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,e time-variant matrix inversion (TVMI) problem solving is the hotspot of current research because of its frequent appearance
and application in scientific research and industrial production. ,e generalized inverse problem of singular square matrix and
nonsquare matrix can be related to Penrose equations (PEs). ,e PEs implicitly define the generalized inverse of a known matrix,
which is of fundamental theoretical significance.,erefore, the in-depth study of PEsmight enlighten problem solving of TVMI in
a foreseeable way. For the first time, we construct three different matrix error-monitoring functions based on PEs and propose the
corresponding models for TVMI problem solving by using the substitution technique and ZNN design formula. In order to
facilitate computer simulation, the obtained continuous-time models are discretized by using ZTD (Zhang time discretization)
formulas. Furthermore, the feasibility and effectiveness of the novel Zhang neural network (ZNN) multiple-multiplication model
for matrix inverse (ZMMMI) and the PEs-based Getz–Marsden dynamic system (PGMDS)model in solving the problem of TVMI
are investigated and shown via theoretical derivation and computer simulation. Computer experiment results also illustrate that
the direct derivative dynamics model for TVMI is less effective and feasible.

1. Introduction

During the past decades, scientists and engineers have en-
countered linear matrix equation problems, i.e., Lyapunov
equation, Sylvester equation, and the variational problem,
again and again in various scenarios. ,e matrix inversion
problem is one of the most prominent subproblems in the
linear matrix equation problems. Among the problems
encountered in a variety of optimization problems, the
fundamental one is the solution of matrix inversion, such as
signal processing [1], biomedical prediction [2], image re-
construction [3], nonlinear optimization [4], and robot
inverse kinematics [5–8]. Generally speaking, the matrix
inversion problem can be formulated as AX � I, where

A ∈ Rn×n is a known constant matrix, X ∈ Rn×n is the un-
known matrix to be computed, and I ∈ Rn×n is an identity
matrix. Over the years, efforts were directed towards
computational issues of time-variant matrix inversion
(TVMI) and a wealth of algorithms were proposed and
applied to solving this problem [9–11]. For example, Yeung
and Kumbi [9] developed an inversion method based on the
multidimensional discrete Fourier transform of matrix se-
quences and applied it to an electron amplifier. In [10],
Benner et al. adopted Gauss–Huard algorithm to solve
TVMI problem. In [11], Xiao et al. designed a complex-
valued nonlinear recurrent neural network to solve time-
varying complex matrix inversion. Zhang et al. [12] dis-
cussed the solution of TVMI problem based on direct

Hindawi
Discrete Dynamics in Nature and Society
Volume 2021, Article ID 4227512, 21 pages
https://doi.org/10.1155/2021/4227512

mailto:zhynong@mail.sysu.edu.cn
https://orcid.org/0000-0002-3861-234X
https://orcid.org/0000-0002-2228-0395
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4227512


derivative dynamics (DDD) and proposed a zero-stable,
consistent, and convergent four-step model.

According to the classic solution of matrix inversion, the
time complexity of arithmetic operations is proportional to
O(n3), where n represents the dimension of the square
matrix [13]. Evidently, it is an unbearable cost for solving the
TVMI problem. ,erefore, it is an urgent need for effective
methods in TVMI problem solving.

In recent years, with the rise of the artificial neural net-
work, the recurrent neural network (RNN) has been thought
and manifested to be an effective option for TVMI problem
solving. Methods based on RNN have been proved to be
promising for RNN’s nature of high-speed parallel-processing
and convenience of hardware implementation [14–18]. To
solve the TVMI problem, Zhang et al. firstly proposed a new
class of RNN, Zhang neural network, abbreviated as ZNN
[19]. ,e essence of ZNN model is to construct a carefully
selected error-monitoring function, termed Zhang function
(ZF).,e ZF can be negative, zero, positive, bounded, or even
lower-unbounded. ,e traditional error-monitoring func-
tions are often some norm-based positive-definite energy
functions, which are not so flexible as ZFs. Moreover, since
the time-derivative information of the time-variant matrix is
fully utilized by ZFs, the resultant ZNN model can decrease
the lagging errors which are almost unavoidable in the tra-
ditional methods. In theoretical and practical researches, the
ZNN models claim their natural advantages in convergence
and high accuracy. Inspired by this idea, the ZFs have been
found to speed up and consolidate the development of various
ZNN models [20–26].

With the deepening of the research on solving TVMI,
designing a new ZF through specific classic equations, de-
riving new solution models, and discussing the convergence
and accuracy of the models have become the key to the
solution of the extended TVMI problem.

As a generalization of matrix inverse, the Moor-
e–Penrose generalized inverse has been widely investigated
[27]. It is applied to finding the least norm square solution of
nonuniform linear equations andmakes the form of solution
simple. ,e Moore–Penrose generalized inverse of a matrix
is unique in both real and complex fields, which can be
obtained theoretically by singular value decomposition
(SVD) algorithm [27]. Although the SVD algorithm pro-
vides a direction for TVMI problem solving, it is deeply
troubled by the high time complexity of the algorithm. For
example, according to the actual number of multiplication
operations, SVD algorithm needs 2mn2 + 4n3 operations to
find the Moore–Penrose generalized inverse of an m × n

matrix [27].,erefore, based on the mathematical definition
of inverse matrix, there have beenmany attempts to solve the
TVMI problem [28–30].

In view of the fundamental theoretical value of Penrose
equations (PEs) in the definition of generalized inverse, it is
necessary to study the novel TVMI solution models and find
equivalence between existing solution models from PEs. But
as far as we know, there is no relevant research so far. ,is
paper focuses on the PE relevant models. By constructing
different matrix error-monitoring functions from PEs, three
corresponding time-variant matrix inverse solution models

are derived. ,rough theoretical derivation and computer
simulation, the feasibility and the effectiveness of the new
models in TVMI problem solving are verified.

,e remainder of this paper is organized as follows.
Section 2 explains the PEs and some necessary equations. In
Section 3, we derive a new ZNN multiple-multiplication
model for matrix inversion, abbreviated as ZMMMI, from
PEs.,ereafter, we employ the Euler forward finite difference
(two-instant) formula, the four-instant Taylor–Zhang for-
mula, the six-instant Zhang time discretization (ZTD) for-
mula [31–33], the eight-instant ZTD formula, and the ten-
instant ZTD formula to develop five discrete algorithms to
compute TVMI. In Section 4, we derive a new PEs-based
Getz–Marsden dynamic system (PGMDS) model for time-
variant matrix inversion from PEs. ,ereafter, we employ the
five discrete formulas to present five discrete algorithms to
compute TVMI. In Section 5, we present a DDD (direct
derivative dynamics) neural network model for time-variant
matrix inversion on the basis of PEs. ,ereafter, we employ
the five discrete formulas to develop five discrete algorithms
to compute TVMI. In Section 6, we conduct numerical ex-
periments to verify the convergence and precision of the three
new models. Based on the experiment results, we compare
and discuss the effectiveness of the three models. Section 7
gives the conclusions and future directions of research.

,rough the research of this paper, more TVMI solution
models will be available to researchers. ,e main contri-
butions of this paper can be outlined as follows.

(1) ,ree different models for solving the TVMI are
proposed by defining different error-monitoring
functions from PEs for the first time.,is is the main
motivation of this paper.

(2) We propose and provide a novel ZMMMI model
from PEs, of which the stability and convergence are
proved theoretically, thereby being rare comple-
ments to the problem solving of TVMI.

(3) ,e paper investigates and provides the theoretical
analysis of the continuous-time models and finds
that the classic GMDS model can also be derived
from the PEs.

(4) For comparison, by exploiting the multiple-instant
ZTD formulas, five discrete algorithms for each of
the continuous-time ZMMMI, PGMDS, and DDD
models are presented and constructed, respectively.

(5) ,e stability and convergence of the ZMMMI2i
through ZMMMI10i algorithms and PGMDS2i
through PGMDS10i algorithms are substantiated by
numerical experiments of two benchmark examples.

(6) Numerical experiment results further indicate that
compared with the effective ZMMMI algorithms and
PGMDS algorithms, the DDD algorithms are less
effective for TVMI.

2. Penrose Equations

For the purpose of laying a basis for direction, some nec-
essary preliminaries of the time-variant matrix
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pseudoinverse are given. For a given real time-variant matrix
A(t) ∈ Rm×n, if one assumes that there exists an unknown
real time-variant X(t) ∈ Rn×m which [27, 34]

A(t)X(t)A(t) � A(t), (1a)

X(t)A(t)X(t) � X(t), (1b)

(A(t)X(t))
T

� A(t)X(t), (1c)

(X(t)A(t))
T

� X(t)A(t), (1d)

where t denotes the time, superscript T indicates the matrix
transpose operator, and X(t) represents the time-variant
pseudoinverse of A(t), which is often denoted by A+(t).
When rank (A(t)) is equal to m and A(t)AT(t) is non-
singular, the unique X(t) can be obtained as

X
+
(t) ≔ A

T
(t) A(t)A

T
(t) 

− 1
∈ Rn×m

. (2)

Equation (2) holds true when A(t) is full row rank.
Similarly, when A(t) is full column rank and A(t)AT(t) is
nonsingular, unique X(t) can be obtained as

X
+
(t) ≔ A

T
(t)A(t) 

− 1
A
T
(t) ∈ Rn×m

. (3)

In equations (2) and (3), we use superscript − 1 to indicate
the matrix inversion operator. Also, X+(t) is called the right
and left pseudoinverse of A(t) in (2) and (3), respectively.

3. New ZNN Model and Algorithms

,is section focuses on constructing another new ZF from
PEs and then derives a new continuous-time solution model
for Penrose pseudoinverse based on ZNN design formula
[35].

3.1.Continuous-TimeModel fromPEs. ,edesign formula of
ZNN is shown below:

_Z(t) � −cZ(t), (4)

where c ∈ R+ is the parameter whose physical meaning is the
reciprocal of the product of the corresponding capacitance
parameter and the resistance parameter. According to [28],
(4) is a first-order differential equation whose norm of the
general solution is inversely proportional to the exponential
function of c. ,erefore, in order to make Z(t) converge to
zero as rapid as possible, c should be set as large as the
physical hardware allows. Next, we discuss the ZNN model
in the real situation. We choose (1a) to be the ZF as

Z(t) � A(t)X(t)A(t) − A(t), (5)

and when t⟶ +∞, Z(t)⟶ 0 theoretically. ,en, we
take the derivative of both sides of (5) and get

_Z(t) � _A(t)X(t)A(t) + A(t) _X(t)A(t)

+ A(t)X(t) _A(t) − _A(t).
(6)

Substituting (5) and (6) into (4), we obtain
_Z(t) � −c(A(t)X(t)A(t) − A(t))

� _A(t)X(t)A(t) + A(t) _X(t)A(t)

+ A(t)X(t) _A(t) − _A(t).

(7)

Reformulating (6), we have

A(t) _X(t)A(t) � − _A(t)X(t)A(t) − A(t)X(t) _A(t) + _A(t)

− c(A(t)X(t)A(t) − A(t)).

(8)

In order to derive the multiple-multiplication model,
one assumes that A(t) is square and of full rank. To get the
explicit _X(t), we need to left multiply both sides of (8) by
A− 1(t) and right multiply both sides of (8) by A− 1(t) and
then get explicit _X(t) as

_X(t) � A
− 1

(t)(− _A(t)X(t)A(t) − A(t)X(t) _A(t)

+ _A(t) − c(A(t)X(t)A(t) − A(t)))A
− 1

(t).
(9)

,e goal of the model design in this section is to use the
known matrix to estimate _A(t), but A− 1(t) appears on the
right-hand side of (9), so it is necessary to use the substi-
tution technique to replace A− 1(t) with the appropriate
known matrix. Based on ,eorem 1 in [36], the state matrix
X(t) of (1a) globally converges to A− 1(t) when the sampling
gap ϵ⟶ 0 and t evolves large enough. ,erefore, X(t)

would be a feasible substitute for A− 1(t). ,is substitution
technique has been proven to be effective in [37–39].
,erefore, we have the explicit dynamics of the ZNNmodels
as

_X(t) � X(t)(− _A(t)X(t)A(t) − A(t)X(t) _A(t) + _A(t)

− c(A(t)X(t)A(t) − A(t)))X(t).

(10)

,is novel model differs from any previous TVMI so-
lution model. Note that the right-hand side of (10) involves
multiple matrix-multiplication, so the model is termed as
continuous-time ZMMMI model (10). To prepare for the
following discussion, a lemma is given below [28].

Lemma 1. For a time-variant real matrix A(t) ∈ Rn×n and
its inverse A− 1(t), we have _A

− 1
(t) � −A− 1(t) _A(t)A− 1(t).

Proof. Because A(t)A− 1(t) � I with I ∈ Rn×n being the
identity matrix, we have

d A(t)A
− 1

(t) 

dt
�
dI

dt
� 0. (11)

Expanding the left-hand side of the above equation, we
obtain

d(A(t))

dt
A

− 1
(t) + A(t)

d A
− 1

(t) 

dt
� 0. (12)
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Next, left multiply A− 1(t) on both sides of the above
equation and then reformulate it. ,us, we obtain

d A
− 1

(t) 

dt
� −A

− 1
(t)

d(A(t))

dt
A

− 1
(t). (13)

For simplicity, the notation d(·)/dt is substituted by (·)
.

.
,en, we obtain

_A
− 1

(t) � −A
− 1

(t) _A(t)A
− 1

(t). (14)

,e proof is thus complete. □

For the continuous-time ZMMMI model (10), we pro-
vide the following proposition on its exponential conver-
gence performance with a proper random initial state.

Proposition 1. For a smoothly time-variant real matrix
A(t) ∈ Rn×n of full rank, the state matrix X(t) of ZMMMI
model (10) starting from proper random initial state X(t)

exponentially converges to the time-variant theoretical inverse
of A(t).

Proof. Let α(t) � X(t) − A− 1(t) represent the difference
between the solution generated by ZMMMI model (10) and
the theoretical inverse of A(t). Substituting X(t) � α(t) +

A− 1(t) into (8), we obtain

A _α + _A
− 1

 A � − _A α + A
− 1

 A − A α + A
− 1

  _A + _A

− c A α + A
− 1

 A − A ,

(15)

where A, α, _A, and _α denote the time-variant matrices A(t),
α(t), _A(t), and _α(t), respectively, for conciseness. According
to Lemma 1 andA− 1A � AA− 1 � I, (15) can be reformulated
to

_AαA + A _αA + Aα _A � −cAαA. (16)

Let W � AαA. ,e above equation can be rewritten as
_W � −cW, (17)

which is the compact matrix form of the following set of
n × n first-order differential equations:

_ωij(t) � −cωij(t), ∀i, j ∈ 1, 2, . . . , n. (18)

Evidently, a Lyapunov function candidate lij � ω2
ij/2≥ 0

can be defined for ijth subsystem (18), which is also positive
definite, i.e., lij > 0 for ωij ≠ 0 and lij � 0 for ωij � 0.
,erefore, we have its time derivative

dlij(t)

dt
� ωij _ωij � −cω2

ij. (19)

Evidently, _lij is negative definite, i.e., _lij < 0 forωij ≠ 0 and
_lij � 0 for ωij � 0. Besides, when |ωij|⟶∞, the Lyapunov
function candidate lij � |ωij|

2/2⟶∞, where symbol | · |

represents the absolute value of a scalar value. According to
the Lyapunov stability theory, ωij(t) (globally) converges to
zero for any i, j ∈ 1, 2, . . . , n [40]. ,erefore, for ZMMMI
model (10), the state matrix X(t) can converge to the time-
variant theoretical inverse A− 1(t) starting from proper
random initial state X(0), e.g., sufficiently close to A− 1(0)

[36, 41, 42]. Approximately and conditionally, we prove the
exponential convergence performance of ZMMMI model
(10).

We get the analytic solution of (18) in the following
matrix form:

W(t) � W(0)e
−ct

. (20)

,en, we further obtain

‖W(t)‖F � ‖W(0)‖Fe
−ct

, (21)

where symbol ‖ · ‖F denotes the Frobenius norm of a matrix
and e represents Euler number. According to (21), as
t⟶∞, ‖W(t)‖F⟶ 0 with rate c> 0 exponentially. ,e
proof of exponential convergence of ZMMMI model (10) is
thus completed. □

3.2. Discrete Algorithms. ,e hardware implementation of
the continuous-time ZMMMI model (10) needs discrete
algorithm. In this section, we discuss five discrete algorithms
for the continuous-time ZMMMI model (10).

3.2.1. Euler Forward Formula-Based Algorithm. For sim-
plicity, the following Euler forward difference method is
referred [43, 44]:

_X tk(  �
1
ϵ

X tk+1(  − X tk( (  + O(ϵ), (22)

where ϵ> 0 represents the sampling gap and k � 0, 1, 2, . . .

represents the iteration number. tk � kϵ denotes the sam-
pling time at iteration number k. For simplicity, we denote
Xk � X(tk), and then (22) is transformed as

_Xk �
1
ϵ

Xk+1 − Xk(  + O(ϵ). (23)

With (23), we discretize the continuous-time ZMMMI
model (10) as

1
ϵ

Xk+1 − Xk(  � Xk − _AkXkAk − AkXk
_Ak + _Ak − c AkXkAk − Ak(  Xk + O(ϵ), (24)
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which is further formulated as

Xk+1≐Xk + ϵXk − _AkXkAk − AkXk
_Ak + _Ak Xk − hXk AkXkAk − Ak( Xk, (25)

where h � ϵc> 0 denotes sufficiently small step length.
Because it only depends on two sampling points in the past
time, algorithm (25) is named as ZMMMI2i algorithm. It is
worth pointing out that ϵ> 0 should be set sufficiently small
to ensure the convergence of the discrete model of ZMMMI
model (10).

3.2.2. Taylor–Zhang Discretization Formula-Based
Algorithm. According to [45], TZDF is presented as

_uk �
1
ϵ

uk+1 −
3
2
uk + uk−1 −

1
2
uk−2  + O ϵ2 . (26)

With (10) and (26), the four-instant ZMMMI algorithm is
named as ZMMMI4i algorithm, which is expressed as follows:

Xk+1≐ ϵXk − _AkXkAk − AkXk
_Ak + _Ak Xk − hXk AkXkAk − Ak( Xk

+
3
2
Xk − Xk−1 +

1
2
Xk−2,

(27)

where h> 0 denotes the step size again as before.

3.2.3. Six-Instant ZTD Formula-Based Algorithm. In [37], a
six-instant ZTD formula is given as follows:

_uk �
1
ϵ

1
2
uk+1 −

5
48

uk −
1
4
uk−1 −

1
8
uk−2

−
1
12

uk−3 +
1
16

uk−4 + O ϵ3 .

(28)

With (10) and (28), the six-instant ZMMMI algorithm is
named as ZMMMI6i algorithm, which is given as follows:

Xk+1≐ 2ϵXk − _AkXkAk − AkXk
_Ak + _Ak Xk − 2hXk AkXkAk − Ak( Xk

+
5
24

Xk +
1
2
Xk−1 +

1
4
Xk−2 +

1
6
Xk−3 −

1
8
Xk−4,

(29)

where h> 0 denotes the step size again as before.

3.2.4. Eight-Instant ZTD Formula-Based Algorithm. In [37],
an eight-instant ZTD formula is given as follows:

_uk �
1

111ϵ
50uk+1 −

51
10

uk − 20uk−1 − 30uk−2

−10uk−3 +
35
4

uk−4 +
44
5

uk−5 − 5uk−6 + O ϵ4 .

(30)

With (10) and (30), the eight-instant ZMMMI algorithm
is named as ZMMMI8i algorithm, which is given as follows:

Xk+1≐ ϵXk − _AkXkAk − AkXk
_Ak + _Ak Xk − hXk AkXkAk − Ak( Xk

+
111
50

51
10

Xk + 20Xk−1 + 30Xk−2 + 10Xk−3 −
35
4

Xk−4 −
44
5

Xk−5 + 5Xk−6 .

(31)
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3.2.5. Ten-Instant ZTD Formula-Based Algorithm. In [25],
one ten-instant formula is given as follows:

_uk �
1
ϵ



9

i�0
ciuk+1−i + O ϵ5 , (32)

where c0 � 100/237, c1 � 947/66360, c2 � −20/237,
c3 � −100/237, c4 � −10/79, c5 � 40/237, c6 � 88/1185,
c7 � 10/237, c8 � −230/1659, and c9 � 95/1896 are the co-
efficients presented in [25]. With (10) and (32), the ten-
instant ZMMMI algorithm is named as ZMMMI10i algo-
rithm, which is thus obtained:

Xk+1≐
1
c0
ϵXk − _AkXkAk − AkXk

_Ak + _Ak Xk − hXk AkXkAk − Ak( Xk  − 
9

i�1
ciXk+1−i, (33)

where h � ϵc. It should be noticed that when h is a given
constant, the truncation error is consistent with O(ϵ6).
When h is not fixed and c is a constant, the error is upgraded
to O(ϵ5) as a result.

3.3. Steady-State Residual Errors of Discrete Algorithms.
Next, a theorem is given to show that the steady-state re-
sidual errors of limk⟶+∞sup‖Ak+1Xk+1Ak+1 − Ak+1‖F are
equivalent to the precision of the corresponding discrete
algorithm in this section.

Theorem 1. Consider a smoothly time-variant real matrix
A(t) ∈ Rn×n of full rank. With sufficiently small sampling gap
ϵ ∈ (0, 1), the maximal steady-state residual error
limk⟶+∞sup‖Ak+1Xk+1Ak+1 − Ak+1‖F of discrete algorithm
(25), (27), (29), (31), or (33) is O(ϵp), where p � 2, 3, 4, 5 or 6.

Proof. According to,eorems 1 and 2 in [46], we know the
fact that (25) is 0-stable, consistent, and convergent. As a
result, it converges with the order of its truncation error.
Assume that Bk+1 is the exact solution of Ak+1Bk+1 � I.
According to (25), (27), (29), (31), and (33), we have
Xk+1 � Bk+1 + O(ϵp), with ϵ ∈ (0, 1), and further have

� lim
k⟶+∞

sup Ak+1Xk+1Ak+1 − Ak+1
����

����F

� lim
k⟶+∞

sup Ak+1 Bk+1 + O ϵp( ( Ak+1 − Ak+1
����

����F

� lim
k⟶+∞

sup I + Ak+1O ϵ
p

( ( Ak+1 − Ak+1
����

����F

� lim
k⟶+∞

sup Ak+1 + A
2
k+1O ϵ

p
(  − Ak+1

����
����F

� lim
k⟶+∞

sup A
2
k+1O ϵ

p
( 

����
����F

(34)

,e proof is thus completed. □

4. GMDS Model and Algorithms

,is section focuses on constructing new ZF from PEs and
then derives continuous-time PGMDS solution model for
matrix inverse based on ZNN design formula. Furthermore,
we develop five discrete algorithms for continuous-time
PGMDS model by exploiting the multiple-instant ZTD
formulas.

4.1. Continuous-Time Model from PEs. In this section, we
choose (1b) to be the ZF as

Z(t) � X(t)A(t)X(t) − X(t), (35)

and when t⟶ +∞, Z(t)⟶ 0 theoretically. ,en, we
take the derivative of both sides of (1b) and get

_Z(t) � _X(t)A(t)X(t) + X(t) _A(t)X(t) + X(t)A(t) _X(t) − _X(t).

(36)

Substituting (35) and (36) into (4), we obtain
_X(t)A(t)X(t) + X(t) _A(t)X(t) + X(t)A(t) _X(t) − _X(t)

� −c(X(t)A(t)X(t) − X(t)).

(37)

According to the fact that A(t)X(t) � X(t)A(t) � I, we
reformulate (36) and then obtain

_X(t) � −X(t) _A(t)X(t) − c(X(t)A(t)X(t) − X(t)).

(38)

Model (38), which is derived from PE (1b), is exactly the
Getz–Marsden dynamic system mentioned in [36]. ,ere-
fore, the model is named as continuous-time PGMDSmodel
(38).

4.2. Discrete Algorithms. In this part, we discretize the
continuous-time PGMDS model (38) with the following five
discrete formulas as those in Section 3.

4.2.1. Euler Forward Formula-Based Algorithm. First, (38) is
discretized as

_Xk � −Xk
_AkXk − c XkAkXk − Xk(  + O(ϵ). (39)

With (39) and (23), the two-instant PGMDS algorithm is
named as PGMDS2i algorithm, which is expressed as
follows:

Xk+1≐Xk − ϵXk
_AkXk − h XkAkXk − Xk( , (40)

where h � ϵc> 0 denotes the step length as before.

4.2.2. Taylor–Zhang Discretization Formula-Based
Algorithm. With (39) and (26), the four-instant PGMDS

6 Discrete Dynamics in Nature and Society



algorithm is named as PGMDS4i algorithm, which is
expressed as follows:

Xk+1≐ − ϵXk
_AkXk − h XkAkXk − Xk(  +

3
2
Xk − Xk−1 +

1
2
Xk−2,

(41)

where h> 0 denotes the step size again as before.

4.2.3. Six-Instant ZTD Formula-Based Algorithm. With (39)
and (28), the six-instant PGMDS algorithm is named as
PGMDS6i algorithm, which is given as follows:

Xk+1≐ − ϵ2Xk
_AkXk − 2h XkAkXk − Xk(  +

5
24

Xk

+
1
2
Xk−1 +

1
4
Xk−2 +

1
6
Xk−3 −

1
8
Xk−4,

(42)

where h> 0 denotes the step size again as before.

4.2.4. Eight-Instant ZTD Formula-Based Algorithm. With
(39) and (30), the eight-instant PGMDS algorithm is named
as PGMDS8i algorithm, which is given as follows:

Xk+1≐ − ϵXk
_AkXk − h XkAkXk − Xk(  +

111
50

51
10

Xk + 20Xk−1 + 30Xk−2

+ 10Xk−3 −
35
4

Xk−4 −
44
5

Xk−5 + 5Xk−6,

(43)

where h � ϵc> 0 denotes the step length as before.

4.2.5. Ten-Instant ZTD Formula-Based Algorithm. With
(39) and (32), the ten-instant PGMDS algorithm is named as
PGMDS10i algorithm, which is thus obtained:

Xk+1≐
1
c0

−ϵXk
_AkXk − h XkAkXk − Xk(   − 

9

i�1
ciXk+1−i,

(44)

where h � ϵc> 0 denotes the step length as before.

4.3. Steady-State Residual Errors of Discrete Algorithms.
Next, a theorem is given to show that the steady-state re-
sidual of limk⟶+∞sup‖Xk+1Ak+1Xk+1 − Xk+1‖F is equivalent
to the precision of the corresponding discrete algorithm in
this section.

Theorem 2. Consider a smoothly time-variant real matrix
A(t) ∈ Rn×n of full rank. With sufficiently small sampling gap
ϵ ∈ (0, 1), the maximal steady-state residual error
limk⟶+∞sup‖Xk+1Ak+1Xk+1 − Xk+1‖F of discrete algorithm
(40)–(44) is O(ϵp), where p � 2, 3, 4, 5, and 6, respectively.

Proof. With the same conditions as ,eorem 1, we know
the fact that (39) is 0-stable, consistent, and convergent [46].
As a result, it converges with the order of its truncation error.
Assume that Bk+1 satisfies Ak+1Bk+1 � I and Xk+1 � Bk+1 +

O(ϵp) with ϵ ∈ (0, 1) as before. We further have

� lim
k⟶+∞

sup Xk+1Ak+1Xk+1 − Xk+1
����

����F

� lim
k⟶+∞

sup Bk+1 + O ϵp( ( Ak+1Xk+1 − Xk+1
����

����F

� lim
k⟶+∞

sup Bk+1Ak+1 + Ak+1O ϵ
p

( ( Xk+1 − Xk+1
����

����F

� lim
k⟶+∞

sup I + Ak+1O ϵ
p

( ( Xk+1 − Xk+1
����

����F

� lim
k⟶+∞

sup Xk+1 + Ak+1Xk+1O ϵ
p

(  − Xk+1
����

����F

� lim
k⟶+∞

sup Ak+1 Bk+1 + O ϵp( ( O ϵp( 
����

����F

� lim
k⟶+∞

sup O ϵp(  + Ak+1O ϵ
2p

 
�����

�����F
� O ϵp( .

(45)

,e proof is thus completed. □

5. DDD Model and Algorithms

,is section focuses on constructing direct derivative dy-
namics from one appropriate Penrose equation and then
derives direct derivative solutionmodel for matrix inversion.

5.1. Continuous-Time Model from PEs. We take the deriv-
ative on both sides of (1a) and then obtain

_A(t)X(t)A(t) + A(t) _X(t)A(t) + A(t)X(t) _A(t) � _A(t).

(46)

To get the explicit expression of _X(t), we reformulate
above equation and obtain
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_X(t) � −A
− 1

(t) _A(t)X(t) − X(t) _A(t)A
− 1

· (t) + A
− 1

(t) _A(t)A
− 1

(t).
(47)

According to the assumption of the matrix inverse
problem, we can substitute A− 1(t) with X(t) in (47) and
thus obtain

_X(t) � −X(t) _A(t)X(t) − X(t) _A(t)X(t) + X(t) _A(t)X(t).

(48)

,e right-hand side of above equation can be simplified
as

_X(t) � −X(t) _A(t)X(t). (49)

Finally, we present the continuous-time direct derivative
dynamics model (49), which is termed as continuous-time
DDD model (49) for short.

5.2. Discrete Algorithms. In this part, we discretize the
continuous-time DDD model (49) with the following five
discrete formulas as those in Section 3.

5.2.1. Euler Forward Formula-Based Algorithm. First, (49) is
discretized as

_Xk � −XkAk

.

Xk + O(ϵ). (50)

With (50) and (23), the two-instant DDD algorithm is
named as DDD2i algorithm, which is expressed as follows:

Xk+1≐Xk − ϵXk
_AXk. (51)

5.2.2. Taylor–Zhang Discretization Formula-Based
Algorithm. With (50) and (26), the four-instant DDD al-
gorithm is named as DDD4i algorithm, which is expressed as
follows:

Xk+1≐ − ϵXkAk

.

Xk +
3
2
Xk − Xk−1 +

1
2
Xk−2. (52)

5.2.3. Six-Instant ZTD Formula-Based Algorithm. With (50)
and (28), the six-instant DDD algorithm is named as DDD6i
algorithm, which is given as follows:

Xk+1≐ − ϵXkAk

.

Xk +
5
24

Xk +
1
2
Xk−1 +

1
4
Xk−2 +

1
6
Xk−3 −

1
8
Xk−4.

(53)

5.2.4. Eight-Instant ZTD Formula-Based Algorithm. With
(50) and (30), the eight-instant DDD algorithm is named as
DDD8i algorithm, which is given as follows:

Xk+1≐ − ϵXkAk

.

Xk +
111
50

51
10

Xk + 20Xk−1 + 30Xk−2 + 10Xk−3

−
35
4

Xk−4 −
44
5

Xk−5 + 5Xk−6.

(54)

5.2.5. Ten-Instant ZTD Formula-Based Algorithm. With
(50) and (32), the ten-instant DDD algorithm is named as
DDD10i algorithm, which is thus obtained:

×104

10-20

10-15

10-10

10-5

100

105

0.5 1 1.5 2 2.5 30
k

ZMMMI2i
ZMMMI4i
ZMMMI6i

ZMMMI8i
ZMMMI10i

(a)

×104

10-20

10-15

10-10

10-5

100

105

0.5 1 1.5 2 2.5 30
k

ZMMMI2i
ZMMMI4i
ZMMMI6i

ZMMMI8i
ZMMMI10i

(b)

Figure 1: Residual error trajectories synthesized by five ZMMMI algorithms for example 1 (with ϵ � 0.001 s and c � 5.0). (a) Trajectories of
‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.

8 Discrete Dynamics in Nature and Society



Xk+1≐ − ϵXkAk

.

Xk − 

9

i�1
ciXk+1−i. (55)

6. Computer Experiments and Results

In this section, computer experiments is carried out to verify
the effectiveness of the presented three models, ZMMMI
model (10), PGMDS model (38), and DDD model (49), on
three time-variant matrix inversion examples.

6.1. Example 1. Let us consider the following discrete-time
matrix inversion problem with Xk+1 to be obtained during
[tk, tk+1), of which Ak is defined as

A tk(  �
sin tk(  −cos tk( 

cos tk(  sin tk( 
  ∈ R2×2

. (56)

,e task duration (i.e., final time) is uniformly set as
td � 30 s. To verify the computational results, the theoretical
inversion of matrix (56) can be obtained as

Y tk(  � A
− 1

tk(  �
sin tk(  cos tk( 

−cos tk(  sin tk( 
  ∈ R2×2

, (57)
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Figure 2: Solution trajectories synthesized by Yk+1 (i.e., A−1
k+1) and by ZMMMI10i algorithm (33) for example 1 (with ϵ � 0.001 s and

c � 5.0). (a) Trajectories of y11 and x11. (b) Trajectories of y12 and x12. (c) Trajectories of y21 and x21. (d) Trajectories of y22 and x22.
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which is given for checking the effectiveness and correctness
of the three models and corresponding algorithms. ,e
initial values of the example are arbitrarily set as

Y(0) �
1.5 1.9

2.3 5.8
 , (58)

for all algorithms.

6.1.1. New Models of Zhang Neural Network. Firstly, we
check the effectiveness and the correctness of ZMMMI
model (10) with five discrete algorithms, i.e., ZMMMI2i
algorithm (25), ZMMMI4i algorithm (27), ZMMMI6i al-
gorithm (29), ZMMMI8i algorithm (31), and ZMMMI10i
algorithm (33).,e step size and task duration are uniformly
set as h � 0.005 and td � 30 s. ,e corresponding results of
computer experiments are shown in Figures 1 and 2.
Figure 1(a) shows the residual errors ‖Xk+1Ak+1 − I‖F of the
five ZMMMI algorithms, with ϵ � 0.001 s and h � 0.005.
Figure 1(b) illustrates the residual errors ‖Xk+1 − A−1

k+1‖F of
the same five ZMMMI algorithms as before. From the
trajectories of all entries in Figures 2(a)–2(d), the solution of
the model coincides with the theoretical solution perfectly.
In addition, we see that the residual error trajectories
synthesized by different ZMMMI algorithms quickly sta-
bilized to the steady-state error level, after undergoing the
initial hundreds of recursions.

6.1.2. PGMDS Model. First, we check the effectiveness and
the correctness of PGMDS model (38) with five discrete
algorithms, i.e., PGMDS2i algorithm (40), PGMDS4i algo-
rithm (41), PGMDS6i algorithm (42), PGMDS8i algorithm
(43), and PGMDS10i algorithm (44). ,e step size and task

duration are uniformly set as h � 0.005 and td � 30 s. ,e
corresponding results of computer experiments are shown
in Figures 3 and 4. Figure 3(a) shows the residual errors
‖Xk+1Ak+1 − I‖F of the five PGMDS algorithms, with
ϵ � 0.001 s and h � 0.005. Figure 3(b) illustrates the residual
errors ‖Xk+1 − A−1

k+1‖F of the same five PGMDS algorithms as
before. From the trajectories of all entries in Figures 4(a)–
4(d), the solution of the model coincides with the theoretical
solution perfectly. In addition, we see that the residual error
trajectories synthesized by different PGMDS algorithms
quickly stabilized to the theoretical error level, after un-
dergoing the initial hundreds of recursions.

6.1.3. DDD Model. First, we check the effectiveness and
correctness of DDD model (49) with five discrete algo-
rithms, i.e., DDD2i algorithm (51), DDD4i algorithm (52),
DDD6i algorithm (53), DDD8i algorithm (54), and
DDD10i algorithm (55). ,e step size and task duration are
uniformly set as h � 0.0001 and td � 30 s. ,e corre-
sponding results of computer experiments are shown in
Figures 5 and 6. Figure 5(a) shows the residual errors
‖Xk+1Ak+1 − I‖F of the five DDD algorithms, with
ϵ � 0.001 s and h � 0.005. Figure 5(b) illustrates the residual
errors ‖Xk+1 − A−1

k+1‖F of the same five DDD algorithms as
before. From the trajectories of all entries in Figures 6(a)
and 6(b), even for the model with the highest accuracy,
DDD10i algorithm (55), its solution still cannot converge
to the theoretical solution.

6.2. Example 2. ,e second time-variant matrix is a 3 × 3
real matrix which is shown as follows:
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Figure 3: Residual error trajectories synthesized by five PGMDS algorithms for example 1 (with ϵ � 0.001 s and c � 5.0). (a) Trajectories of
‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.
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A tk(  �

5 + cos tk(  cos tk(  −sin tk( 

cos tk(  3 + sin tk(  sin tk( 

cos tk(  −cos tk(  2 + sin tk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (59)

where A(tk) ∈ R3×3. To verify the computational results, we
utilize the theoretical inverse of A(tk), which is denoted as
Y(tk) � (yij(tk)). Because Y(tk) is too complicated, it is

omitted here. ,e initial values of the example are arbitrarily
set as

Y(0) �

9.5 0.7 0.6

−1.1 12 1.3

−1.6 0.2 9.0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (60)
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Figure 4: Solution trajectories synthesized by Yk+1 (i.e., A−1
k+1) and by PGMDS10i algorithm (39) for example 1 (with ϵ � 0.001 s and

c � 5.0). (a) Trajectories of y11 and x11. (b) Trajectories of y12 and x12. (c) Trajectories of y21 and x21. (d) Trajectories of y22 and x22.
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Figure 5: Residual error trajectories synthesized by five DDD algorithms for example 1 (with ϵ � 0.001 s and c � 5.0). (a) Trajectories of
‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.
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Figure 6: Continued.
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,e task duration is uniformly set as td � 30 s.

6.2.1. ZMMMI Model. ,e results of the numerical exper-
iments for ZMMMI2i algorithm (25), ZMMMI4i algorithm
(27), ZMMMI6i algorithm (29), ZMMMI8i algorithm (31),

and ZMMMI10i algorithm (33) are shown in Figures 7 and
8. ,e experimental results are satisfactory as expected.

6.2.2. PGMDS Model. ,e results of the numerical ex-
periments for PGMDS2i algorithm (40), PGMDS4i
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Figure 6: Solution trajectories synthesized by Yk+1 (i.e., A−1
k+1) and by DDD10i algorithm (55) for example 1 (with ϵ � 0.001 s and c � 5.0).

(a) Trajectories of y11 and x11. (b) Trajectories of y12 and x12. (c) Trajectories of y21 and x21. (d) Trajectories of y22 and x22.
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Figure 7: Residual error trajectories synthesized by five ZMMMI algorithms for example 2 (with ϵ � 0.0001 s and c � 2.0). (a) Trajectories of
‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.
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algorithm (41), PGMDS6i algorithm (42), PGMDS8i al-
gorithm (43), and PGMDS10i algorithm (44) are illus-
trated in Figures 9 and 10. ,e experimental results are
satisfactory as expected.

6.2.3. DDDModel. ,e results of the numerical experiments
for DDD2i algorithm (51), DDD4i algorithm (52), DDD6i
algorithm (53), DDD8i algorithm (54), and DDD10i algo-
rithm (55) are shown in Figures 11 and 12. In terms of
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Figure 8: Solution trajectories synthesized by Yk+1 (i.e., A−1
k+1) and by ZMMMI10i algorithm (33) for example 2 (with ϵ � 0.0001 s and

c � 2.0). (a) Trajectories of y11 and x11. (b) Trajectories of y12 and x12. (c) Trajectories of y13 and x13. (d) Trajectories of y21 and x21. (e)
Trajectories of y22 and x22. (f ) Trajectories of y23 and x23. (g) Trajectories of y31 and x31. (h) Trajectories of y32 and x32. (i) Trajectories of y33
and x33.
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convergence and accuracy, the experimental results in this
example are consistent with those in example 1.

6.3. Example 3. ,is example compares solely the effective
models, i.e., ZMMMI (10) and PGMDS (38), with a 4 × 4 real
matrix, which is shown as follows:

A tk(  �

6 + ck ck ck ck

ck 5 + sk −sk ck

ck ck 4 + sk −sk

sk sk ck 2 + sk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (61)

whereA(tk) ∈ R4×4 and sk and ck denote sin(tk) and cos(tk),
respectively. To verify the computational results, we utilize
the theoretical inverse of A(tk), which is denoted as
Y(tk) � (yij(tk)). Because Y(tk) is too complicated, it is
omitted here. ,e initial values of the example are arbitrarily
set as

Y(0) �

6 1 1 1

1 5 0 1

1 1 4 0

0 0 1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (62)

,e task duration is uniformly set as td � 30 s.

6.3.1. ZMMMI Model. ,e results of the numerical exper-
iments for ZMMMI2i algorithm (25), ZMMMI4i algorithm
(27), ZMMMI6i algorithm (29), ZMMMI8i algorithm (31),
and ZMMMI10i algorithm (33) are shown in Figures 13(a)

and 13(b). ,e experimental results are satisfactory as
expected.

6.3.2. PGMDS Model. ,e results of the numerical experi-
ments for PGMDS2i algorithm (40), PGMDS4i algorithm
(41), PGMDS6i algorithm (42), PGMDS8i algorithm (43),
and PGMDS10i algorithm (44) are illustrated in
Figures 14(a) and 14(b). ,e experimental results are sat-
isfactory as expected.

6.3.3. Comparison and Discussion. We mainly investigate
the residual error of the models and the coincidence be-
tween the solution matrix with the ground-truth matrix
inverse. From the discrete simulation results of two ex-
amples of each five discrete algorithms, it can be seen that
the convergence of ZMMMI model (10) and PGMDS
model (38) is good, which is completely consistent with the
conclusion of Proposition 1 and ,eorems 1 and 2.
,erefore, it can be concluded that the two models and
corresponding discrete algorithms are effective. However,
in the case of DDD model (49), the residual errors and the
coincidence of the solution matrix entries are not satis-
factory, so we evidently summarize that the effectiveness of
DDD model (49) and corresponding discrete algorithms is
not enough.

6.3.4. Remark. Note that the convergence of DDDmodels is
shown in [12, 47], where the DDD models are utilized to
solve the time-varying nonlinear optimization problems.
,ere are three points worth further discussing. First, in [12],
the initial value is set to be the theoretical value, and the
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Figure 9: Residual error trajectories synthesized by five PGMDS algorithms for example 2 (with ϵ � 0.001 s and c � 5.0). (a) Trajectories of
‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.
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Figure 10: Solution trajectories synthesized by Yk+1 (i.e., A−1
k+1) and by PGMDS10i algorithm (44) for example 2 (with ϵ � 0.001 s and

c � 5.0). (a) Trajectories of y11 and x11. (b) Trajectories of y12 and x12. (c) Trajectories of y13 and x13. (d) Trajectories of y21 and x21. (e)
Trajectories of y22 and x22. (f ) Trajectories of y23 and x23. (g) Trajectories of y31 and x31. (h) Trajectories of y32 and x32. (i) Trajectories of y33
and x33.
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Figure 11: Residual error trajectories synthesized by five DDD algorithms for example 2 (with ϵ � 0.001 s and c � 1.0). (a) Trajectories of
‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.
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Figure 12: Continued.
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Figure 12: Solution trajectories synthesized by Yk+1 (i.e., A−1
k+1) and by DDD10i algorithm (55) for example 2 (with ϵ � 0.001 s and c � 1.0).

(a) Trajectories of y11 and x11. (b) Trajectories of y12 and x12. (c) Trajectories of y13 and x13. (d) Trajectories of y21 and x21. (e) Trajectories of
y22 and x22. (f ) Trajectories of y23 and x23. (g) Trajectories of y31 and x31. (h) Trajectories of y32 and x32. (i) Trajectories of y33 and x33.
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Figure 13: Residual error trajectories synthesized by five ZMMMI algorithms for example 3 (with ϵ � 0.0001 s and c � 2.0). (a) Trajectories
of ‖Xk+1Ak+1 − I‖F. (b) Trajectories of ‖Xk+1 − A−1

k+1‖F.
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computational process is not disturbed. Second, compara-
tively, in this study, the initial value is not close enough to the
theoretical value. ,ird, the higher-order discrete algorithm
(i.e., the ten-instant discrete algorithm) is more easily af-
fected by the rounding error disturbance [44]. ,us, the
experimental results of the DDD model in this study
showing the divergence are actually complementing the
previous research studies, in addition to the confirmation of
[47] about divergence. ,erefore, we summarize that the
DDD model is generally less effective, with further in-depth
investigation being also a future research direction.

7. Conclusion

In this paper, we have shed some light on the matrix in-
version solution models derivation, i.e., ZMMMI model
(10), PGMDSmodel (38), and DDDmodel (49), from PEs. It
has provided a new perspective to make full use of the
theoretical value of PEs. First, with the substitution tech-
nique and design formula of ZNN, we have investigated and
proposed the new model of ZNN for matrix inversion
problem. ,en, we have discussed the convergence and
accuracy of ZMMMI model (10) and presented two theo-
rems and proofs about it. On the basis of the model, we have
developed five ZMMMI algorithms to discretize continuous-
time ZMMMI model (10). Second, with the substitution
technique and design formula of ZNN, we have investigated
and presented PGMDS model (38) for matrix inversion
problem. On the basis of the model, we have shown five
PGMDS algorithms to discretize continuous-time PGMDS
model (38). ,ird, with the substitution technique and
design formula of ZNN, we have presented DDDmodel (49)
for matrix inversion problem. On the basis of the model, we

have developed five DDD algorithms to discretize contin-
uous-time DDDmodel (38). Fourth, we have prepared three
examples to calculate the inverse of matrices by using the
above three models, respectively. ,e results illustrate that
ZMMMI model (10) and PGMDS model (38) are effective,
while DDD model (49) is less effective. In the future, based
on PEs, we will use the substitution technique and ZNN
design formula to discuss more efficient RNN models for
TVMI problem, including pseudo-inversion and complex
matrix inversion.
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