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*is paper presents several control methods and realizes the stable tracking for the inverted pendulum system. Based on the
advantages of RBF and traditional PID, a novel PID controller based on the RBF neural network supervision control method
(PID-RBF) is proposed. *is method realizes the adaptive adjustment of the stable tracking signal of the system. Furthermore, an
improved PID controller based on RBF neural network supervision control strategy (IPID-RBF) is presented.*is control strategy
adopts the supervision control method of feed-forward and feedback. *e response speed of the system is further improved, and
the overshoot of the tracking signal is further reduced. *e tracking control simulation of the inverted pendulum system under
three different signals is given to illustrate the effectiveness of the proposed method.

1. Introduction

Inverted pendulum system has been widely investigated in
the past few decades based on two important characteristics
of high order and strong coupling, which are important
problems in control field. And it is an unstable, nonlinear,
and multivariable system. Inverted pendulum control
methods have a wide range of applications in military,
aerospace, robotics, and general industrial processes, such as
balancing problems during robot walking, verticality issues
during rocket launch, and attitude control issues during
satellite flight. *e RBF neural network learning control
algorithm has been a hot topic in current academic research.
*is algorithm can solve nonlinear problems, tracking
problems, and external interference problems. *erefore,
using this method to study the tracking problem of the
inverted pendulum is of great significance.

*e RBF (radial basis function) neural network con-
trollers of the nonlinear system are designed based on
proportion integration differentiation (PID), and these
methods have good control results. Here are some related
research results. In [1], it is presented that RBF network to
estimate complex and precise dynamics mainly solves the

problem of uncertainty and external interference in the
context of complex space. *is method is used to solve the
problem of model uncertainty and input error. In [2], a
neural network adaptive control algorithm with PID is
proposed. *e self-learning ability and self-adaptation un-
certain system dynamic characteristics are used to signifi-
cantly reduce the impact of resistance disturbance on speed.
*e system has strong robustness under the parameter
variations and external disturbances. In [3], a scheme which
combines a proportion differentiation control and a RBF
neural network adaptive control algorithm is used. Among
them, it uses the PD control to track the trajectory of the end
effector of the wire-driven parallel robot (WDPR). *e RBF
neural network control algorithm is applied to approximate
parameters. *e combination of these two methods reduces
the approximation error, enhances the robustness, and
improves the accuracy of the WDPR. In [4], a fuzzy
logic-based offline control strategy of a single-wheeled
inverted pendulum robot (SWIPR) is presented to study the
error, system set time, and rise time, etc. In the end, a good
control effect was achieved. In [5], RBF network is applied to
reduce chatter and increase stability. In [6], it proposes a
single-layer nonlinear controller to achieve that the inverted
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pendulum can be adjusted to a stable state from any initial
position and achieves four degrees of freedom. Hossein [7]
put forward a kind of improved PID control method based
on RBF neural network. It shows that the algorithm has a
better control effect than the traditional PID for the tension.
In [8, 9], adaptive control methods are applied to the input
or output of nonlinear systems. *ey are, respectively, ap-
plicable to a class of nonsmooth nonlinear systems and a
class of multi-input multioutput nonlinear time-delay sys-
tems with input saturation. In [10, 11], two different adaptive
methods were proposed to solve the unknown and stochastic
nonlinear tracking problems of nonlinear systems. And
other scholars have studied the stabilization and conver-
gence of the system [12–14]. Kumar et al. [15] use adaptive
control technology to deal with tracking problems. At
present, many researchers [16–20] have conducted in-depth
studies on various inverted pendulummodels using different
control methods.

In fact, no matter what the control system is, the system
will tend to be stable under the action of the controller.
*erefore, RBF neural network is used as a model for ap-
proximating uncertainty, to study error convergence, and
achieved good convergence results in [21]. In [22], it is
proposed to use the RBF algorithm to estimate the residual
error, reduce the error through the design of the controller,
increase the control signal, and obtain good heating re-
quirements. In [23], the dynamic characteristics of machine
system are explored and the characteristics of the RBF neural
network are used to study the tracking problem. Under the
large structure of the RBF neural network, different basis
functions are selected for a comparative study to eliminate
chattering in [24]. In [25], the RBF neural network imple-
ments self-feedback control, accurate prediction, and
real-time control of reasonable data. It has improved
tracking accuracy and estimated unmodeled dynamics and
external interference issues in [26]. As more and more
academic researchers understand the approximation char-
acteristics of RBF, they add RBF neural networks to various
fields to study the dynamic characteristics of different sys-
tems. It mainly solves the problems of nonlinearity, un-
certainty, and external interference and uses the Lyapunov
function to ensure the effectiveness of the algorithm, so that
it reduces system errors and reaches a stable state [27–34].

In recent years, the footprint of PID applications can be
seen in different fields. From simple PID control algorithm
to complex PID algorithm control, it has played a role in
different control fields. In [35, 36], the PID control algorithm
and operation rules are studied, respectively. *e charac-
teristics of the PID algorithm are explored, and the PID has a
certain degree of adaptability through simulation. According
to the characteristics of the PID algorithm, some scholars
have studied the tuning of the PID controller [37, 38].
Tuning PID parameters are used to optimize system per-
formance according to actual conditions. As PID parameter
tuning technology becomes more and more mature, some
interested scholars use PID as a controller to study system
stability and tracking issues [39–42]. In order to adapt PID
to more situations, some scholars have launched the control
research of fuzzy PID [43, 44] and fractional PID [45, 46]. It

can be seen that the PID control algorithm is a relatively
classic control method.

According to the references, we can find that the RBF
neural network control algorithm basically uses the Lya-
punov function to determine the stability conditions. In [47],
based on the nonlinear U model, RBF neural network and
PD parallel control algorithm are proposed. *e Lyapunov
function determines the conditions of system stability, and
under this condition, the tracking effect has been improved.
However, from the tracking effect, the error between the
system output and the tracking signal is large, and the
tracking situation with external interference is not consid-
ered. *erefore, in this article, we consider these problems
based on the inverted pendulum model to study its tracking
problem.

In short, the control of the inverted pendulum model
mainly includes three major control performances, namely,
stability, accuracy, and rapidity. *en, for the tracking
problem of the inverted pendulum, the three comprehensive
performances also need to be considered. *erefore, we
designed a supervision control method PID-RBF. We fur-
ther design another supervision control strategy IPID-RBF.
*e stable tracking of the signal is achieved by supervision
control strategy. In general, the main innovations of this
paper include the following:

(1) PID-RBF strategy ensures the stability of the system.
*e overshoot of the system is reduced and the
robustness of the system is enhanced. In the case of
interference, the parameters can be adjusted adap-
tively to control signal tracking.

(2) IPID-RBF strategy further solves the problem of
large overshoot in the control process. *e adjust-
ment time of the system is further reduced. *is
strategy has strong anti-interference ability, fast
stability, and small error with the tracking curve.

(3) In the control process, we can use the PID-RBF
strategy to replace the traditional PID control
strategy. *is way can make the system overshoot
smaller and system stability better. IPID-RBF
strategy further improves the overall performance of
the system. In the IPID-RBF control strategy, the
system has a faster response speed, better stability,
and robustness.

*e rest of the paper is organized as follows.*e relevant
control objective is presented in Section 2. Neural network
supervision control design is presented in Section 3. *e
simulation study is discussed in Section 4. Finally, the
conclusions are given in Section 5.

2. Control Objective

*e inverted pendulum system can be difficult to control as
the order increases. At the same time, the inverted pendulum
system itself has the characteristics of complexity, instability,
and nonlinearity. *e inverted pendulum system is often
used as an experimental project in real society. At the same
time, the effectiveness of some control methods in the
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introduction part has been verified by controlling the
inverted pendulum system. *erefore, it has important
significance for the research of inverted pendulum. In order
to study the signal tracking problem, we consider the
inverted pendulum model based on PID and RBF neural
network control. *e inverted pendulum model is similar to
[48]. *e force analysis of the inverted pendulum system is
shown in Figure 1.

In Figure 1, the external force exerted on the trolley and
its moving displacement are indicated by symbols u and x,
respectively. θ is expressed as the angle between the pen-
dulum and the vertical direction. After differentiating its
displacement is _x that is the velocity of the trolley, and the
friction coefficient b between it and the trolley and the guide
rail phase. *en we can obtain the resistance b _x of the guide
rail to the trolley in the horizontal direction.

In addition, the interaction between the trolley and the
pendulum is decomposed into two forces perpendicular to
each other in the vertical plane, where fV and fH are,
respectively, used to represent the component force in the
vertical and horizontal directions.

We use three motions to express the pendulum bar
motion of an inverted pendulum: the horizontal motion of
the center of gravity, the vertical motion of the center of
gravity, and the rotation around the center of gravity.
According to Newton’s law of mechanics, we can get three
equations of motion, ϕ � θ + π represents the angle between
the pendulum and the vertical downward direction:

fH � m
d2

dt
2 (x + l sin ϕ), (1)

fV − mg � m
d2

dt
2 (l cos ϕ), (2)

− fVl sin ϕ − fHl cos ϕ � I
d2ϕ
dt

2 . (3)

Equation (1) is equivalent to the following equation:

fH � m €x + ml€ϕ cos ϕ − ml _ϕ
2
sin ϕ. (4)

Equation (2) is also equivalent to the following equation:

fV − mg � − ml€ϕ sin ϕ − ml _ϕ2 cos ϕ. (5)

*e resultant force in the horizontal direction of the
trolley can be expressed as follows:

M €x � u − b _x − fH. (6)

Put (4) into (6), the external force u can be written as

u � (M + m) €x + ml€ϕ cos ϕ − ml _ϕ2 sin ϕ + b _x. (7)

Similarly, substituting (4) and (5) into (3)yields

− ml €x cos ϕ � I + ml
2

 €ϕ + mgl sin ϕ. (8)

Formulas (7) and (8) are nonlinear equations of motion
of vehicle-mounted inverted pendulum system. In order to
facilitate the control, linearize the system. Suppose that
θ≤ 20° is within the error range of keeping stability. Because
ϕ � θ + π, θis so small; therefore, cos ϕ ≈ − 1, sin ϕ � θ, and
_ϕ2 � _θ

2
≈ 0. After linearization, the system is transformed

into the following mathematical model:

(M + m)€x + b _x − ml€θ � u,

I + ml
2

 €θ − mglθ � ml €x .
(9)

Taking the Laplace transform in (9), one obtains

(M + m)X(s)s
2

+ bX(s)s − mlΦ(s)s
2

� U(s),

I + ml
2

 Φ(s)s
2

− mglΦ(s) � mlX(s)s
2
.

(10)

By eliminating X(s) from the equation set (10), the
transfer function of the trolley to the pendulum angle is
obtained as follows:

G(s) �
Φ(s)

U(s)
�

(ml/q)s
2

s
4

+ b I + ml
2

 /q s
3

− ((M + m)mgl/q)s
2

− (bmgl/q)s
,

(11)

where q � (M + m)(I + ml2) − (ml2) is a constant.

3. Neural Network Supervision Control Design

3.1. PID-RBF and IPID-RBF Control Design. Here, we in-
troduce the PID-RBF control and IPID-RBF control. As we
know, PID controller consists of three important parame-
ters, which are proportional regulation coefficient kp, in-
tegral regulation coefficient ki, and differential regulation
coefficient kd. *e proportional regulation coefficient kp can
change the response speed of the system and improve the
regulation precision of the system. *e integral adjustment
coefficient ki can eliminate the residual error. *e dynamic
performance of the system can be improved by differential
adjustment coefficient kd. As shown in Figure 2, different
PID parameters have different response speeds and stability.
When the response curve oscillates significantly, kp should
be increased, ki should be increased, and k d should be
smaller. When the error of the response curve is large, kp

should be reduced, ki should be reduced, and k d should be
increased appropriately. According to this method, the best
parameters are selected to achieve the best control effect of
the inverted pendulum system.

u
M

fH

fV

bx

(a)

mg

fH

fV

(b)

Figure 1: Force analysis diagram of trolley and swing rod.
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RBF neural network is a three-layer feed-forward neural
network, and the mapping from input to output is linear
which greatly speeds up the learning speed and avoids the
problem of local minima. RBF neural network supervision
control is to study the traditional controller, adjust the
weight of the network online, and make the feedback control
input up(k) tend to zero. *e structure of the RBF neural
network supervision control system is shown in Figure 3.

In the RBF network structure, the input signal of the
network is taken as r(k), H � [h1, . . . , hm]T is radial basis
function vector, and Gaussian basis function is hj which is
expressed as follows:

hj � exp −
r(k) − Cj

�����

�����
2

2b
2
j

⎛⎜⎜⎝ ⎞⎟⎟⎠, (12)

where j � 1, . . . , m, bjis the base width parameter of node j,
bj > 0, Cj is the center vector of node j, Cj � [c11, . . . , c1m]T,
and bj � [b1, . . . , bm]T.

*e weight vector of the network is given by

W � w1, . . . , wm 
T
. (13)

*e output of RBF network is denoted by

un(k) � h1w1 + · · · hjwj + · · · + hmwm, (14)

where m is the number of hidden layer neurons in the
network.

*e control law is given by

u(k) � up(k) + un(k). (15)

*e performance indicators of the neural network ad-
justment are given by

E(k) �
1
2

un(k) − u(k)( 
2
. (16)

*e approximation is as follows:

zup(k)

zwj(k)
≈

zun(k)

zwi(k)
. (17)

*e error caused by the approximation is compensated
by weight adjustment. *e gradient descent method is
adopted to adjust the weights of the network.

Δwj(k) � − η un(k) − u(k)( hj(k)

� − η
zE(k)

zwj(k)
hj(k),

(18)

where η is the learning rate.
α is the momentum factor, and we get the adjustment

process of neural network weights as follows:

W(k) � W(k − 1) + ΔW(k) + α(W(k − 1) − W(k − 2)).

(19)

(1) PID controller based on the RBF neural network
supervision control method (PID-RBF) includes
error signal e1(k), cumulative error signal 

k
s�0 e1(s),

current error, and last time error difference signal
Δe1(k) � (e1(k) − e1(k − 1)) processing.
*e PID-RBF control law can be expressed as
follows:

up(k) � kp ∗ e1(k) + ki ∗T1 ∗ 
k

s�0
e1(s) +

kd

T1
∗ e1(k) − e1(k − 1)( .

(20)

*e network input vector of the PID-RBF control is
given by

X(k) � x1(k), x2(k), x3(k) 
T

�

e1(k)



k

s�0

e1(s) e1(k) − e1(k − 1)( 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(21)

where T1 represents sampling time,
e1(k) � r(k) − y1(k), the input signal is r(k), and
y1(k) is the output sequence of the system response,
s � 0, 1, . . . , k.
*e network output of the PID-RBF control is

un(k) � h1w1 + · · · hjwj + · · · + hmwm. (22)

According to (15), (20), and (22), we can express its
total control law as

kp = 250, ki = 500, kd = 100
kp = 300, ki = 500, kd = 100

kp = 350, ki = 400, kd = 200
kp = 300, ki = 500, kd = 200
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Figure 2: Step response curves under different PID parameters.
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u(k) � up(k) + un(k)

� kp ∗ e1(k) + ki ∗T1 ∗ 
k

s�0

e1(s) +
kd

T1
∗ e1(k) − e1(k − 1)(  + h1w1 + · · · hjwj + · · · + hmwm. (23)

*e weight adjustment process of RBF neural net-
work supervision is expressed as

Δwj(k) � − η un(k) − u(k)( hj(k) � − η
zE(k)

zwj(k)
hj(k),

wj(k) � wj(k − 1) + Δwj(k) + α wj(k − 1) − wj(k − 2) 

� wj(k − 1) − η un(k) − u(k)( hj(k)

+ α wj(k − 1) − wj(k − 2) .

(24)

(2) An improved PID controller based on RBF neural
network supervision control strategy (IPID-RBF)
includes error signal e2(k), cumulative error signal
e2(k), current error, and last time error difference
signal Δe2(k) � e2(k) − e2(k − 1) processing.

up(k) � kp ∗ e2(k) + ki ∗T2 ∗e2(k) +
kd

T2
∗ e2(k) − e2(k − 1)( .

(25)

*e network input vector of the IPID-RBF control is

X1(k) � x1(k), x2(k), x3(k) 
T

�

e2(k)

e2(k)

e2(k) − e2(k − 1)( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(26)

where y2(k) is the output sequence of the system response,
e2(k) � r(k) − y2(k), e2(k) � ((e2(0)∗T2 + e2(1))∗ T2+

· · · + e2(k − 1))∗T2 + e2(k), and T2 represents sampling
time.

*e network output of the IPID-RBF control is as
follows:

un(k) � h1 w1 + · · · hj wj + · · · + hm wm. (27)

According to (15), (25), and (27), we can express its total
control law as

u(k) � up(k) + un(k)

� kp ∗ e2(k) + ki ∗T2 ∗ e(k) +
kd

T2
∗ e2(k) − e2(k − 1)(  + h1 w1 + · · · hj wj + · · · + hm wm.

(28)

x1 h1

h2

hm

x2

xn

ji

Σ
Un (k)

r (k) e (k) Up (k) y (k)
G (s)

U (k)
PID controller

+

+

+

–

… …
Figure 3: Structure of neural network supervision control system.
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*e weight adjustment process of RBF neural network
supervision is expressed as

Δwj(k) � − η un(k) − u(k)( hj(k) � − η
zE(k)

z wj(k)
hj(k),

wj(k) � wj(k − 1) + Δwj(k) + α wj(k − 1) − wj(k − 2) 

� wj(k − 1) − η un(k) − u(k)( hj(k)

+ α wj(k − 1) − wj(k − 2) .

(29)

3.2. Control Algorithm Stability Analysis. For the stability
analysis of the control algorithm, we fully consider the
performance indicators adjusted by the neural network
E(k), equation (16) E(k) � (1/2)(un(k) − u(k))2. *e
equation of state for the free motion of a linear stationary
discrete system is

x(k + 1) � Gx(k). (30)

*e discrete Lyapunov equation is

G
T
PG − P � − Q, (31)

where G is system matrix and P and Q are positive definite
real symmetric matrices.

*e Lyapunov function is expressed as

V(x) � x
T
Px. (32)

When V(0) � 0, x is the solution of the following state
equation [47]:

x(k + 1) � x′(k)Px(k) � Gx(k). (33)

*e increment of the Lyapunov function is

ΔV[x(k)] � V[x(k + 1)] − V[x(k)]. (34)

*e PID-RBF control function
V1[x(k)] � (1/2) 

k
i�0 e21(i). From equation (34), ΔV1[x(k)]

can be expressed as

ΔV1[x(k)] � V1[x(k + 1)] − V1[x(k)]

�
1
2



k+1

i�0
e
2
1(i) − 

k

i�0
e
2
1(i)) �

1
2



k

i�0
e
2
1(i + 1) − e

2
1(i)) �

1
2



k

i�0
e1(i) + Δe1(i) 

2
− e

2
1(i)) �

1
2



k

i�0
2e1(i) · Δe1(i) + e

2
1(i)).⎛⎝⎛⎝⎛⎝

(35)

Combining the previous error and weight adjustment
methods, we can express e1(k + 1) as

e1(k + 1) � e1(k) + Δe1(k) � e1(k) +
ze1(k)

zw(k)
  · Δw(k).

(36)

*e gradient descent method is used to adjust the weight
of the network which can be rewritten as

Δwj(k) � − η
zE(k)

zwj(k)
hj(k) � − η

zE(k)

ze1(k)

ze1(k)

zwj(k)
hj(k).

(37)

Combining equations (36) and (37) and performance
indicators E(k) � (1/2)(un(k) − u(k))2 � (1/2)e21(k), we
can get the following equation:

Δe1(k) �
ze1(k)

zw(k)
 

T

× Δw(t)

�
ze1(k)

zw(k)
 

T

× − η
zE(k)

ze1(k)

ze1(k)

zw(k)
hj(k) 

� − ηhj(k)G1G
T
1 · e1(k),

(38)

where G1 � (ze1(k)/zw(k)).

According to equation (38), (35) can be expressed as
follows:

ΔV1[x(k)] � −
1
2



k

i�0
G

T
1 · e1(k) 

T

× 2ηhj − η2h2
jG1G

T
1  G

T
1 · e1(k) .

(39)

When the value field of ηhj is0< ηhj < 2(G1G
T
1 )− 1, we

can get2ηhj − η2h2
jG1G

T
1 > 0. We analyse equation (39) and

find that the product of (GT
1 · e1(k))T and GT

1 · e1(k) is
positive. *erefore, we can conclude ΔV1[x(k)]< 0. When
ΔV1[x(k)]< 0, the system is stable. Because of
V1[x(k)] � (1/2) 

k
i�0 e21(i), the relation between the pre-

ceding and the following is expressed as
(1/2)e21(k + 1)< (1/2)e21(k), and then |e1(k + 1)|< |e1(k)|,
limk⟶∞e1(k) � 0. *erefore, the control algorithm is
convergent.

4. Simulation Studies

*is section provides some simulations to show the inverted
pendulum tracking effect of PID-RBF supervision control
and IPID-RBF supervision control.We consider the inverted
pendulum model and take the swing angle of the swing rod
as the controlled object. Under zero initial conditions,
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M � 1.096, m � 0.109, l � 0.25, g � 9.8, I � 0.0034, and
b � 0.1. *e transfer function can be expressed as

G(s) �
2.3566s

2

s
4

+ 0.0883s
3

− 27.8285s
3

− 2.3094s
. (40)

*e transfer function of the inverted pendulum system is
discretized by z transformation. *e discretized object after
z transformation is

y(k) � − den(2)∗y(k − 1) − den(3)∗y(k − 2) − den(4)∗y(k − 3)

+num(2)∗ u(k − 1) + num(3)∗ u(k − 2) + num(4)∗ u(k − 3).

(41)

*e base width parameter is given by

c � [− 2, − 1, 1, 2]
T
. (42)

*e center vector is as follows:

b � [0.5, 0.5, 0.5, 0.5]
T
. (43)

We consider kp � 300, kd � 100, ki � 500, ts � 0.001,
η � 0.30, and α � 0.05.

In Figure 4, the chart is given a square wave signal using
neural network supervision control and traditional PID
control. Its amplitude is one. From the diagram, it can be
seen that the amplitude oscillation of the neural network
supervision control is smaller than that of the traditional
PID controller. *e IPID-RBF supervision control tends to
be stable, fastest, and more gentle. Obviously, PID-RBF and
IPID-RBF supervision control have stable speed and high
accuracy compared with pure PID control.

In Figure 5, the graph shows the RBF neural network
supervision control tracking the input square wave signal
parameter curve, the un is the RBF network supervision
control online learning adjustment curve, and the up is the
PID adjustment curve in the RBF network supervision
control; superposed curves u are the sum of un and up in RBF
networks supervised control. Comparing two adjustments of
three curves, because of the transformation of square wave
signal from positive to negative, the value of RBF network
supervision control online learning adjusting curve is
changed from zero to positive, the PID adjusting curve in
RBF network supervision control is negative at the jump
instant, and the variation of the superposition curve is
relatively smooth.

In Figure 6, the diagram is given step signal using RBF
neural network supervision control and traditional PID
control. Its amplitude is one. From the diagram, the am-
plitude oscillation of the RBF network supervisory control is
smaller than that of the conventional PID control. PID-RBF
supervision control is stable after 3.8 s. IPID-RBF supervi-
sion control is stable after 2.5 s. Obviously, IPID-RBF su-
pervision control is more stable and accurate.

In Figure 7, the graph shows the RBF neural network
supervision control tracking the input parameter curve of
the step signal. RBF neural network supervision control
online learning adjustment curve un and superposition curve
uchange trend are basically consistent.

In Figure 8, the graph is given sine wave signal r using
RBF neural network supervision control and traditional PID
control to track. Its amplitude is one. As we can see from the
picture, the amplitude oscillation of the RBF network su-
pervision control is smaller than that of the pure PID, and
the effect of the RBF neural network supervision control is
better than that of pure PID control in the time period from
0s to 20 s. *ere is no error coincidence between the RBF
neural network supervision control curve (y1ory2) and the r

curve. *e RBF network supervision control has less error
and better accuracy than the pure PID control. It can be
clearly observed from the partially enlarged view that the
IPID-RBF control has the highest coincidence and the best
tracking effect.

In Figure 9, the diagram shows the RBF neural network
supervision control tracking the parameter curve of the
input sine wave signal. In RBF network supervision control,
the change of PID regulating curve up is small, and the
change of u in RBF network supervision control is gentle.

From Figures 8 and 9, the RBF neural network super-
vision control online learning adjustment curve un and the
input signal r show the opposite trend change under the
input sine wave signal. As the input signal increases, the
adjustment curve un decreases. *e input signal r decreases,
and the adjustment curve un increases.*e adjustment trend
of un is related to the change of weight w. In the process of
adjustment, the value of h is positive, un � 

j�m
j�1 hjwj. When

the value of the input signal is positive, the weight w changes


j�m

j�1 hjwj correspondingly and the value is negative; when
the value of the input signal is negative, the weight w changes


j�m

j�1 hjwj correspondingly and the value is positive.
Figure 10 shows that, for a given step signal with an

amplitude of one, a given pulse-type disturbance amplitude
is one. Interference time is 0.5 s. *e pure PID and the RBF
neural network supervision control are used for tracking,
respectively. *e disturbance is added when the time is 5 s in
Figure 10. And the amplitude oscillation of the RBF network
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Figure 4: Square wave tracking.
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supervision control is smaller than that of the pure PID
control when the disturbance appears. *en, the system can
adjust to the stable state quickly after the disturbance dis-
appears to realize the step signal tracking.

Figure 11 shows the RBF neural network supervision
control with known disturbance signal and step signal input.
*ere are three large-scale adjustments in total: the ad-
justment of the system stability before the disturbance is
added, the adjustment of the error caused by the disturbance
compensation, and the readjustment of the system stability.
In RBF network supervision control, the curves un and u

tend to be stable after online learning.
In Figure 12, the graph is given a square wave signal. Its

signal amplitude is one. Given pulse-type disturbance

amplitude is two, and the time duration is 0.5 s.When time is
5 s, the disturbance is added. When the disturbance appears,
the amplitude oscillation of RBF network supervision
control is smaller than that of the pure PID. It is observed in
the picture that the system quickly adjusts to the stable state
without oscillation and realizes the square wave signal
tracking under the IPID-RBF control.

In Figure 13, the picture shows the RBF neural network
supervision control with the input of square wave signal and
known disturbance signal. In the diagram, there are three
large-scale adjustments between 0 and 10 seconds, such as
the adjustment of system stability before the disturbance is
added, the adjustment of the error caused by disturbance
compensation, and the adjustment of system stability.
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Combined with the regulation of compensating disturbance
in the case of step input, traditional PID and the RBF neural
network supervision control are used in the regulation of
compensating disturbance for the time of 0.5 s. After 0.5 s,
the stability of the system is adjusted to stable tracking signal.
Among them, the IPID-RBF control had the least amount of
speed to adjust.

In Figure 14, the graph is given sine wave signal. Its signal
amplitude is one. Given pulse-type disturbance amplitude is
two, and the time duration is 0.5 s. When time is 5 s, the
disturbance is added. It can be seen that the deviation of y1 or
y2 from r is less than that of the pure PID, and the curve of RBF
neural network supervision control has a higher coincidence
with the given sine signal after the disturbance disappears.

Figure 15 shows that the disturbance amplitude is given
to one, and the time duration is 0.5 s, which is monitored by
RBF network with the input of sine wave. Compared with
the unperturbed condition, the value of the online learning
adjustment curve un of RBF neural network supervision
control is larger.*ere are three large pulse-type jumps of un

and up superposed curves u in RBF network supervisory
control. *e other time RBF network supervision control
online learning adjustment curve un and the RBF neural
network supervision control superposition curve u change
trend are basically consistent.

Combining Table 1 and the error graphs from Figures 16
to 21 , we can find that the traditional PID control has the
worst effect, long adjustment time, and greater error than the
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Table 1: *e values of error when k� 20000.

Serial number Disturbance Input signal e (k) e1 (k) e2 (k)
(1) Inexistence Step signal − 0.0020 − 1.6054e − 13 0.0013
(2) Existence Step signal − 0.0020 2.4204e − 10 0.0013
(3) Inexistence Sine signal − 0.0202 8.2377e − 4 8.6502e − 4
(4) Existence Sine signal − 0.0202 7.9602e − 4 8.4492e − 4
(5) Inexistence Square signal 0.0040 0.0014 − 0.0013
(6) Existence Square signal 0.0040 0.0014 − 0.0014
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other two control algorithms. *e IPID-RBF control can
reach a stable state in a short time no matter whether there is
no interference or interference.

5. Conclusions

From the simulation effect, the IPID-RBF control applied to
the model has better performance. At the same time, the
input signal tracking is well achieved. Under three different
input signals, real-time tracking of the input signal is realized
through online learning, and the error of the input and
output is continuously adjusted, so that the system error
eventually approaches zero. Compared with the traditional

PID control, the IPID-RBF control has the best tracking
effect with the input signal under three different input
signals. It has improved the characteristics of traditional PID
with low accuracy. Compared with the PID-RBF supervision
control, the IPID-RBF control has smaller curve oscillation
amplitude during the adjustment process, and the system
reaches a stable state in a short time and has strong
anti-interference ability. *is algorithm has simple control
and good tracking accuracy.

*erefore, the improved control algorithms have good
robustness, and the stability of the system is good. Simu-
lation graphics and data show that the IPID-RBF controls
the controlled object through online learning to achieve
online identification and control. It has high control accuracy,
good dynamic characteristics, and anti-interference ability.
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