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*is paper proposes an NN-based cooperative control scheme for a type of continuous nonlinear system. *e model studied in
this paper is designed as an interconnection topology, and the main consideration is the connectionmode of the undirected graph.
In order to ensure the online sharing of learning knowledge, this paper proposes a novel weight update scheme. In the proposed
update scheme, the weights of the neural network are discrete, and these discrete weights can gradually approach the optimal value
through cooperative learning, thereby realizing the control of the unknown nonlinear system. *rough the trained neural
network, it is proved if the interconnection topology is undirected and connected, the state of the unknown nonlinear system can
converge to the target trajectory after a finite time, and the error of the system can converge to a small neighbourhood around the
origin. It is also guaranteed that all closed-loop signals in the system are bounded. A simulation example is provided to more
intuitively prove the effectiveness of the proposed distributed cooperative learning control scheme at the end of the article.

1. Introduction

*e control of the system is a big problem for humans to
solve the mechanical operations, and in real life, most
systems are nonlinear systems. *is means that we cannot
solve the control problem for this type of system through a
unified constant equation. For the control of complex
nonlinear systems, many researchers have made corre-
sponding research and established a lot of different solution
models, most of which are based on adaptive neural
networks.

*e adaptive neural network usually acts as a “percep-
tron” in the control of the system, which means that we can
fit some unknown functions through the neural network.
Due to the global estimation characteristics, learning ability,
and tolerance of fuzzy input of neural networks, the control
and learning method based on neural network has aroused
great interest [1–15]. Because the adaptive method in the
neural network can automatically adjust the processing
method and processing order, so as to find the potential
structural features to obtain the best processing method.*e

study of using adaptive method to control the system has
also been widely concerned [16–19]. Most of these control
methods are based on the characteristics of adaptive neural
networks, so as to realize the identification process of un-
known functions and then use Lyapunov functions for
stability analysis [20–23]. In this type of control process, the
selection and training of neural networks often have a large
impact on system performance. *is is because the stability
analysis method based on Lyapunov cannot guarantee that
the weight of the neural network reaches the optimal value,
which means that even for the same task, the weight of the
neural network still needs to be adjusted repeatedly. In other
words, the neural network control method using only
Lyapunov’s stability theory cannot fit a given nonlinear
system well.

In order to solve this problem, the radial RBF neural
network is considered to be used in the recognition of
nonlinear systems. By using the persistently exciting feature
of the RBF neural network [24], the convergence of the
neural network weights can be guaranteed to a certain ex-
tent. *e PE condition further ensures that the fitting error
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of the nonlinear system can be controlled within a smaller
range. At the same time, a deterministic learning mechanism
is proposed on the basis of the PE condition [25], and this
kind of mechanism ensures that the past dynamics are stored
in the form of “pairs,” so that the new control process can be
adjusted accordingly.

In addition, a cooperative learning scheme is often
mentioned in neural network-based control systems. *is is
because cooperative learning can divide the task into several
parts, which can be distributed to multiple agents, and the
learning efficiency can be improved through the commu-
nication between the agents [26].

In [27], a cooperative recognition technology based on
the neural network is introduced, but this type of technology
can only identify unknown nonlinear systems and cannot
control them.

Benefiting from previous research, this paper proposes
an adaptive cooperative control scheme for continuous
unknown nonlinear systems based on the radial basis
function neural network. Using this control scheme, the
continuous unknown nonlinear function can be controlled
with arbitrary precision under the given reference trajectory,
and it is guaranteed that all signals are ultimately bounded.
*e tracking error also converges in a small neighbourhood
centred at the origin.

*e writing steps of this article are as follows: In the first
part, the basic knowledge used in this article will be briefly
introduced, and relevant lemmas that will be used in the
proof phase will be derived from different knowledge. In the
second part, the problem discussed in this article will be
described, and a model of the problem to be solved will be
established. *en, it is clarified to what extent this problem
can be solved using the scheme proposed in this article. *is
part will get specific results, so it is an important part of this
article. In the third part, the questions raised in the second
part will be proved accordingly. In the fourth part, simu-
lation will be conducted through examples to prove the
correctness and effectiveness of the results. *e last part will
make a conclusion for this article.

2. Preliminaries

2.1. Kronecker Product [28]

Definition 1. Let X ∈ Rm×n, Y ∈ Rp×q; then, the Kronecker
product between X and Y has the following form:

X⊗Y �

x11Y · · · x1nY

⋮ ⋱ ⋮

xm1Y · · · xmnY

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

2.2. Algebraic Graph /eory. Generally speaking, we can
express the connections between systems in the form of
graphs. For an undirected graph G � (V, E), it is composed
of a set of vertices Vwhere V � v1, v2, . . . , vn􏼈 􏼉 and a set of
edgesE, where E � e1, e2, . . . , en􏼈 􏼉. Each side in E is con-
nected with the vertices in V. A � [aij]n×n is the adjacency

matrix of this graph, where each element has aij ≥ 0. *is
adjacency matrix can be expressed as a square matrix:
|V| × |V|. Assuming that there is no self-edge in the figure,
that is, aii � 0, it is defined that the exchange of information
from node vi to vjcan be expressed as ei,j � (vi, vj). *e
Laplacian matrix in the graph can be defined as
L � [lij] ∈ Rn×n. *is matrix is related to the adjacency
matrixA and satisfies the condition of i≠ j, lii � 􏽐

n
j�1 aij,

where lij � −aij.

Lemma 1 (See [29]). We think that the symmetric Laplacian
matrix in an undirected graph Gcan be expressed asL. So, for
this undirected graph,L has at least one zero eigenvalue, and
the other nonzero eigenvalues of L are all positive numbers.
In addition, if and only if G is connected,Lhas only a simple
zero eigenvalue, the eigenvector corresponding to this eigen-
value is(1/

��
N

√
)1n, and all other eigenvalues are positive

numbers.

2.3. PE Condition and Uniformly Globally Exponentially
Stable. We consider a system as shown below:

x
·

� f(x, t),

x t0( 􏼁 � x0,
(2)

where f denotes a nonlinear function with t as a variable. It
is assumed that this nonlinear function is continuous and
satisfies the following Lipschitz condition:

f x1( 􏼁 − f x2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L x1 − x2( 􏼁, (3)

where x1, x2 ∈ R. *e abovementioned condition ensures
that the solution in system (2) exists and is unique.x(t)

represents the solution to (2) from the specific initial situ-
ation (t0, x0).

Definition 2. In system (2), if there is a uniform and local
exponentially stable equilibrium point when x � 0, then
there are two positive definite constantsc1, c2, and the fol-
lowing condition is meet when r> 0:

‖x(t)‖≤ c1 x0
����

����e
− c2 t− t0( ). (4)

If formula (4) is satisfied in any initial condition x(t0),
then the system in (2) is said to be uniformly globally ex-
ponentially stable.

Definition 3. (Cooperative PE) (See [30]). We think that
Q(τ) meets the PE condition when Q(τ)satisfies the fol-
lowing formula:

α1I≥ 􏽚
t+T0

t
Q(τ)Q(τ)

Tdτ ≥ α2I, ∀t0 ≥ 0, (5)

where I represents the identity matrix and α1 and α2 are
constants. In functionQ(τ), it is not necessary for each signal
to satisfy the PE condition. By proving the cooperative PE
condition, we can use the following lemma to analyse the
stability.
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Lemma 2 (See [25]). Consider a linear time-varying system,
which is represented in the following way:

x0
·

x1
·

⎡⎣ ⎤⎦ �
Λ Q(t)

T

−ΓQ(t) 0
⎡⎣ ⎤⎦

x0

x1
􏼢 􏼣, (6)

where x0 ∈ Rn, x1 ∈ Rm, x � [xT
0 , xT

1 ]T represents the system
state and the transpose of Λis equal to itself. If the two
conditions (a) the triple (Λ, E, Γ) is strictly positive real, that
is, if there is a symmetric positive definite matrix S that
satisfies ΓΛ + ΛTΓ � −S and (b) Q(t) is continuous and
bounded are met and it satisfies the PE condition, the de-
rivative of Q(t)is also bounded; then, x � 0 is uniformly
globally exponentially stable in system (6)

At the same time, considering the influence of external
disturbance on stability, we propose the following lemma
based on [25].

Lemma 3 (See [25]). /e following system is considered:

_x � f(x, t) + e(x, t), (7)

wheref ∈ Rn is a continuous function on t, which satisfies the
local Lipschitz condition inx, and e is locally bounded and
meets ‖e(x, t)‖≤ δ(t). We think e is the external noise; then,
equation (7) is a system with disturbance added to equation
(2). If x � 0is the exponentially stable equilibrium point in
system (7), then there is ‖e(x, t)‖≤ψ, and ψandδ(t) are
proportional. /is shows that x(t) is uniformly bounded.

Remark 1. In this article, we use Lemma 1 to prove that a
conventional system is uniformly exponentially stable under
the condition of PE. At the same time, using Lemma 2, we
can prove that even after adding the disturbance term, the
system can also converge to a smaller value when the dis-
turbance term can converge to a smaller value.

2.4. RBF NNS. Since the RBF neural network can approx-
imate an unknown continuous nonlinear function to any
degree, it is often used in the control and recognition process
of nonlinear systems. *erefore, for an unknown nonlinear
function f(x), in this article, a radial basis function neural
network is used to estimate it. Suppose the unknown
nonlinear equation is f(Q); then, the RBF NN shown below
is used to approximate its value over the compact set ΩQ:

f(Q) � K(Q)
T
W + ε(Q), (8)

where W � [w1, w2, . . . , wn]T represents the desired weight
vector in the output layer of the neural network, K(Q) �

[k1(Q), k2(Q), . . . , kn(Q)]T is the activation function in the
neural network, n shows the number of neurons in the
hidden layer, and ε(Q) denotes the estimated error of RBF
NN. In this article,ki(Q) uses the activation function which
is widely used in RBF NN: Gaussian function, which is in the
following form:

ki(Q) � exp −
Q − ci

����
����
2

η2
⎡⎢⎣ ⎤⎥⎦, (9)

where η> 0, ci ∈ ΩQ denote the width and centre of the
activation function, respectively. *e desired weight W is
regarded as follows:

W � argmin sup f(Q) − S(Q)
T 􏽢W

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, (10)

where 􏽢W is an estimation of the desired weight W. Generally
speaking, we think that Wis bounded. If f(Q) is continuous
and the estimation domain of f(Q) is a compact set, we can
guarantee the existence of optimal weights. As for the lo-
calized RBF NN, we can use the continuous nonlinear
equation shown below to estimate any trajectory:

f(Q(t)) � Sτ(Q(t))
T
Wτ + ετ(Q(t)), (11)

where Wτ represents the subvector of the weight matrix in
the neural network, Sτ denotes the activation function vector
in RBF NNs, and ετ means the estimation error of the neural
network. In general, the estimation error using this neural
network is very small.

In order to analyse the stability of this neural network,
we need to prove that Sτ meets the PE condition; then, the
following lemma can be used to prove this requirement.

Lemma 4 (See [25]). If a trajectoryQ(t) is periodic or pe-
riodic-like, Q(t) is a continuous graph and its derivative is
bounded in Ω./en, for the localized RBF NN S(Q)TW whose
centre is in a space that can contain Ω, the regression vectors
Sτ(Q(t)) defined in (9) of this neural network almost all meet
the PE condition.

3. Cooperative Adaptive Control of a
Nonlinear System

3.1. Problem Formulation. Consider a nonlinear system as
shown below:

xi

·
� f xi( 􏼁 + ui, i � 1, 2, 3, . . . , N, (12)

where ui ∈ R denotes the control input of system i, xi ∈ R is
the state of system i, and N is the number of first-order
systems. f(x1) is an unknown nonlinear function that needs
to be fitted by RBF NN. *e abovementioned expression
shows the overall structure of the system that needs to be
controlled. In this article, we consider that the state of x in
the system is unknown, and the unknown nonlinear func-
tion of each node, that is, f(xi), is uniform. Using the radial
basis function neural network mentioned above, we can fit
this unknown nonlinear function in the following form:

f xi( 􏼁 � S xi( 􏼁
T
Wi + εi, (13)

where εi represents the fitting error for this unknown
nonlinear function.

For control problems, a reference signal is generally
required for tracking. Assuming that the reference signal is
uniformly bounded, the form of the reference signal defined
in this article is

yi

·
� Fd yi( 􏼁, i � 1, 2, 3, . . . , N, (14)
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where Fd(yi) denotes the given known function, that is, the
reference signal. N is the number of reference signals, which
represents the same number as the system state.*e purpose
of this article is to be able to track the different states of the
system to these reference trajectories after some reference
signals are given. For this, we need to design a controller to
make xi track to yi and achieve the goal of uniform con-
vergence. *e controller model proposed in this paper is

ui � Bizi − S xi( 􏼁
T 􏽢Wi + αi

·
, (15)

and among them zi � xi − yi,αi

·
� Fd(yi).zi represents the

state tracking error,Bi � di ag −bi1, −bi2, −bi3, . . . , −bin􏼈 􏼉 is a
designed diagonal matrix, and each element satisfies
bij > 0 i � 0, 1, . . . , N, j � 0, 1, . . . , n.

Using the system state model, reference signal form, and
controller model proposed above, this paper realizes the
neural network-based cooperative adaptive control of the
unknown nonlinear system. *e control part will be de-
scribed in detail below.

3.2. RBF NN-Based Control. As mentioned before, the RBF
NN can be used to approximate the characteristics of the
positional nonlinear function with arbitrary accuracy, so it is
used to approximate f(xi). Inspired by the consensus theory
and cooperative learning control, we propose the following
cooperative control weight update rule:

􏽢W
·

i � −Ψi S xi, ri( 􏼁 xi − yi( 􏼁 + σi
􏽢Wi􏽨 􏽩 −Θi 􏽘

N

j�1
ai,j

􏽢Wi − 􏽢Wj􏼐 􏼑,

(16)

where 􏽢Wi represents the weight estimator of the systemi.
Ψi, Θi > 0 are the design parameters. ai,j is an element of
the adjacency matrix A in graph Ο, and this item is used to
represent the connection items of each control law. Besides,
σi>0 and σi

􏽢Wi participate in this rule as correction terms to
ensure the convergence of weights. −Θi 􏽐

N
j�1 ai,j(

􏽢Wi − 􏽢Wj)

shows the coupling relationship between the i-th weight
update rule and its neighbours, which is a manifestation of
the cooperative learning rule.

In addition, we also define the weight error in the neural
network as 􏽥Wi � 􏽢Wi − W, where Wrepresents the optimal
solution of weights in RBF NN. *en, the derivative of this
closed-loop system is

􏽥W
·

i � −Ψi S xi, ri( 􏼁zi + σi
􏽢Wi −Θi 􏽘

N

j�1
ai,j

􏽢Wi − 􏽢Wj􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦.

(17)

We believe that when 􏽥Wi converges to 0, the weights
obtain the optimal solution.

3.3. Main Results. *e performance of the distributed co-
operative adaptive control is stated as follows. In order to be
able to express more clearly in the following proofs, we first
define the following notations:

(1) Sφi(xi, ri) and Sφi(xi, ri), respectively, represent the
part of S(xi, ri) near and away from the reference
trajectory Fd(yi) when using RBF NN

(2) (·)j,φi and (·)j,φi, respectively, represent the part of
formula (·)j that is near and away from the reference
trajectory Fd(yi)

(3) (·)i,φ and (·)i,φ, respectively, represent the part of
formula (·)i that is near and away from the reference
trajectory Fd(yi)

(4) (·)φ and (·)φ, respectively, represent the parts near
and far away from all trajectories Fd(y) in the form
(·)

(5) Wi represents the mean value of 􏽢Wi over a period of
time

Theorem 1. Consider a closed-loop system with (12) as the
plant, which uses (14) as the reference model, (15) as the
controller, and (16) as the weight update rule. For a given
reference signal yi, we have the following conclusions:

(1) All signals in the closed-loop system remain bounded.
(2) /e state tracking error zi � xi − yi can exponentially

converge to a small neighbourhood of zero when
selecting appropriate design parameters. Also, the
weight estimator 􏽢Wi can also exponentially converge
to the vicinity of the optimal weight W.

(3) A locally accurate estimation S(xi)
TW for the ref-

erence trajectory can be obtained, and the error ϵ can
meet the desired level.

Proof. we use the following three parts to prove the results.

(1) For zi � 􏽢xi − yi, the derivative is

zi

·
� 􏽢x

·

i − yi

·
� f xi( 􏼁 + ui − αi

·
. (18)

Substituting formula (15) into the abovementioned
formula, we obtain

zi

·
� Bizi + S xi( 􏼁

T 􏽥Wi − εi. (19)

Using the estimated zi of the system state and the
weight update rule (17), we construct the following
Lyapunov function:

V � 􏽘
N

i�1

1
2
z

T
i zi + 􏽘

N

i�1

1
2Ψi

􏽥W
T

i Ψi
􏽥Wi. (20)

defined that 􏽥W � [ 􏽥W
T

1 , 􏽥W
T

2 , 􏽥W
T

3 , . . . , 􏽥W
T

N]. Taking
the derivative of the above Lyapunov function, we
obtain

V
·

� 􏽘
N

i�1
z

T
i Bizi − z

T
i εi􏼐 􏼑 − 􏽘

N

i�1
σi

􏽥W
T

i
􏽢Wi − Θi

􏽥W
T
L⊗ Inl( 􏼁 􏽥W.

(21)
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For the abovementioned formula, it is known from
Lemma 1 that, for the Laplacian matrix L in this
case, there is one and only one zero eigenvalue whose
eigenvector is (1/

��
N

√
)1n, and the other eigenvalues

are all positive numbers. For these N-1 eigenvalues,
we express them as

0< κ2 ≤ κ3 · · · ≤ κN. (22)

*en, for L⊗ Inl, it has nl zero eigenvalues, and the
eigenvectors of these eigenvalues can be expressed as

ι1 �
1
��
N

√ 1n ⊗ e1, ι2 �
1
��
N

√ 1n ⊗ e2, . . . , ιv �
1
��
N

√ 1n ⊗ enl.

(23)

For the other (N − 1)nl nonzero eigenvalues in the
formula, we express their eigenvectors as

ιnl+1, ιnl+2, . . . , ιNnl. (24)

LetQ � (ι1, ι2, . . . , ιNnl),Λ �

diag κ1Inl, κ2Inl, . . . , κNInl􏼈 􏼉, and D � QTΛ−1Q. *en,
the following formula can be obtained:

􏽥W
T
L⊗ Inl( 􏼁 􏽥W � e

TDe, (25)

where e � (L⊗ Inl)
􏽥W.

In addition, assuming that b � min(b11, b12, . . . ,

bNn), the following inequalities can be obtained:

z
T
i Bizi ≤ − bz

T
i zi,

− z
T
i εi ≤

b

2
z

T
i zi +

1
2b
ε2,

− 􏽘

N

i�1
σi

􏽥W
T

i
􏽢Wi ≤ −

σ
2

􏽥W
T

i
􏽢Wi + 􏽘

N

i�1

σi

2
W

2
,

− e
TDe≤ −

1
κN

‖e‖
2

� −
1
κN

􏽥W
T

L⊗ Inl( 􏼁
2 􏽥W.

(26)

Since Ψi is a designed matrix, we can make it a
symmetric positive definite matrix.*en, there exists
a positive definite matrixΦ that satisfiesΦΦT � Ψ−1,
and Ψ−1 � diag Ψ−1

1 ,Ψ−1
2 , . . . ,Ψ−1

N􏼈 􏼉. Using the
abovementioned inequality, V

·

can be reduced to

V
·

≤ −
b

2
􏽘

N

i�1
z

T
i zi − κmin(Φ) 􏽘

N

i�1

􏽥W
T

i Ψ
−1
i

􏽢Wi +
1
2b

Nε2 +
σi

2
􏽘

N

i�1
‖W‖

2
,

(27)

that is,

V
·

≤ − ρV + δ, (28)

where

Φ � Φ− 1 σ
2

􏼒 􏼓INnl +
1
κN

L⊗ Inl( 􏼁
2Φ− 1

,

ρ � min b, κmin
Φ
2

􏼨 􏼩,

(29)

δ �
1
2b

Nε2 +
σi

2
􏽘

N

i�1
‖W‖

2
. (30)

So, there is

δ
ρ

+ V(0)exp(−ρt)>
δ
ρ

+ V(0) −
δ
ρ

􏼠 􏼡exp(−ρt)≥V(t)≥ 0.

(31)

*rough the abovementioned formula, it can be
reflected that the constructed Lyapunov function is
bounded.*en, the elements zi and 􏽥Wi that make up
V are bounded. Furthermore, xi and 􏽢Wi are boun-
ded. *erefore, we can draw a conclusion that all
signals in this closed-loop system are bounded.

(2) In this part, we will construct a special form to use
the lemma to prove. From the previous definition, we
know Q � (ι1, ι2, . . . , ιNnl), so for 􏽥W, it can be
expressed as follows:

􏽥W � a1ι1 + a2ι2 + a3ι3 + · · · + aNnlιNnl, (32)

where a � (a1, a2, a3, . . . , aNnl) denotes the corre-
sponding coefficient. To analyse 􏽥W relatively simply,
a space Γ is introduced, where Γ � (ι1, ι2, . . . , ιnl).
*en, if 􏽥W ∈ Γ exists, there is 􏽥W1 � 􏽥W2 � · · · � 􏽥WN.
If the condition of formula (30) is not satisfied, we
can express the distance between 􏽥W and the space Γ
as D, which satisfies

D � min 􏽥W − l
2����
���� � 􏽘

Nnl

i�nl+1
a
2
i ≤

1
k
2
2
‖e‖

2
. (33)

Reviewing that e � (L⊗ Inl)
􏽥W, since e can reach a

small value, it can be seen from equation (36) that
min‖ 􏽥W − l‖2 can also reach a small value.*is means
that there exists a small positive Ω such that
􏽢Wi − 􏽢Wj ≤Ω, which implies that

􏽢W1 � 􏽢W2 � · · · � 􏽢WN. (34)

At the same time, due to the localization property of
the radial basis function, according to formula (11),
we can get

zi

·
� Bizi + Sφi xi, ri( 􏼁

T 􏽢Wi,φi + 􏽢Wi,φSφi xi, ri( 􏼁 − εi,φi.

(35)

We define the tracking error along the reference
trajectory Fd(yi) as E � 􏽢Wi,φSφi(xi, ri) + εi,φi, and
equation (35) can be rewritten as

Discrete Dynamics in Nature and Society 5



zi

·
� Bizi + Sφi xi, ri( 􏼁

T 􏽢Wi,φi − E. (36) Using the form of a matrix, this closed-loop system
can be expressed as

z
·

i

􏽥W
·

i,φi

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

Bi Sφi xi, ri( 􏼁
T

−Ψi,φiSφi xi, ri( 􏼁 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

zi

􏽥Wi,φi

⎡⎣ ⎤⎦ −

E

σiΨi,φi
􏽢Wi,φi + ΘΨi,φi 􏽘

N

j�1

ai,j
􏽥Wi,φi − 􏽥Wj,φi􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (37)

*en, the weight error can be expressed as the
following formula:

􏽢W
·

i,φ � −Ψi,φiSφi xi, ri( 􏼁zi − σiΨi,φi
􏽢Wi,φi −ΘiΨi,φi 􏽘

N

j�1
ai,j

􏽢Wi,φi − 􏽢Wj,φj􏼐 􏼑􏼐 􏼑. (38)

Since σi can be selected as a numerically small value,
E and σiΨi,φi

􏽢Wi,φi can also be a small value. In ad-
dition, since the final result of 􏽥Wi − 􏽥Wj � 􏽢Wi − 􏽢Wj

can also reach a small value, ΘiΨi,φi 􏽐
N
j�1 ai,j(

􏽥Wi,φi −
􏽥Wj,φi) can reach a small value. At this time, from
Lemma 4, we know that, for a given reference tra-
jectory Fd(yi), Sφi(xi, ri) almost always meets the PE
condition. With Lemma 2, the origin (zi,

􏽥Wi,φi) � 0
in system (36) is exponentially stable. *en,
according to Lemma 3, we can know that, for this
system, the tracking error zi and the neural network
weight estimation error both converge to zero ex-
ponentially. *e degree of convergence is related to
the design parameters. Based on the abovementioned
analysis, it is also shown that since the weight error
value 􏽥Wi converges to zero exponentially, the weight
estimation value 􏽢Wi all converges to the optimal
weight W.

(3) We can prove this part according to the RBF NN
weight update rule proposed by DCL. Based on the
abovementioned definition, the weights of neurons

far away from the target trajectory can be described
as follows:

􏽢W
·

i,φi � −Ψi Si,φi xi, ri( 􏼁zi + σi
􏽢Wi,φi􏽨 􏽩 −Θi 􏽘

N

j�1
ai,j

􏽢Wi,φi − 􏽢Wj,φi􏼐 􏼑.

(39)

Since the radial basis function can finally approximate
the unknown nonlinear function with arbitrary accuracy,
Sφi(xi, ri) could be a very small value. *e σi in the σ
correction term is usually also a small value. Since 􏽢Wi and
􏽢Wj are assumed to be zero at the initial condition in this
paper, the update amplitude of 􏽢Wi,φi is small and it is always
maintaining a small value. *en, this can prove that
Si,φi(xi, ri)Wi,φi, Si,φi(xi, ri)Wi,φi, Si,φi(Fd)Wi,φi, and
Si,φi(Fd)Wi,φi are all small values.

*rough RBF NN, the estimation of the nonlinear
function f(x) in the input state can be expressed in the
following form:

f Fd( 􏼁 � Sφ Fd( 􏼁
T
Wφ + εφ � Sφ Fd( 􏼁

T 􏽢Wi,φi + εi,φ1i � Sφ Fd( 􏼁
T 􏽢Wi,φi + εi,φ1i,

� Sφ Fd( 􏼁
T 􏽢Wi,φi + Sφ Fd( 􏼁

T 􏽢Wi,φi + εi,φ1i − Si,φi Fd( 􏼁
T 􏽢Wi,φi � Sφ Fd( 􏼁

T 􏽢Wi + εi1
,

� Sφ Fd( 􏼁
T
Wi,φi + εi,φ2i � Sφ Fd( 􏼁

T
Wi,φi + Sφ Fd( 􏼁

T
Wi,φi + εi,φ1i − Sφ Fd( 􏼁

T
Wi,φi � S Fd( 􏼁

T
Wi + εi2

,

(40)

where

ϵi,φ1i � ϵφ − Sφ Fd( 􏼁
T 􏽥Wφ,

ϵi1 � ϵi,φ1i − Sφ Fd( 􏼁
T 􏽢Wi,φi,

ϵi2 � ϵi,φ1i − Sφ Fd( 􏼁
T

Wi,φi,

(41)

and ϵi,φ2i represents the inherent estimation error of the
radial basis function neural network, which is considered as

a small value. To sum up, S(xi)
TW can estimate the un-

known nonlinear function f(x) along the known trajectory
Fd and ensure that the estimation error value is a very small
number. □

4. Simulation

In order to prove the effectiveness of themethod proposed in
this paper, the following simulation is implemented. In the
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simulation process, we consider a multiagent system con-
structed by three agents, and the dynamic equation of each
multiagent is as follows:

x
·

i � ai

xi,1e
− x2

i,2

xi,2e
− x2

i,1

⎛⎝ ⎞⎠ + 􏽚 ui + bi

xi

����
����
2 sin xi

����
����􏼐 􏼑

xi

����
����cos xi

����
����
3

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, yi � xi, i � 1, 2, 3. (42)

*e definitions of ai, bi are ai � (−1.5, −1.6, 2.3) and
bi � (2, 0.9, 1.4), respectively, where i � 1, 2, 3. *e dynamic
equation of the leader is described as

Fd � (6 sin(4t + 10), 6 cos(3t + 0.3))
T

. (43)

In this example, the RBF NN model used is shown in
equation (16). In this RBF NN, assume that there are 36
nodes in total, which are finally distributed in the space of
[−6, 6] × [−6, 6]. *e basis function vector is represented as
follows:
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Figure 1: Reference trajectory of the leader.
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Figure 2: Consensus performance of three states following the leader.
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Sij zi( 􏼁 � s
ij
1 z1( 􏼁, s

ij
2 z2( 􏼁, . . . , s

ij
36 z36( 􏼁􏽨 􏽩

T
,

s
ij

l � exp −
zl( 􏼁 − cl( 􏼁

����
����
2

η2
⎡⎢⎣ ⎤⎥⎦,

(44)

where widthη � 2, l � 1, 2, . . . , 36. *e design parameters in
this simulation are Bi � diag −30, −30{ },Ψi � diag 0.1{ },

σi � 0.001,Θi � 2. We define the initial conditions as
􏽢Wi(0) � 0, 􏽢xi(0) � 0, 􏽢x11(0) � (−6, 3− 0.5)T, 􏽢x21(0) � (10,

−40.1)T, 􏽢x31(0) � (0, 5e0.3)T.By applying the controller ui

proposed in this paper to the abovementioned initial state,
the system can be controlled.

Figures 1 and 2, respectively, represent the leader’s
reference signal and the state changes of the three agents
after being controlled by the controller proposed in this
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Figure 3: Performance of the first coordinate of the leader and three agents.
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Figure 4: Performance of the second coordinate of the leader and three agents.
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paper. From Figure 2, we can see that the consensus tracking
problem has been well resolved. Figures 3 and 4 show that
each state can well track a given reference trajectory at
different times. Figure 5 shows that the controller converges
to zero over time, reflecting the effectiveness of the control.
Figures 1–5 show that all signals in this multiagent system
are bounded.

5. Direction to Be Improved

*e premise of this paper is that the movement trajectory of
the leader is known, which indicates that we do not need to
discuss its unknown state. However, in the practical ap-
plication, the leader’s state is often unmeasurable, which
requires us to measure its unknown state. [31–36] discuss a
variety of methods for estimating unknown states and
eliminating estimation errors. Similar methods mentioned
above are used to predict the movement state of the leader,
so as to realize the control of the completely unknown
system, which will be reflected in the later work.

6. Conclusions

Inspired by consensus theory and deterministic learning
theory, this paper proposes a distributed adaptive learning
control scheme for a kind of unknown nonlinear systems. In
order to solve the unmeasured state that may exist in the
system, this paper uses the approximation characteristics of
the radial basis function for the unknown nonlinear system
and proposes a novel weight update method. At the same
time, by using Lyapunov’s stability theory, it is proved that
the control scheme proposed in this paper can ensure that all
signals remain uniformly bounded and the tracking error

converges to zero. *e simulation proves the effectiveness of
the control strategy proposed in this paper.
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