LV-PM. (d) D-α-PM. (e) FAD. (f ) Proposed.

(a) (b) (c)

(d) (e) (f )

Figure 6: Denoising results using a fragment of Lena image. (a) Ground truth. (b) Noisy. (c) LV-PM. (d) D-α-PM. (e) FAD. (f ) Proposed.
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5. Conclusion

In this paper, we proposed an effective edge indicator for
detecting image features and developed an image scale-space
filter via anisotropic diffusion for image denoising. First, an
anisotropic and robust edge indicator called directional local
variance (DLV) metric was proposed for detecting image
features. Unlike the traditional isotropic local variance (LV)
metric, the proposed DLV metric has no so-called dilution
effect and can be used to indicate the directional structures.
*en, we formulated an image scale-space filter by combining
two edge indicators (spatial gradient and DLV metric) and
incorporated the modulus of noise magnitude into the targeted
filter to trigger time-varying selective filtering. Furthermore,
the inherent robustness of the proposed filter to the outliers was
theoretically demonstrated. Experimental results illustrated
that the DLV metric is anisotropic and robust and able to
indicate the image directional structures and also confirmed
that the proposed filter yields promising denoising results with
higher quantitative evaluation indexes and better visual per-
formance, which outperform those of the benchmark models.
In the future, we will consider some prevalent techniques such
as entropy theory and spectral analysis (see, e.g., [37–39]) to
explore more robust edge indicators and employ them for
image denoising.
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J. A. Conejero, “Higher-order spectral analysis of stray flux
signals for faults detection in induction motors,” Applied
Mathematics and Nonlinear Sciences, vol. 5, pp. 1–14, 2020.

10 Discrete Dynamics in Nature and Society


