Hindawi

Discrete Dynamics in Nature and Society
Volume 2023, Article ID 9808134, 1 page
https://doi.org/10.1155/2023/9808134

Retraction

@ Hindawi

Retracted: Research on Human Motion Analysis in Moving Scene
Based on Timing Detection and Video Description Algorithm

Discrete Dynamics in Nature and Society

Received 22 August 2023; Accepted 22 August 2023; Published 23 August 2023

Copyright © 2023 Discrete Dynamics in Nature and Society. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

This article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. This in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research
reported

(3) Discrepancies between the availability of data and
the research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Peer-review manipulation

The presence of these indicators undermines our con-
fidence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] Q. Shen and S. Ye, “Research on Human Motion Analysis in
Moving Scene Based on Timing Detection and Video De-
scription Algorithm,” Discrete Dynamics in Nature and Society,
vol. 2021, Article ID 4320846, 10 pages, 2021.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9808134

Hindawi

Discrete Dynamics in Nature and Society
Volume 2021, Article ID 4320846, 10 pages
https://doi.org/10.1155/2021/4320846

Research Article

Hindawi

Research on Human Motion Analysis in Moving Scene Based on
Timing Detection and Video Description Algorithm

Quanping Shen' and Songzhong Ye

! Minjiang Normal College, Fuzhou 350018, Fujian, China
2Sports Industry Development Research Center, Fujian Jiangxia University, Fuzhou 350108, Fujian, China

Correspondence should be addressed to Songzhong Ye; ysz97@fjjxu.edu.cn
Received 3 November 2021; Revised 27 November 2021; Accepted 1 December 2021; Published 16 December 2021
Academic Editor: Gengxin Sun

Copyright © 2021 Quanping Shen and Songzhong Ye. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Technical movement analysis requires specialized domain knowledge and processing a large amount of data, and the advantages of Al
in processing data can improve the efficiency of data analysis. In this paper, we propose a feature pyramid network-based temporal
action detection (FPN-TAD) algorithm, which is used to solve the problem that the action proposal module has a low recall rate for
small-scale temporal target action regions in the current video temporal action detection algorithm research. This paper is divided
into three parts. The first part is an overview of the algorithm; the second part elaborates the network structure and the working
principle of the FPN-TAD algorithm; and the third part gives the experimental results and analysis of the algorithm.

1. Introduction

In recent years, with the continuous development and ap-
plication of computer technology and artificial intelligence
technology, vision-based human motion analysis technology
has been rapidly developed and widely paid attention to. At
present, vision-based human motion analysis is still a
challenging topic in computer vision, mainly involving
several disciplines such as pattern recognition, image pro-
cessing, and virtual reality, and has a wide range of appli-
cation prospects in human-computer interaction, intelligent
monitoring, rehabilitation therapy, sports training, and
other fields [1, 2]. Computer vision already has a variety of
applications in sports training and other related fields, with
prominent tasks including sports type recognition and ac-
tivity recognition, tracking of athletes and analysis of other
objects of interest in videos, and estimation of human pose
[3].

The most central problem in motion analysis is human
pose estimation, which is an important research task in the
field of computer vision. The task of human pose estimation
is to identify the human body and locate the position of the
joints of human body parts (e.g., eyes, nose, shoulders, and

wrists) through computer image processing algorithms, and
to connect the positions of the joints to form the human
skeleton according to the structure of the human body [4].
Applications of human posture estimation include human
behavior understanding, human body reidentification, hu-
man-computer interaction, health monitoring, and motion
capture [5-7].

At present, artificial intelligence technology has pene-
trated deep into sports training programs, and a lot of in-
telligent hardware and software have been created in sports
training. The continuous penetration of artificial intelligence
technology in sports training has promoted the development
of sports [8]. Professional guidance coupled with Al-assisted
training makes the training process of athletes more sci-
entific. Through AI devices, the potential of athletes can be
explored, their strength discovered, and their growth pro-
moted. By collecting a large amount of data from the ath-
letes’ training process and using computer technology to
visualize and analyze it, athletes can have a comprehensive
grasp of their growth process.

The shortage of professional physical education
teachers makes it difficult to teach all students in school, it
is difficult to achieve continuous tracking of each
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student’s learning and training progress, and it is difficult
to tailor the teaching to each student [9]. The demand for
efficient physical education and parents’ anxiety about
children’s competition for higher education have led to
the creation of social K12 physical education training
services, but some institutions use small class teaching
and one-on-one VIP training as gimmicks. Use sparring
as a gimmick to create a tense atmosphere, and exaggerate
the training effect. At the beginning of 2019, “rope
skipping training classes” and “high-priced rope skipping
classes” once appeared on a large scale, which attracted
the attention of mainstream media, and the mainstream
media made special exposures to this undesirable phe-
nomenon. [10]. Exploring the deep-seated reasons for the
“black heart class” incident of rope skipping, we can know
that a small rope skipping touches the needs of education
and teaching mechanism reform on one end and touches
the ardent expectations of millions of parents on the
other, and it is also related to the health of a country’s
young people [11]. How to break the current dilemma of
physical education in primary and secondary schools is
not only a concern in the field of physical education
teacher training, but also a concern in the field of artificial
intelligence and big data. It also provides an opportunity
for the research and promotion of artificial intelligence
and big data in the direction of intelligent physical ed-
ucation [12, 13].

Traditional midterm examination rope skipping moni-
toring equipment is bulky and expensive, the cost and effort
of manual statistics are too great, it is difficult to achieve
accurate guidance for each student, and students’ training is
not efficient [14]. Automatically and quickly analyze whether
the actions in the rope skipping process meet the standards
and give the correct guidance and training plan, which is the
key to improving the performance of the rope skipping test
[15, 16]. In the previous design of movement analysis, it
canno’t effectively analyze the complex environment for In
the design of previous action analysis, it cannot effectively
analyze the complex environment, some only can realize the
judgment of which action has been done, and there is no
analysis of the standardization of the action or not.

Most current vision-based human behavior recognition
algorithms have problems such as high complexity, inability
to handle online videos, and harsh deployment conditions
[17, 18].

In school rope skipping physical education, physical
education teachers usually conduct demonstration teaching
to explain the essentials in the rope skipping process. Stu-
dents practice by themselves. Each student often has a
different level of mastery due to different acceptance levels
[19]. The research of this paper can help students to analyze
where problems occur in the process of rope skipping
training and what improvements need to be made. This
paper introduces the artificial intelligence into the remote
physical education teaching, which deeply implements the
concept of “Internet+ Education.” The introduction of ar-
tificial intelligence into remote physical education has a
positive impact on reducing the teaching pressure of
physical education teachers, promoting the growth of
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physical education teachers, improving students’ examina-
tion results, and cultivating students’ joy of sports [20].

Existing vision-based algorithms for human motion
behavior recognition and analysis suffer from high com-
plexity, poor robustness, and excessive computational
burden. The lack of professional staff in the direction of
human motion action analysis does not allow for real-time
guidance of the movement process. Therefore, the imple-
mentation of a robust and less time-consuming method for
movement analysis and evaluation is important for the
improvement of athletes’ skills and the quality of physical
education [21].

The contributions of this article are as follows.

This paper proposes a feature pyramid network-based
sequential action detection algorithm, which is used to solve
the problem that the action proposal module in the current
video sequential action detection algorithm research has a
low recall rate of small-scale sequential target action regions.

This paper proposes to use a multistage deep neural
network method to design and implement an online be-
havior analysis algorithm based on mobile vision, which can
improve the real time and correctness of sports action
analysis, develop an optimized personalized training plan for
individual students, and improve the efficiency of student
training.

Our experiments show that the proposed method is
effective, and the experimental process mainly verified the
effectiveness of the two aspects of optimization proposed by
FPN-TAD. The evaluation indicators of the results of the
experiment include the AUC of the AR curve to measure the
performance of the sequential action proposal generation
and the mAP to evaluate the performance of the sequential
action detection.

2. Related Work

The development of smart sports is relatively fragmented
globally. Sports constitute a relatively traditional industry,
and with the rapid development of IoT technology [22], the
sports industry is becoming more and more closely inte-
grated with emerging industries. Today, we can see many
intelligent sports products and intelligent sports facilities. It
is foreseeable that in the future, all sports such as swimming,
pole vaulting, rope skipping, and cycling will be well inte-
grated with smart hardware and smart software.
Depending on the data used in the motion analysis
process, motion analysis can be divided into sensor-based
human motion behavior analysis and computer vision-based
human motion behavior analysis. The study in [23], in order
to analyze golfers’ individual swings and improve their swing
techniques by using computer technology, integrated high-
precision strain gauge sensors into golf clubs to obtain the
whole process of players’ swings and analyzed four players’
swings by using linear discriminator, linear support vector
machine LSVM, and KNN classification models. The results
show that LSVM achieves the best results and the test ac-
curacy is 100%. The study in [24] analyzed the nine basketball
movements of walking, running, jumping, passing, catching,
shooting, dribbling while running, dribbling while walking,
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and dribbling while standing during playing basketball;
collected the behavioral performance of leg and arm move-
ments and the corresponding signal waveform characteristics;
and used inertial sensors integrated with a three-axis gyro-
scope, a three-axis accelerometer, and a magnetometer fixed
on the calf and arm of the subject to detect the movements of
the different limbs. The data were fused with angular velocity,
acceleration, and magnetic field strength by extended Kalman
filtering and classified using artificial BP neural network,
Bayesian network (BN), SVM, and decision tree C4.5
algorithm.

The BP network was used to classify the upper and lower
extremity movements, and the final average accuracy
reached 98.85%. In order to analyze and identify swimming
postures, other researchers established a human swimming
training state monitoring system based on wearable inertial
sensors in [25] and obtained the acceleration data, gyroscope
data, and magnetometer data of swimmers in backstroke,
butterfly, breaststroke, and freestyle through the inertial
sensor nodes bound to the waist. McGuirk also compared
and analyzed the effect of different data combinations on the
classification results and proved that the acceleration data
can be well used for the recognition of swimming move-
ments [26]. The study in[27] used different machine learning
algorithms on HAR (Human Activity Recognition) dataset
for six different daily activities. The study in [28] used a
machine learning model combining the AdaBoost integrated
learning algorithm and the random forest algorithm, which
achieved an accuracy of 0.998 for classification.

The top-down approach is employed to separate human
detection from key point detection. First, a body detector is
used to find all the bodies. The study in [29] is dedicated to
solving these problems and proposes to use a Symmetric
Spatial Transformer Network (SSTN) to obtain the region of
each person from the inaccurately detected candidate frames,
in which a Single Person Pose Estimator (SPPE) is used [30].
A Spatial Transformer Network (STN) was also used to map
the obtained human pose into the coordinate system [31]. A
Convolution Pose Machine (CPM) network was proposed in
[32], and the structure of this network was designed in stages.
A two-stage network structure is used in [33] to obtain the key
point location coordinates: the first stage uses Faster R-CNN
[21] to detect multiple people in the image and remove
unnecessary information from the border values; the second
stage uses a full convolutional residual network to predict a
dense heatmap and coordinate compensation for the people
in each border; and finally the two types of information are
fused to get precise localization of key points.

The bottom-up approach is used to first detect the key
point information in the test image and then assign it to a
single person. In the bottom-up approach, the combination
of human articulation point connector and key point de-
tector is mainly used in the case of multiple human key point
detection; unlike the detection of a single human, it is
necessary to first detect the joints of all individuals, then
group these key points to the limbs of the target person by
clustering, and then connect the limbs of each person. The
study in [2] innovatively proposed the candidate regions of
human parts; each candidate region was treated as a node in

the study, and the correlation between nodes was used as the
weight between graph nodes.

With the maturity of the pose estimation algorithm, more
and more studies have been conducted to obtain the key point
coordinate information through the pose estimation algo-
rithm to perform the action analysis during human move-
ment. In [5], the pose estimation algorithm in [3] was used to
obtain the key point coordinate information of the player
during playing tennis for pose state transformation and
morphological analysis. In this study, the obtained coordinate
information is used as a feature vector and combined with
SVM algorithm to predict the probability of success in
playing tennis. In addition, an unsupervised classification
method was used to classify and perform a detailed formal
analysis by comparing the appearance features that occur at
each success probability, and the visualization results were fed
back to the athletes for their training. Li et al. [6], in order to
visualize and analyze the state during swimming, opened a
new avenue of vision-based personal training for swimming
by using a vision-based stance estimation system to automate
this process and alleviate the overhead of extensive manual
stance annotation. Human appearance features and motion
features are extracted through the OpenPose [13] network
models using human skeletal joint point locations. Supervised
machine learning is used to identify four activity categories,
namely, sitting, standing, walking, and falling.

3. Research Overview

3.1. Related Work and Motivation. Temporal action detection
is a hot topic in video analysis research in recent years, and
ActivityNet, an annual video understanding competition
hosted by CVPR since 2016, represents the current research
direction and cutting-edge level of video understanding
competitions. Rakibe and Patil [12] propose a solution to
detect actions in ActivityNet competition.. The BSN algo-
rithm mainly consists of two parts: the temporal evaluation
module (TEM) and the proposal evaluation module (PEM).
The input of TEM is the input video features obtained from
the pretrained two-stream method model TSN; the one-di-
mensional fully convolutional network (FCN) is used to
output the input features of equal length with the probability
distribution curves of “action,” “start,” and “end” being
output with the same length as the input features; then the set
of candidate proposals is obtained based on the probability
distribution curves; and then the confidence score of each
proposal is estimated by PEM [19, 28]. The final proposal
result is obtained by removing the candidate proposals with
high overlap through NMS.

However, this scheme also has two problems; one is that
videos with different timing lengths are uniformly input to
the TEM as fixed lengths by sampling, which makes the
recall rate of multiscale action detection in long videos not
high. If we can set the feature representation of the input
video as F = { fi}fil, which contains the target action as
A ={(sp,ep,¢1), (55,65, 65), . ..}, and if the BSN algorithm is
used, the input TEM module is sampled with the feature of

L . . . p
Frpy = { f ]}]:\4 When there exists a target action satisfying



s; —€; < f;— f -1 it causes this action to be difficult to recall,

and false detection results of (s; ¢;) and (s}, e;) may occur.
Second, the input features are adopted from the fully
connected layer output of the TSN behavior recognition
structure (before surtax), and then the input timing eval-
uation module extracts timing features with the one-di-
mensional convolution, ignoring the different effects of
different channels on the results.

And, in the target detection task of images, in order to
recognize objects of different sizes, it is usually necessary to
construct multiscale pyramids. The simplest image pyramid
is shown in Figure 1(a), where the images are made into
different scales and then the corresponding multiscale fea-
tures are generated at different image scales, but obviously
this approach increases the time cost of the algorithm.
Therefore, most target detection algorithms, such as SPPNet
and Fast R-CNN, adopt this approach as shown in
Figure 1(b) and use the anchor mechanism only on the last
layer of feature map. SSD, on the other hand, adopts the
multiscale feature fusion approach shown in Figure 1(c).
There is no upsampling process, features of different scales
are extracted from different layers of the network to do
prediction, and this approach does not add additional
computation. In contrast, FPN uses the top layer features by
upsampling and the bottom layer features fusion for inde-
pendent prediction at each layer, which can better achieve
small target detection. Meanwhile, it has been noticed that
the Baidu team has already used the Action Pyramid Net-
work (APN) based on similar multiscale feature maps for the
temporal action detection task in ActivityNet competition
for video understanding and won the first place.

3.2. FPN-TAD Algorithm Research Idea. In this paper, to
address the current problem of difficult detection of multiscale
ground truth target actions caused by BSN of boundary-sensitive
networks generating candidate proposals on fixed-size feature
dimensions, we draw on the idea of FPN for prediction on
multiscale feature maps and first obtain feature maps at multiple
scales (corresponding to different resolutions of the same video)
by FPN structure. Then, three types of probability distribution
curves for target action, action start, and action end at each scale
are obtained on the feature maps at different scales by drawing
on the idea of BSN. Meanwhile, in order to better relate the
contextual information of the video and to notice the influence
of different channels, this paper adopts the output of the last
pooling layer in the TSN dual-stream method feature extraction
network as the input of the FPN-TAD algorithm and uses 2D
timing-channel convolution instead of the 1D timing-convo-
lution method, and the timing-channel features are modeled to
obtain a better video feature representation. On the ActivityNet-
1.3 and THUMOS-14 datasets, a significant performance im-
provement is obtained with respect to the preimprovement,
reaching the current state-of-the-art level [13].

In this part of the paper, the overall framework design of
the proposed FPN-based multistage proposal generation
temporal action detection algorithm (FPN-TAD) is given first,
followed by a detailed description of the key techniques of
video feature extraction, FPN action probability evaluation,
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FIGURe 1: Structure of feature pyramid network (FPN): (a) fea-
turized image pyramid; (b) single feature map; (c) pyramidal
feature hierarchy; (d) feature pyramid network.

and candidate proposal generation, and finally a description of
how to train each component of the network and the cor-
responding experimental parameter settings are given.
Figure 2 shows the overall framework design of FPN-
TAD. Overall, the FPN-TAD algorithm divides the temporal
action detection task into four parts, the front video feature
extraction network, the feature pyramid FPN, the temporal
action proposal generation, and the action classification. The
first part is the basic video feature extraction, which is mainly
based on the representative structure TSN of the dual-stream
method to extract the high-dimensional semantic feature
representation of the input video, and it should be especially
noted that the output of the dual-stream network is followed
by a 2D temporal-channel convolution. The second part is
the FPN module, which takes the input video feature rep-
resentation and obtains a multiscale feature pyramid by 2D
convolution operation and uses a top-down approach to fuse
some of the small-scale feature maps as the input of the third
part of the temporal action proposal module. The third part
is the temporal action proposal generation module, in-
cluding the temporal evaluation module (TEM), proposal
evaluation module (PEM), and NMS postprocessing com-
ponents. The temporal evaluation module performs one-
dimensional convolutional temporal evaluation in the
temporal dimension of the input multiscale feature map and
generates three probability distribution curves of action
region, start position, and end position, which represent the
probability of the current feature corresponding to the video
region as action, action start, and action end, respectively,
and such action probability distribution curves are obtained
for feature maps of different scales. The fourth part is the
action classification module, which takes the candidate
features generated in the first part according to the proposal
positions obtained in the third part, uses the TSN model to
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FIGURE 2: Overall framework of multiscale temporal action detection, FPN-TAD.

obtain the classification results of multiple snippets con-
tained in the candidate proposals using the sing-shot clas-
sification prediction method, and finally fuses the
classification results of multiple snippets in both temporal
and spatial channels to finally input the action classification
results of candidate proposals.

The specific process of video feature extraction is as
follows: (1) Input a total of T frames of input video V,
V = {t;}1, and divide the video into T/n, snippets as the
smallest unit of feature extraction (to reduce the redundancy
of video stream features and reduce the computational cost),
where n; denotes the length of the snippet, and the exper-
iment uses 7, = 16. (2) For each snippet, randomly select an
RGB image from the sequence of n, frames and calculate its
optical flow; the result of optical flow calculation contains
two optical flow images, flow_x in the x direction and flow_y
in the y direction. (3) Input the RGB image input to the
spatial convolutional network, the optical flow image is
input to the temporal convolutional network, and the last
pooling layer output of Inception-v4 is taken as the final
result of video feature extraction.

The video feature extraction process, including the
overall network structure of the convolutional neural net-
work Inception-v4 and the flow diagram of the input image,
is shown in Figure 3. The Inception-v4 network first
completes the preprocessing of the data with the Stem
module, which consists of multiple convolution and 2 times
pooling, where the pooling is followed by three structures
with inception modules. The role of the Reduction module
between the three Inception modules is similar to that of
pooling, and the same parallel structure is used to prevent
the bottleneck problem. After all the convolution layers are
completed, an 8 x8x1536 feature map (8x8 size, 1536
channels in total) is obtained, and the final 1536-dimen-
sional image features are obtained by averaging the pooling
layers. The feature extraction process of optical flow image is
similar, the network structure is also Inception-v4, and the

final obtained image feature dimension is also 1536.
Therefore, each snippet can get 1536 x 2 feature represen-
tation. Considering the impact of different length videos, the
obtained video features are fixed to 512 using linear inter-
polation. Therefore, the final feature representation of each
video is 512 x 1536 x 2 feature map.

The PEM module outputs the temporal action proposal
results, including the start and end time of the action. The
proposed action classification needs to give the proposed
action category according to the proposal result obtained by
PEM. For a given proposal a; = (,,t,), the proposed feature
fi= (fei fr;) is taken from the prior corresponding video
feature extraction module, where f; and f,; represent the
spatial and temporal features, respectively, with length
L, =t, —t,. The loss functions for action classification are
shown in the following equation:

Melass Melass
- 0 9,
Lcls__zyi yi_logze) >
i=1 j=1

where y; denotes the proposed classification ground truth
and 7; denotes the fusion result of the classification results of
all snippets on the same category i. The fusion method is
used in the experiment mean function.

The training of the FPN-TAD network is divided into
four stages: the first stage pretrains the predecessor video
feature extraction network in the ActivityNet-1.3 dataset by
the action recognition task and obtains the input snippet to
obtain the 1536-dimensional feature Inception-v4 model;
the second stage trains the temporal action proposal gen-
eration network, using the output of the predecessor feature
extraction network as input, to obtain the multiscale tem-
poral action probability distribution curve; the third stage
trains the temporal scoring network based on the results of
temporal action proposals to filter the candidate proposals;
finally, the candidate proposal features are used to train the
action classifier.

(1)
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FIGURE 3: Inception-v4 overall structure diagram.

4. Experimental Design and Analysis of Results

The experimental scheme is designed with two validation
objectives. On the one hand, the performance improvement
of the proposed multistage boundary-sensitive network
FPN-TAD relative to the baseline boundary-sensitive net-
work BSN needs to be compared. On the other hand, the
performance of the proposed FPN-TAD scheme needs to be
compared with the existing temporal action proposal and
temporal action detection schemes to verify the effectiveness
of the proposed approach.

4.1. Datasets and Evaluation Criteria. The dataset of the
experimental part of the paper is expanded using 2 rep-
resentative datasets in the field of temporal action detec-
tion, THUMOS-14 and ActivityNet-1.3. The THUMO0S-14
dataset [4] includes two tasks, behavior recognition and
temporal action detection, and the number of categories of
actions is 20. Most of the current papers on temporal action
proposal or detection are evaluated in this dataset. Acti-
vityNet-1.3 is a large dataset for the video understanding
task, containing a total of 19994 videos, and the ratio of
training, validation, and test sets is 2:1:1, with a total of 200
active categories. For the temporal action detection task,
each video contains an average of 1.54 actions. Many recent
advances in video understanding tasks, including temporal
action detection, are based on ActivityNet-1.3.

The temporal action detection consists of both tem-
poral action proposal and action recognition tasks, and
the average recall (AR) calculated at different IoU
thresholds is usually used as an evaluation metric in the
temporal action proposal generation task. For comparison
purpose, IoU=[0.5:0.05:0.95] on the ActivityNet-1.3
dataset and 110U =[0.5:0.05:0.95] on the THUMOS-14
dataset are used by convention; IoU=[0.5:0.05:1.0].
Referring to the measurement criteria of the ActivityNet
2018 competition, in order to better evaluate the rela-
tionship between recall and number of proposals, this
paper calculates the average recall and average AUC, and
the value range of AN is set to 0-100.

In the temporal action detection task, the common
evaluation metric is mean Average Precision (mAP). The
specific calculation process is to first calculate mAP over
each category separately and then mAP over all categories.

4.2. Experimental Process Design. In this subsection, the
experimental process of the paper is explained in detail, and
the experimental results of the process are compared to
verify the effectiveness of the method proposed in the
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paper. The baseline of the paper refers to the champion
scheme of Tianwei L. et al. in ActivityNet 2018, and
reproducing the scheme, the experimental process of the
paper mainly verifies the effectiveness of the optimization
of two aspects proposed by FPN-TAD: firstly, the intro-
duction of FPN for timing evaluation proposal generation
on multiscale timing feature maps; secondly, the applica-
tion of 2D convolution on the original feature maps for
joint timing-channel modeling. The evaluation metrics of
the experimental results include the AUC of the AR curve,
which measures the performance of temporal action
proposal generation, and the mAP.

Before and after FPN improvement: the experiments first
reproduce the BSN of baseline and give a temporal action
detection scheme for baseline based on the results generated
by this proposal in combination with the TSN behavior
recognition scheme; then, in the setting of 400-dimensional
features and 1D convolution after in putting FC, we directly
apply FPN at multiple scales to generate candidate proposals
and perform subsequent behavior recognition. Regarding
the way of using FPN, the paper experiments three different
schemes for multiscale temporal evaluation, where FPN-
TADI performs a simple weighted average of the five scales
of temporal feature maps obtained from the part of the
feature pyramid; FPN-TAD2, on the other hand, inputs all
five temporal feature maps to the temporal evaluation
module for the results of fusion.

The final experimental results obtained are shown in
Table 1. The AUC performance of the FPN-TAD1 approach
relative to the baseline approach is improved by only 0.25,
and that of FPN-TAD2 is improved by 1.21, while the FPN-
TAD approach achieves the best AUC improvement of 1.45.
Based on this experimental result, the following conclusions
can be drawn: (1) Comparing FPN-TAD1 and FPN-TAD2
illustrates that the utilization of multiple temporal feature
maps should occur after TEM (FPN-TAD2) rather than
directly in the feature dimension for fusion (FPN-TADI),
mainly because small-scale information affects the resolu-
tion of large-scale information. (2) Comparing BSN-baseline
and FPN-TAD well demonstrates that the FPN-based
temporal action detection (FPN-TAD) algorithm has a
significant performance improvement, mainly due to the
way of generating proposals at different resolutions, which
can improve the recall of actions in the case of a large range
of variations in the target action timing length.

The fusion method of FPN based on 2D convolution:
In order to better extract video features, the output (512,
1536) before full connection in TSN is taken as the input
of the temporal action proposal module, and 2D con-
volution is used to jointly model the temporal and channel
features; the experimental results obtained are shown in
Table 2.

The experimental results show that the joint modeling of
timing and channel is very effective, and compared to using
only ID convolution to extract timing features, 2D convo-
lution can better link contextual information while focusing
on the different effects of different channel features on the
results. Therefore, the final FPN-TAD implementation
scheme is the 2D convolutional temporal-channel joint
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TaBLE 1: Results of the experimental procedure of FPN-TAD.
Method AR@10 AR@100 AUC
BSN-baseline — 74.22 66.29
FPN-TAD1 54.84 74.91 66.54
FPN-TAD2 55.59 74.30 67.48
FPN-TAD3 55.68 76.86 67.72
TaBLE 2: Experimental results of 2D convolutional timing-channel joint modeling.
Method AR@10 AR@100 AUC
BSN-baseline — 74.25 66.29
FPN-TAD3 54.68 76.86 67.72
FPN-TAD 55.14 77.06 67.48

modeling FPN-TAD algorithm, and the experiments refer to
the evaluation metrics of the ActivityNet 2018 video un-
derstanding competition, and Figure 4 shows the relation-
ship between the recall rate and the number of candidate
proposals under different IoU.

As shown in Figure 4, the horizontal coordinate of the AR
IoU curve is the average number of candidate proposals per
video used for evaluation, the vertical coordinate is the average
recall rate for 200 categories, multiple dashed lines indicate
different IoU thresholds, and the black solid line indicates the
average recall rate of the algorithm at IoU=[0.5:0.05:0.95].
Figure 4(a) depicts the reproduction results of the BSN-baseline
before improvement, and Figure 4(b) shows the experimental
results of the FPN-TAD algorithm based on the feature pyramid
proposed in this paper. From the experimental results, the FPN-
TAD algorithm has a significant performance improvement at
different IoU thresholds, which proves that the multiscale
feature pyramid approach can better capture the boundary
information.

After obtaining the temporal action proposal results of
FPN-TAD, the mAP performance obtained for different IoU
cases using the TSN action recognition framework is shown
in Table 3. The experimental results show that (1) the results
of temporal action proposal directly affect the results of
temporal action detection and (2) the FPN-TAD algorithm
can significantly improve the results of temporal action
detection under different IoU requirements.

4.3. Comparison of Experimental Methods. To demonstrate
the effectiveness of the algorithm, the paper experiments
on the THUMOS-14 dataset to compare the FPN-TAD
algorithm proposed in the paper with the current state-
of-the-art algorithms, including five representative ref-
erence algorithms, namely, DAPs, SCNN, SST, TURN,
and BSN.

The experimental results are shown in Figure 5.
Figure 5(a) shows the AR curve, with the horizontal
coordinate indicating the average number of proposals
per video and the vertical coordinate indicating the

average recall rate. The experimental results in Figure 5(b)
show that the proposed FPN-TAD algorithm and the BSN
algorithm used as a reference significantly outperform the
other four baseline algorithms of DAPs, SCNN, SST, and
TURN when the number of candidate proposals used for
evaluation is the same; in particular, when the number of
candidate proposals is less than 200, the improvement of
the average recall rate is around 20%. In addition, when
the number of candidate offers is in the interval of 50-150,
the FPN-TAD algorithm based on multiple temporal
feature maps has a significant performance improvement
relative to the BSN-baseline, which fully demonstrates
that the FPN-TAD algorithm can generate higher quality
candidate proposals, especially when the number of
candidate proposals is further increased to achieve better
algorithmic results. Figure 5 shows the recall curves of
different algorithms at IoU=0.5 when the number of
candidate proposals is equal to 1000, and we can see that
the proposed FPN-TAD curve has a significant perfor-
mance improvement compared with other algorithms; in
particular, the recall rate exceeds all the compared al-
gorithms at IoU = 0.7, which indicates that the FPN-TAD
algorithm can produce candidate proposals with higher
IoU and more accurate boundary localization of target
actions.

The quantitative experimental results of the comparison
of temporal action proposal algorithms are shown in Table 4,
based on which the following conclusions can be drawn: (1)
Comparing the TURN of C3D and 2-Stream, we find that the
2-Stream feature significantly outperforms C3D in the
temporal action proposal task. (2) The performance ad-
vantage of the proposal generation methods based on the
probability curves of temporal actions (BSN and FPN-TAD)
over the fixed-size sliding window or anchor methods is
obvious when the number of proposals is small. (3) The
introduction of multiple scales has a significant recall im-
provement when the number of proposals is small, and the
recall rate is close to the average of AR@50, AR@100, and
AR@200, which all have a performance improvement of
nearly 1%.



ToU=[x] of BSN-baseline

Discrete Dynamics in Nature and Society

ToU=[x] of BSN-baseline

0.8 2
0.8
0.6
0.6
= =
e 04 S
o o 04
& “\ &
& 02 N “ 'V N\‘ g 02
¢
¢
0.0 \ 0.0 v \ﬁ
-0.2 -0.2
0 20 40 60 80 100 20 40 60 80 100
number of proposals per video number of proposals per video
—— IoU=0.51 IoU=0.71 —— IoU=0.51 IoU=0.71
—— IoU=0.61 —— IoU=0.81 —— IoU=0.61 —— IoU=0.81
FIGURE 4: IoU curves before and after improvement.
TaBLE 3: Experimental results of 2D convolutional timing-channel joint modeling.
Method IoU=0.5 0.75 0.95 Average
BSN-baseline 52.50 33.53 8.85 33.72
FPN-TAD 56.41 35.14 9.52 38.25
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FIGURE 5: Comparison of FPN-TAD with mainstream algorithms.
TaBLE 4: Comparison of AR@AN experimental results (THUMOS-14).
Feature Method @50 @100 @200 @500 @1000
C3D DAPs 13.47 23.53 33.98 48.57 56.21
C3D SCNN 17.85 26.10 37.83 51.14 58.06
C3D SST 19.86 27.82 37.83 54.02 60.52
C3D TURN 19.90 27.93 38.45 53.32 60.87
2-Stream TURN 22.04 37.52 46.25 58.72 64.58
2-Stream BSN 33.21 41.05 50.02 60.16 65.71
2-Stream FPN-TAD 34.01 43.08 51.17 60.24 65.58




Discrete Dynamics in Nature and Society

5. Conclusions

This paper details the feature pyramid network-based
temporal action detection (FPN-TAD) algorithm. The main
content is divided into three parts: a review of more specific
related work in the direction of temporal action detection, an
introduction to the proposed feature pyramid network-
based temporal action detection (FPN-TAD) algorithm, and
the outline of the algorithm design and working principle.
The network structure of the FPN-TAD algorithm is pro-
posed, and the main components and algorithm flow of
FPN-TAD are described.
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The datasets used in this paper are available from the cor-
responding author upon request.
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