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A colored traveling salesman problem (CTSP) is a path optimization problem in which colors are used to characterize diverse matching
relationship between cities and salesmen. Namely, each salesman has a single color while every city has one tomultiple salesmen’s colors,
thus allowing salesmen to visit exactly once the cities of their colors. It is noteworthy that cities’ accessibilities to salesmen may change
over time, which usually takes place in the multiwarehouse distribution of online retailers. (is work presents a new CTSP with
dynamically varying city colors for describing and modeling some scheduling problems with variable city accessibilities.(e problem is
more complicated than the previously proposed CTSP with varying edge weights. In particular, the solution feasibility changes as the
cities change their colors, that is, a feasible original solution path may become no longer feasible after city colors change. A variable
neighborhood search (VNS) algorithm is presented to solve the new problem. Specifically, a dynamic environment simulator with an
adjustable frequency and amplitude is designed to mimic such color changes. (en, direct-route encoding, greedy initialization, and
appropriate population immigrant are proposed to form an enhanced VNS, and then its performance is evaluated. (e results of
extensive experiments show that the proposed VNS can quickly track the environmental changes and effectively resolve the problem.

1. Introduction

A colored traveling salesman problem (CTSP) generalizes the
well-known multiple traveling salesman problem [1]. Each
salesman in it has a single color, and each city has one to
multiple salesmen’s colors. A city allows only one salesman of
the same color to visit exactly once. Colors are used to
characterize the cities’ accessibility for salesmen and can be
applied to some real-world scheduling problems in which the
tasks to be performed own different accessibilities for movable
processing devices [2]. Li and Meng apply the CTSP to
schedule multibridge machining systems for avoiding collision
[3, 4]. In addition, He and Hao [5] propose a two-phase local
search for solving the CTSP. Recently, three CTSP variants
have been proposed, that is, large-scale general CTSP [6],
biobjective CTSP [7], and precedence-constrained CTSP [8].

(ey can be applied tomany engineering systems, for example,
multibridge machining systems [4], robot systems [9], and
multitrip pickup and delivery systems [10].

However, these mentioned CTSPs are static in terms of
connection weights and task accessibility. In practice, many
optimization problems, such as job scheduling, assembly,
transportation scheduling, and production planning, involve
dynamically changing environments. Particularly, the
complex networks where the optimization problems arise,
for example, the communication networks [11–14] and
intelligent transportation networks [15–18], have the
changing connection weights among nodes and even the
network topologies themselves over time.

(e dynamics of a dynamic TSP (DTSP) [19] reflects the
changes in the topology [20] and connection weights [21] of a
network to be modeled. DTSP is widely used in practice. Tinós
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[22] analyzes the effects of the edge weight changes on the
fitness landscapes of TSP. Recently, Mavrovouniotis et al. [23]
investigate a memetic ant colony optimization algorithm with
local search to address symmetric and asymmetric DTSPs, and
the experimental results show the efficiency of their proposed
algorithm. Chen et al. [16] investigate the value of choosing the
next stop to visit in a multistop trip based on current traffic
conditions tominimize the expected total travel time of the tour,
and they model this problem as a Markov decision process. In
dynamic scenarios, datasets (city coordinate information) are
generally incomplete and variable. Baykasoğlu and Durmu-
şoğlu [24] address a DTSP in which cities may be added to/
deleted from the city domainwith amultiagent-based approach.

In logistics and distribution, traffic network topology
and customer demands are changing over time. If some
practical constraints in logistics distribution are introduced
into DTSP, it becomes a dynamic vehicle routing problem
(DVRP) [25]. DVRP requires solving not only a dynamic
path planning problem with varying edge weights but also
the problemwith some uncertain constraints in real delivery.
It is more complex than the DTSP.

DVRP can be divided into two categories according to the
customer's location information. One is those with known
customer locations, but a traffic network topology varies and
customer demands are random. Kim et al. [26] propose a
DVRP model with nonstationary stochastic travel time under
traffic congestion, and a Markov decision process model is
adopted to solve this problem. A vehicle routing problem with
stochastic demands (VRPSDs) is the one in which customer
locations are known, but the demands of customers are ran-
dom. For example, a flexible solution method is adopted to
transform VRPSD into a small set of capacitated VRP, where
Monte Carlo simulation with statistical distributions is used to
estimate customer demands [27]. Mavrovouniotis et al. [23]
present a DVRP with stochastic demands where customers
arrive dynamically and randomly, and thereby their requests
are not completely known. To solve it, an ant algorithmwith an
immigrant scheme is developed. Customer service timemay be
uncertain in a DVRP. Vonolfen and Affenzeller [28] resolve a
dynamic pickup and delivery problem with time windows by
using a novel waiting for heuristic strategy based on historical
request information. Juan et al. [27] propose a method to
estimate truck arrival time at each customer location for truck
route planning in nonstationary stochastic networks.

Another DVRP category is the real-time or online VRP,
that is, new customer orders are randomly generated, and
both customer locations and demands are unknown. In this
situation, it is necessary to reschedule vehicles based on
previous schedules, that is, redistribute these vehicles for all
not-served customers. Many scholars have studied the rule
of accepting or rejecting new service requirements in a
DVRP [29–31]. Bopardikar et al. [32] investigate a DVRP
with the Poisson distribution orders and design routing
policies for a service vehicle to maximize the number of
demands at the steady state. Pavone et al. [33] propose a
distributed and adaptive segmentation algorithm to solve a
DVRP and validate its effectiveness.

(e above studies focus on path optimization over traffic
networks with varying edge weights and all the cities with the

same accessibility. So far, there is no research on the opti-
mization problem with dynamic city accessibilities, which
can well describe a supply and distribution problem faced by
online retailers. (erefore, this work focuses on delivery
route optimization for online retail with multiwarehouse
and dynamic task accessibility.

For example, aiming at delivering goods faster and better,
online retailers tend to build their own logistics system con-
sisting of widely located warehouses in different countries or
regions containing goods of different types and stocks. Amazon
owns a total of 90 warehouses in the world, JD Company has
built 143 warehouses in 43 cities of China, and Suning Logistics
Group has 12 large-scale warehouses in China.

Once random customer orders are generated, an
online retailer has to provide the customers with their
ordered goods. (e stocks of the goods differ at distinct
warehouses and are constantly changing with sales and
supplies. (erefore, decision-making is needed to decide
which warehouse should provide the goods to a specific
customer, and optimize the delivery routes of the different
goods to different customers to meet customer require-
ments and reduce the supply cost. So far, there is no
satisfying decision-making mechanism for this kind of
online retail.

Suppose that each warehouse has one unique color. It
can be considered as a salesman with the color to deliver
goods for customers by its own transport system. (ose
online ordering customers, located in different areas, can be
provided with the ordered goods stocked at one of the
different warehouses. In other words, such a customer
carries the warehouses’ colors, and thereby the customers
can be regarded as the cities with one to multiple ware-
houses’ colors. (us, the warehouses’ supply problem can
be described as a CTSP. With the customers’ online pur-
chases, each warehouse’s stock changes over time. When a
commodity ordered by a customer is out of stock in a
warehouse, the customer loses his/her color. (is means
that a customer whose warehouses’ colors will change in the
sales process.

(erefore, we propose a new CTSP with varying city
colors (CTSP-VCC). It can be applied to supply decision and
delivery route optimization for online retail with multi-
warehouse and varying task accessibility.

Considering the outstanding performance of Variable
Neighborhood Search (VNS) [2] in solving static CTSP, we
adopt it to solve CTSP-VCC. To overcome its instability
under a dynamic circumstance, greedy initialization and best
population immigrant are incorporated into it to maintain
its fast convergence and solution diversity.

(is work intends to make the following contributions:

(1) It formulates a CTSP-VCC in which city colors are
changing over time. CTSP-VCC can be applied to
supply decision and delivery route optimization for a
online retail with multiwarehouse.

(2) It constructs a rigorous mathematical optimization
problem for CTSP-VCC and designs a dynamic
environment simulator to mimic the change of city
colors.
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(3) It develops an improved VNS to solve CTSP-VCC in
which a greedy operation and a novel population
immigrant scheme are adopted to achieve better
convergence and solution quality.

(e remainder of this paper is organized as follows:
Section 2 introduces CTSP-VCC. Section 3 presents a
greedy-initialization VNS with a best population immigrant
scheme. Section 4 shows simulation results. Section 5
concludes the work.

2. Problem Formulation

CTSP uses the colors to characterize city accessibility to
salesmen [1, 2]. It ownsm salesmen and n cities, wherem< n,
m, n ∈ Z � 1, 2, . . .{ }. It can be formulated over a digraph
G � (V, E) with vertex set V � 1, 2, . . . , n{ } representing n

cities; each edge (i, j) ∈ E and i≠ j represents a visit cost
between cities i and j, associated with weight ωij. Salesman
k∀k ∈ Zm � 1, 2, . . . , m{ } is allocated with color ck. A city
color matrix (CCM)M is defined to indicate the accessibility
of cities to salesmen.

M � aij 
n×m

�

c1 c2 · · · cm
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⋮
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n×m

, (1)

where a row vector represents the color set allocated to city i,
c(i) � cj|aij � 1, j ∈ Zm , i ∈ V. Clearly,1≤ |c(i)|≤m,
namely, city vi allows at least one salesman and at most m

salesmen to visit. (e j-th column vector in M expresses
which cities in the city set can be visited by salesman j. (e
accessible city set with respect to salesman j is denoted by
Ij � i|aij � 1, i ∈ V , j ∈ Zm. In addition, we define the set
of single-colored cities Tj � i|aij � 1, jaij � 1, i ∈ V  to
collect the cities that carry the same color cj, j ∈ Zm.

Here, we define a dynamic CTSP whose city colors are
changing over time. CCM in CTSP-VCC is not a constant
matrix, that is, aij, i ∈ V, j ∈ Zm, becomes a function aij(t)

that varies over time. Let aij(t) � 1, if city i has color cj at
time t; otherwise aij(t) � 0.

Next, a 0-1 integer programmingmodel of CTSP-VCC is
given as follows: the binary access variables xijk � 1,i≠ j,
∀i, j ∈ V, if salesman k ∈ Zm passes through edge (i, j);
otherwise, xijk � 0.

Minimizef � 
k


i


j

ωijxijk, ∀k ∈ Zm,∀i, j ∈ V. (2)

Subject to:
Each salesman k is required to start from and return to

depot dk ∈ V. (e equation is as follows:


i

xdkik � 1,


i

xidkk � 1, ∀i ∈ Ik\ dk ,∀k ∈ Zm.
(3)

Salesman k cannot visit a city whose color set does not
includeck:


i


j

xijk � 0,


i


j

xjik � 0, ∀i ∈ V,∀j ∈ V\Ik,∀k ∈ Zm.
(4)

Each city can be visited exactly once by one and only
properly colored salesman:


i


k

xijk � 1,


i


k

xjik � 1, j≠ i,∀i, j ∈ Ik,∀k ∈ Zm.
(5)

A salesmanmay visit a multicolor city, and a pair of entry
and exit is required if it is the case:


l

xjlk � 
i

xijk, i≠ j≠ l,∀j ∈ V, ∀l ∈ V, ∀i ∈ V. (6)

Any solution consisting of several disconnected subtours
for a salesman must be forbidden:

uik − ujk + n × xijk ≤ n − 1, j≠ i,∀i, j ∈ Ik\ dk ,∀k ∈ Zm,

(7)

where uik is the number of nodes visited in the tour of
salesman k from dkto the node i.

Lemma 1. CTSP is a special case of CTSP-VCC.

Proof. In CCM, aij(t) denotes the variable color of city in
CTSP-VCC. If aij(t) is an invariant constant (i.e.,
aij(t) � aij(t0)), it means that the model turns to be a
stationary one, i.e., CTSP. □

Lemma 2. 4e solution space size of CTSP-VCC is


m
k�1 |Rk|!, where |Rk| denotes the number of cities visited by

salesman k, and 
m
k�1 |Rk| � n.

Proof. Let Rk denote the route of salesman k. |Rk| represents
the number of cities in route k, and it is a variable,
|Γk|≤ |Rk|≤ |Ik|. (erefore, the solution space of CTSP-VCC
with salesman k is |Rk|!. Finally, the solution space of CTSP-
VCC with all salesmen is 

m
k�1 |Rk|!, where 

m
k�1 |Rk| � n. □

Theorem 1. CTSP-VCC is NP-hard.

Proof. CTSP is NP-hard [1], and it has been proved to be a
special case of CTSP-VCC by Lemma 1. (e solution space
size of CTSP-VCC is 

m
k�1 |Rk|! given by Lemma 2, and its

optimal solution varies over time, that is, with the variable
city color aij(t), the optimal solution varies in its solution
space. (erefore, CTSP-VCC is also NP-hard.

For this type of dynamic optimization problem, it is
challenging to develop algorithms to track the optimal so-
lution changes. In particular, the solution feasibility changes
represent changes in city colors, (i.e., a feasible original
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solution path may become no longer feasible because of
changes in city colors). □

3. Enhanced VNS for CTSP-VCC

VNS has been proved to be an efficient method to address
CTSP [2], so we adopt it to resolve CTSP-VCC. Considering
the optimal solution of CTSP-VCC is no longer a fixed
solution and varies over time, we introduce a best-pop-
ulation immigrant scheme and greedy-initialization method
into VNS to enhance global searching ability. Furthermore,
given that the varying city colors can change the solution
feasibility, we introduce a verification operation into VNS to
judge the solution feasibility. Some solutions must be deleted
if it is infeasible after changes in city colors.

3.1. Solution Encoding. (e direct-route encoding is adopted
to encode each salesman’s route directly for CTSP-VCC. A
coding example of CTSP-VCC with n� 10 and m� 3 (see
Figure 1), namely, Cities 2-8-7-1 and 10-4-3, 9-5-6 are visited by
salesmen 1–3, respectively. Let Rk denote the route of salesman
k, excluding his depot. (e solution is denoted by R� (R1, R2,
. . ., Rm). (e permutation of cities in the search space size is
|Rk|! for salesman k. For all the salesmen in CTSP-VCC, their
total solution space’s size is 

m
k�1 |Rk|!, where 

m
k�1 |Rk| � n.

3.2. BasicVNS. (e core thought of VNS is to search a better
solution in the neighborhood of a high-quality solution.
First, to ensure the population diversity of VNS, a random
initialization method is used in VNS to generate initial
individuals, that is, all salesmen select randomly the cities
carrying the same color to establish their routes.

(en, shaking and local search operations are performed in
each generation of VNS, and the current best solution is
updated if a better one is obtained. On one hand, Interchange
and Relocation are adopted to perturb the current incumbent
solution to generate its neighborhood solution set in the
shaking operation (see Figures 2–4).(e detailed operations of
them are given in [2]. On the other hand, a local search explores
the neighborhood of the solution selected by shaking to obtain
a better one. Particularly, two operations, that is, city-removal
and reinsertion operations, carry the deep neighborhood
search. Once a better solution is obtained in the local search, it
is saved for the next iteration.

In addition, if the environment changes, VNS needs to
analyze the feasibility of the original solution. If the solution
is feasible and better than the current solutions, it is used to
update the best solution; otherwise, it is deleted. (e
flowchart of basic VNS is given in Figure S1 in the Sup-
plementary Material.

3.3. Improved VNS. A greedy-initialization scheme and a
best-population immigrant scheme are introduced to im-
prove the performance of basic VNS. Greedy-initialization
means that a two-stage greedy is adopted to generate a better
initial solution, that is, the greedy search with the minimum
insertion for single color cities first and the multicolor cities

next. An immigrant strategy with the best population is used
to prevent the premature convergence of VNS. First, the
current best individual is selected to perform immigrants
after VNS’s local search. After the immigrant operation,
several new individuals are generated, and they are used to
replace those original individuals which are of poor quality.
(e detailed operations of the best-population immigrant
scheme are shown in Algorithm 1.

On one hand, the greedy operation can be used to
generate an initial solution of high quality during the ini-
tialization of VNS, and a good initial solution can benefit the
quick search for a satisfactory solution. On the other hand,
the best-population immigrant scheme can prevent pre-
mature convergence in a single search direction, which can
help VNS to jump out of a local optimum and search more
space. (e flowchart of greedy ability VNS with a best-
population immigrant scheme is illustrated in Figure 5.

3.4. Time Complexity of Improved VNS. We name the im-
proved VNSs as VNS, VNSB, GVNS, and GVNSB. (ey
represent in turn the random-initialized VNS, VNS with the
best population immigrant, greedy-initialization VNS, and
greedy-initialization VNS with a best population immigrant
scheme.

Let g and p denote the generations and population size,
respectively, and the time complexity of VNSs are investi-
gated as follows: the greedy-initialization takes O(|R1|

2 +

· · · + |Rm|2) � O(
m
k�1 |Rk|2) time in constructing the initial

routs. In VNS, the shaking operation needs O(n) time. (e
least-cost insertion is adopted in the local search of VNS, and
it requires O(n) time. In addition, in the stage of Best-
Population Immigrant, the rank operation and 2-opt op-
eration take O((p)log(p)) and O(

m
k�1 |Rk|2), respectively.

(erefore, we can obtain that GVNSB takes O(p(
m
k�1 |Rk

|2)) + O(gpn) + O(gpn) + O(gp log (p)) + O(gp(
m
k�1 |Rk

|2)). Since 
m
k�1 |Rk|2 > 

m
k�1 |Rk| � n, the time complexity of

GVNSB is O(gp(
m
k�1 |Rk|2)).

4. Experimental Study

4.1. Dynamic Environmental Simulations. (e dynamics of
CTSP-VCC are reflected by its city colors’ change over time.
First, letM change over time whereM � [aij(t)]n×m.(en, to
describe the change of city colors, each aij(t) is changed
every τ generations during the run of algorithms with the
probability ρ, where aij(t) � 1 , 0< ρ< 1, 0< i< n, 0< j<m,
and aij(t0) is the initial value. (e environmental dynamics
can be easily tuned by two parameters, τ and ρ. (e former
controls the change speed, while the latter manipulates the

Salesman 1 R1 =

Salesman 2 R2 =

Salesman 3 R3 =

2 8 7 1

10 4 3

9 5 6

Figure 1: Direct-route encoding for CTSP-VCC.
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severity each time the environment changes. (e dynamic
environment of CTSP-VCC is generated by Algorithm 2.

4.2. Experiment Design. We have implemented all the al-
gorithms in C++ with Microsoft Visual Studio 2012 and
executed them on Dell Computer Optiplex 390 running
Windows 7 with CPU Intel Core i 3 at 3.40GHz and RAM
4GB. (e offline performance FBOG is adopted to evaluate
the overall performance of an algorithm:

FBOG �
1
G



G

i�1

1
N



N

j�1
FBOG ij

⎛⎝ ⎞⎠. (8)

Let N� 50 denote the total number of runs, and
G � 10 × τrepresents the total number of generations for a
run. FBOGij is the best-of-generation fitness of generation i at
run j, and FBOG is the average fitness of 50 runs.

To test the performances of the algorithms, our exper-
iments are designed as follows: first, test cases, Eil101, A280,
and Rat575 are derived from the datasets in TSPLIB [34]

while their CCMs are generated randomly according to the
number of cities and salesmen.

(en, the two parameters for dynamic environment
control τ is set to be 30 or 50, and ρ is set at 4 different levels,
i.e., 0.1, 0.2, 0.5 and 1.0. In addition, each VNS is executed
independently 50 times for each test case. One-tailed t-test
with 98 degrees of freedom at a 0.05 level of significance is
adopted to compare the statistical results of VNSs in dy-
namic environments.

4.3. Comparison among the Proposed Algorithms. To com-
pare the performances among the proposed algorithms,
the statistical analysis of the experimental results is given
as follows. Figures 6 and 7 show the offline performances,
and Figures 8 and 9 illustrates the dynamic performances
for each test. In the dynamic environments with different
change speeds and intensities, the statistical results of
compared algorithms by one-tailed t-test with 98 degrees
of freedom at a 0.05 level of significance are given in
Tables 1 and 2, where “s+“, “s-“, and “∼” denote that one

Depot Depot
V1

V2

V3 V4 V1 V2 V3 V4

Figure 2: Interchange.

Depot Depot
V1 V2 V4 V1 V2 V3 V4V3

Figure 3: Relocation of a single route.

V1 V3

V4 V2

Depot Depot Depot Depot
V1 V3

V4 V2V5 V5

Figure 4: Relocation of a pair of routes.

(1) Begin
(2) Input: x1, x2, . . . , xps, k� 0;
(3) Rank the ps solutions from small to large, where x1 is the smallest one and xps is the largest one. x1 � (R1, R2, . . . , Rm).
(4) While (k<ps/2) do
(5) l� random (1, m);
(6) Do 2-opt for Rl in x1,x1′←x1.
(7) xps−k � x1′.
(8) k++;
(9) End While
(10) Output: x1, x2, . . . , xps

(11) End

ALGORITHM 1: Best population immigrant scheme.
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algorithm is significantly better than, significantly worse
than, and similar to another algorithm, respectively. (e
standard deviations of 50 results of the algorithms for each
test are given in Tables 3 and 4.

4.3.1. Effectiveness of Greedy-Initialization. (e offline
performances illustrated in Figures 6 and 7 show that GVNS
outperforms VNS.

For example, the result from GVNS in Eil101–6, at τ �

50 and ρ � 0.1, is 2515.8 and it is 15.1% less than that from
VNS. In A280-15, the result from GVNS is 5836.6 and it is
only 22.4% of that from VNS.

In Figure 9, the dynamic performances show that, the
greedy-initialization can effectively improve the initial so-
lution quality of VNS. For example, the results obtained by
GVNS in the environment at τ � 50and ρ � 0.2 are 2357.6,

Input and Greedy
Initialization

Termination
Happens?

Shaking

Local Search

Save and updata
the best result

Best individuals
Immigrant

Environment
Change?

Save the feasible solution

Output the best
solution

YES

YES

NO

NO

Figure 5: (e flowchart of the greedy-initialization VNS with the best population immigrant scheme.

(1) Begin
(2) Input: gen;
(3) If gen� � 1
(4) aij(t) � aij(t0)

(5) Else
(6) If gen%τ �� 0
(7) a� random(0,1)
(8) If a< ρ
(9) aij(t) � 1
(10) Else
(11) aij(t) � aij(t0)

(12) End If
(13) End If
(14) End If
(15) Output: aij(t).
(16) End

ALGORITHM 2: Dynamic Environment.
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8029.4, and 22478.7, that is, 82%, 34%, and 28% of those by
VNS in Eil101–5, A280-8, and Rat575-10, respectively.

Similarly, the t-test results illustrated in Tables 1 and 2
show that GVNSB outperforms VNS, VNSB, and GVNS
significantly.

(erefore, we can draw a conclusion that the greedy-
initialization is very effective for VNS to solve CTSP-VCC.
(e reason is that a better initial solution is critically im-
portant for population evolution, and it can guide indi-
viduals to perform their search in a more promising solution
space of its neighborhood. Indeed, VNS can find a better
solution quickly and effectively at the initial stage by means
of greedy-initialization, and it also can obtain other diverse
solutions by random initialization. (e greedy initialization

can guarantee VNS not only an initial solution quality but
also the diversity of the population. It is why GVNS and
GVNSB perform better than VNS and VNSB.

4.3.2. Effectiveness of a Best Population Immigrant Scheme.
(e results of algorithms in a dynamic environment with
τ � 50 are illustrated in Figure 9. Specially, in Eil101-4 at
ρ � 0.1, the results obtained by VNS and VNSB are 2670.2
and 1398.9, respectively. VNSB’s result is improved about
47.6% after introducing a best population immigrant
scheme. Furthermore, the result of GVNSB is 1293.8, just
62.8% of that with GVNS. In addition, the result in A280-8
shows that VNSB obtains 9783.9 and is 39.8% of that from
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Figure 6: (e results of VNSs at environment τ � 50.
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VNS, and GVNSB obtains 5328.5 and it is 58.7% of that from
GVNS. Besides, the results in three cases of Rat 575 show
that we obtain better results after introducing the best
population immigrant scheme into VNS.

All the curves in Figure 6 show that the fitness decreases
as ρ increases. (e reason is that the increase of city colors
with ρ enlarges the solution space of a problem. (us, the
algorithms may obtain better solutions in the new solution
spaces. Furthermore, Figure 7 shows the results at τ � 30,
like Figure 6, where VNS and GVNS with a best population
immigrant scheme can obtain better results than those of
VNS and GVNS.

Figures 8 and 9 illustrate the dynamic performances in
some test cases. (e algorithms have different convergences.

Obviously, the algorithms converge well when the best
population immigrant scheme is applied. For example, the
fitness value of the first generation in VNS is 34764 and
112337 in A280-15 and Rat575-15, at dynamic environment
τ � 50 and ρ � 0.5, respectively. After one generation, they
are 33745.6 and 108974, respectively. Although the fitness of
value in the first generation in VNSB is similar to that in
VNS, after one-generation evolution, they are 56.4% and
60.2% of those in VNS, respectively.

Table 3 shows the standard deviation of 50 runs for each
test case. (e obtained results illustrate that the standard
deviations of each algorithm are markedly different at the
beginning. But they decrease significantly by introducing the
best population immigrant scheme into the algorithms. For
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example, for Eil101–5, A280-5, and Rat575–15 in the en-
vironment with τ � 50 and ρ � 0.5, the standard deviations
of VNS are 23.9, 119, and 279.3, while those of VNSB are
20.6, 73.8, and 152.8, falling about 13.8%%, 37.9%, and
45.3%, respectively. Similarly, the standard deviations in
GVNSB are all less than those of GVNS. (e reason is that
VNS can maintain the population evolution with high-
quality genes and better stability by means of the best
population immigrant scheme.

Tables 1 and 2 illustrate the t-test results of the algo-
rithms in dynamic environments with ρ increasing from 0.1
to 1.0, while τ � 50 and 30. Concretely, the t-test results of
Eil101, A280, and Rat575 show that VNSB is significantly
better than VNS, and GVNSB is significantly better than
GVNS. (e results are sufficient for us to validate that the
best population immigrant scheme is very effective for VNS
to solve CTSP-VCC.

4.3.3. Performance Comparison between Greedy-Initializa-
tion and Best-Population Immigrant. In Tables 1 and 2, the
performance of GVNS is significantly worse than that of
VNSB in three cases of Eil101 with ρ � 0.1, 0.2, and 0.5. (is
result is also illustrated more clearly in Figure 6. In par-
ticular, in dynamic environment at τ � 50 and ρ � 0.5, the
results in GVNS in Eil101–4, Eil101–5, and Eil101-6 are
2342, 2015, and 2132.1, respectively. (ose results obtained
by VNSB are 1494.5, 1561.8, and 1734.6, respectively, all less
than their corresponding results by GVNS.

In addition, we find that the pros and cons of GVNS and
VNSB swap with the increase of the number of cities. For
example, in Figure 7, the results obtained by GVNS are
better than those by VNSB in A280–8 and A280-15, but in
A280-5 with ρ � 0.1 and 0.2, the result from GVNS is worse
than that from VNSB. While in the dynamic environment at
ρ � 0.5 and 1.0, the results have changed, that is, the result

Table 1: t-test result of comparing VNSs in environment τ � 50.
t-test
result Eil 101–4 Eil 101–5 Eil 101–6

τ � 30,ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNSB-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
GVNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNSB s- s- s- s+ s- s- s- s+ s- s- s- s+

GVNSB-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

t-test
result A 280–5 A 280–8 A280-15

τ � 30,ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNSB-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
GVNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNSB s- s- s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

t-test
result Rat 575–10 Rat 575–15 Rat 575–20

τ � 30,ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNSB-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
GVNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Table 2: t-test result of comparing VNSs in environment τ � 30.

t-test
result Eil 101–4 Eil 101–5 Eil 101–6

τ � 50,ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNSB-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
GVNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNSB s- s- s- s+ s- s- s- s+ s- s- s- s+

GVNSB-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

t-test
result A 280–5 A 280–8 A 280–15

τ � 50,ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNSB-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
GVNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNSB s- s- s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

t-test
result Rat 575–10 Rat 575–15 Rat 575–20

τ � 50,ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNSB-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
GVNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNS-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GVNSB-
VNSB s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
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from GVNS is better than that from VNSB. Similarly, the
results obtained by GVNS are better than those by VNSB in
cases of Rat575–15 and Rat575–20.

Figures 8 and 9 show that GVNSB always achieves the
best results among the algorithms. Furthermore, Tables 1
and 2 suggest that the introduction of the best population
immigrant scheme into GVNS can guide the algorithm to
track the change of the optimal solution rapidly in a dynamic
environment. Hence, GVNSB outperforms significantly
other three algorithms in terms of the offline performance,
dynamic performance, and standard deviation.

In summary, both the best population immigrant
scheme and greedy-initialization scheme can help VNS
converge rapidly and obtain much better solutions, and they
are beneficial for VNS to track the dynamic environment of
CTSP-VCC.

5. Conclusions

(is work proposes a dynamic CTSP in which city colors
change with time. It can be applied to a supply decision
problem of online retailers with multiwarehouses and varying
supply availability. (en, a variable neighborhood search al-
gorithm is proposed to address this new CTSP. It uses direct-
route encoding and a two-stage greedy-initialization algorithm
to obtain an optimal/near-optimal solution. In addition, a best
population immigrant scheme is adopted to track the change of
the optimal solution rapidly in a dynamic CTSP. Furthermore,
to mimic the dynamic environment of CTSP-VCC, we con-
struct a dynamic environment simulator that can be easily
tuned via two parameters, i.e., change speed and severity.

To test the performances of the proposed algorithm, i.e.,
greedy-initialization VNS with the best population

Table 3: (e standard deviations of VNS, VNSB, GVNS, and GVNSB in environment τ � 50.

Case Eil 101–4 Eil 101–5 Eil 101–6
ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNS 25.8 24.1 30.2 23.1 21.3 28.2 23.9 16.7 22.8 16.7 24.5 20.6
VNSB 12 17.4 12.8 15.9 14.4 14.1 20.6 18.1 13 18.7 19.5 17.7
GVNS 42.9 44.5 45.1 19.9 36 42 50.7 15.2 37.2 50 51.4 14.9
GVNSB 12.3 16.6 26.5 7.2 16.6 27.8 41.8 5.9 16.9 34.4 50.6 5.9
Case Eil 280–5 Eil 280–8 Eil 280–15
ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNS 99.3 143.5 119 92.4 94.5 155.1 128.8 88.7 139.8 109.8 168.6 101.9
VNSB 65 58.5 73.8 65.3 52.9 61.9 58.9 62.8 69.1 81.1 82.4 84.7
GVNS 161 192.1 225.1 52.2 230.1 352.1 186.7 43.4 111.8 111.4 91.4 39
GVNSB 76.7 94.9 201.7 24.6 156.5 188.9 100.4 17.8 51.2 57.6 41.9 18.4
Case Eil 575–10 Eil 575–15 Eil 575–20
ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNS 315.7 315.4 287.4 231.7 286.5 348.2 279.3 199.8 321.9 357.6 267.2 226.9
VNSB 110.7 150.2 127.1 129.1 153.5 146.6 152.8 144 167.9 201.1 168.3 150.5
GVNS 802.5 679.1 230.1 99.3 345 326.7 225.2 99.6 281.2 246.6 251.5 85.7
GVNSB 441.5 616.4 221.6 51.9 185.6 151.7 132.4 59.3 161.7 173.7 162.8 46.3

Table 4: Standard deviations of VNS, VNSB, GVNS, and GVNSB in environment τ � 30.

Case Eil 101–4 Eil 101–5 Eil 101–6
ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNS 21.9 29.5 25.8 24 25 21.1 23.2 22.6 25.3 23.7 29.4 25
VNSB 15.7 19.5 14.9 12.6 13.3 15.8 17.1 16.2 16.8 19.1 15.1 18.2
GVNS 43 38.2 52.8 24.2 44.5 41 57.6 13.1 43.2 53.4 65.2 14.9
GVNSB 12.3 16.9 23.7 10.6 14.2 26.8 56.7 7.3 17 36.3 45.3 7.8
Case Eil 280–5 Eil 280–8 Eil 280–15
ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNS 117 140.2 129.6 73.7 148.8 140.4 135 111.8 153.5 125.7 138.7 114.6
VNSB 89.3 73.6 84.8 79.7 87.3 77.9 80.9 65.7 73.5 79 72.3 76.2
GVNS 174.8 210.9 236.3 45.1 244.1 382.7 163.2 35.9 103.7 97.8 94.7 30.7
GVNSB 74.3 94.2 207.3 22.2 129.6 245.8 122.2 25.1 54 58.9 41.1 17.9
Case Eil 575–10 Eil 575–15 Eil 575–20
ρ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
VNS 292.4 285.5 321.9 284.1 259 319.5 280.8 217 295.9 315.8 319.5 266.3
VNSB 219.1 220.3 203.3 210.6 156.2 214.8 179.7 178.9 143.9 196.5 193.6 151.8
GVNS 722.2 682 255.7 98.8 323.9 287.9 259.1 94.2 237.7 257.6 260.3 94.6
GVNSB 499.6 556.5 158.5 64.6 288.2 203.4 174.2 74.8 144.7 197.4 174 64.4
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immigrant, extensive experiments are conducted in terms of
offline performance, dynamic performance, and standard
deviation.

(e results show that VNS can obtain a desired solution
in its initialization by means of a greedy-initialization
scheme. Solution quality and stability can be significantly
improved with the help of the best population immigrant
scheme. Specially, because of the two schemes, the results of
the baseline VNS can be improved about 30%–50%. In
summary, the proposed best population immigrant scheme
and greedy-initialization scheme are both effective for VNS
to track the change of optimal solutions in the new CTSP
and help the algorithm obtain better solutions. Our ongoing
work is to apply CTSP-VCC and VNSs to some real-life
problems [35, 36].
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