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Fractional analysis provides useful tools to describe natural phenomena, and therefore, it is more convenient to describe models of
satellites. (is work illustrates rich chaotic behaviors that exist in a fractional-order model for satellite with and without time-
delay. (e proof for existence and uniqueness of the satellite model’s solution with and without time-delay is shown. Chaos
control is achieved in this system via a simple linear feedback control criterion. Chaotic attractors and chaos control are also found
in a time-delay version of the proposed fractional-order satellite system. Various tools based on numerical simulations such as 2D
and 3D attractors and bifurcation diagrams are used to illustrate the variety of rich chaotic dynamics in the satellite models.

1. Introduction

Fractional analysis has become a basic topic for research
since it presents appropriate mathematical tools to explain a
wide variety of engineering, physical and biological phe-
nomena, and some interdisciplinary topics such as neural
networks [1–9]. During the past century, some fractional
differential operators were successfully proposed to describe
fractional derivatives such as Caputo’s type [10] and Rie-
mann–Liouville’s type [11]. (e aforementioned operators
are defined by integration so they are sorted as nonlocal
operators with singular kernels. However, the so called
Caputo–Fabrizio operator [12] is nonlocal operator with the
nonsingular kernel. As a matter of fact, nonlocal operators
are a better candidate to model a variety of rich complex
dynamics arising in natural phenomena and provide higher
adequacies in describing them.

In the past five decades, applications of chaos theory to
natural models have received growing interest. (erefore,
chaotic dynamics were reported from natural phenomena
arising from ecological, economical, physical, and engi-
neering models [13–16]. Moreover, chaotic dynamics in
engineering models involving fractional derivatives were
reported in [17–20].

Obviously, these kinds of the aforementioned studies
help us to understand, quantify, and predict the complex
dynamics arising from real world phenomena.

Lyapunov analysis for the stability of the nonlinear
system has also become a focal topic for research in integer-
order dynamical systems [21–23]. Recently, researchers have
developed fractional versions of the Lyapunov stability
theory (LST) [24]. Furthermore, the LST has been developed
for the case of time-delayed fractional-order systems
[25–28].
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Studying models of satellites has received increasing
attention due to their potential applications to scientific,
military, and civil activities and space technology [29–33].
On the contrary, chaotic dynamics arising from satellite
models have been reported by many researchers [34–38]. In
[39], Khan and Kumar reported that chaotic dynamics from
a mathematical model of satellite consists of the 3D integer-
order system. In addition, Khan and Kumar investigated the
chaotic integer-order satellite (IOS) system based on T-S
fuzzy modeling [40]. Moreover, in [41], Khan and Kumar
reported some conditions for chaos synchronization in the
IOS system with time delay. Furthermore, a fractional-order
version of the IOS system, namely, the fractional-order
satellite (FOS) model, was studied by Kumar et al. [18].

Motivated by the aforementioned statements, we further
investigate the chaotic dynamics in the FOS model with and
without time delay.We also prove existence and uniqueness of
solutions in this model with and without time delay. (en, we
intend to suppress chaotic dynamics to the FOS’s origin steady
state using a simple linear control criterion which depends on
a specific selection of the feedback control gains (FCGs).
Chaotic attractors and other interesting dynamics are found in
a time-delay version of the FOS model. Finally, the above-
mentioned linear feedback controller is also implemented into
a controlled time-delay version of the FOS model. (e ob-
tained results show that the time-delay version of the FOS
model is also stabilized to its origin equilibrium state when
using the same FCGs, whose selection is based on the LST of
fractional-order systems with time delay. (e numerical re-
sults point out that the state variables of the controlled FOS
equations are controlled to the origin state faster than its time-
delay counterpart does when using the same linear controllers.

2. Fractional Calculus

(roughout this work, the following Caputo’s type [10]
represents the imposed fractional differential operator:

D
αθ(x) � J

s− αθ(s)
(x), α ∈ R

+
, (1)

where α ∈ (0, 1] is the fractional order, namely, the frac-
tional parameter, θ(s) represents the s-order derivative of
θ(x), and s refers to the minimum integer that is not less
than the fractional parameter, and Jμ is described by

J
μϑ(x) �

􏽒
x

0 (x − χ)
μ− 1ϑ(χ)dχ
Γ(μ)

, μ ∈ R
+
, (2)

where Γ(.) stands for the Gamma function.
(en, we take into account the following initial value

problem (IVP):

D
αξ(t) � θ(t, ξ(t)), 0≤ t≤T,

ξ(m)
(0) � ξ(m)

0 , m � 0, 1, . . . , s − 1,
(3)

which is equivalent to the nonlinear Volterra integral
equation of the second kind, provided that the function θ is
continuous; then, IVP (3) is solved by

ξ(t) � 􏽘
s− 1

m�0

t
m

m!
ξ(m)
0 +

􏽒
t

0 θ(ζ , ξ(ζ))/(t − ζ)
1− α

􏼐 􏼑dζ􏼔 􏼕

Γ(α)
. (4)

According to Diethelm et al. [42, 43], the predictor-
correctors (PECE)method can be used to discretize equation
(4) as follows:

ξh tn+1( 􏼁 � 􏽘
s− 1

m�0

t
m
n+1
m!

ξ(m)
0 +

θ tn+1, ξ
P
h tn+1( 􏼁􏼐 􏼑h

α

Γ(2 + α)

+
􏽐

n
j�0aj,n+1θ tj, ξn tj􏼐 􏼑􏼐 􏼑h

α

Γ(2 + α)
,

(5)

where h � T/N for some integer N defined using the uni-
form grid tn � hn: n � 0, 1, . . . , N􏼈 􏼉, ξh(tn) refers to an
approximation to ξ(tn), and the coefficient aj,n+1 defined in
the last term of RHS of equation (5) is described as

aj,n+1 �

n
α+1

− (n − α)(n + 1)
α
, if j � 0,

(n − j + 2)
α+1

− 2(n − j + 1)
α+1

+(n − j)
α+1

, if 1≤ j≤ n,

1, if j � n + 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

and the predictor ξP
h (tn+1) is obtained from

ξP
h tn+1( 􏼁 � 􏽘

s− 1

m�0

t
m
n+1
m!

ξ(m)
0 +

􏽐
n
j�0 bj,n+1θ tj, ξn tj􏼐 􏼑􏼐 􏼑

Γ(α)
,

bj,n+1 �
(n − j + 1)

α
− (n − j)

α
􏼂 􏼃h

α

α
, 0≤ j≤ n.

(7)

A modification of the PECE scheme was presented in
[44] to integrate fractional-order equations with time delay.
It can also be described as follows; for the delayed time
fractional equation,

D
αξ(t) � θ(t, ξ(t), ξ(t − τ)), 0≤ t≤T, ξ(t) � ϕ(t), and − τ ≤ t≤ 0,

(8)

where ϕ(t) can be denoted by an element of the Banach
space of all continuous functions over [− τ, 0], that is,
C([− τ, 0], Rn). (en, assume that

ξh tj􏼐 􏼑 � ϕ tj􏼐 􏼑, j � − m, 1 − m, . . . , − 1, 0, (9)

where τ � mh and h � T/N for some integerN defined using
the uniform grid tn � hn: n � − m, 1 − m, . . . , − 1, 0, 1,􏼈

. . . , N} with the following notation:

ξh tj − τ􏼐 􏼑 � ξh(h(j − m)) � ξh tj− m􏼐 􏼑, j � 0, 1, . . . , N.

(10)

So, ξh(tn+1) can be calculated via

ξ tn+1( 􏼁 � φ(0) +
􏽒

tn+1

0 θ(ζ , ξ(ζ), ξ(ζ − τ))/ tn+1 − ζ( 􏼁
1− α

􏼐 􏼑dζ􏼔 􏼕

Γ(α)
.

(11)
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Now, according to [44], the formula for the corrector
variable is obtained via

ξ tn+1( 􏼁 � ϕ(0) +
θ tn+1, ξh tn+1( 􏼁, ξh tn+1− m( 􏼁( 􏼁h

α

Γ(2 + α)

+
􏽐

n
j�0 aj,n+1θ tj, ξh tj􏼐 􏼑, ξh tj− m􏼐 􏼑􏼐 􏼑h

α

Γ(2 + α)
,

(12)

and the predictor variable can be evaluated via

ξP
h tn+1( 􏼁 � ϕ(0) +

􏽐
n
j�0 bj,n+1θ tj, ξh tj􏼐 􏼑, ξh tj− m􏼐 􏼑􏼐 􏼑

Γ(α)
. (13)

Also, we introduce the following basic lemmas.

Lemma 1 (see [45]). Assume that the vector-value function
ξ(t) ∈ Rn is continuous and differentiable. @en, ∀t≥ t0, and
the following inequality holds:

0.5D
αξTξ ≤ ξT

D
αξ. (14)

Lemma 2 (see [46]). Assume that a nonnegative function
P(t) ∈ R is given that it is continuously differentiable and
satisfies the following conditions (as α ∈ (0, 1)):

D
α
P(t)≤ − η1P(t) + η2P(t − τ), P(t) � Ψ(t)≥ 0 and − τ ≤ t≤ 0,

(15)

where t is a nonnegative real number and ηi ∈ R+,

i � 1 and 2. If η1 > η2 ∀τ ∈ R+ and ∀Ψ(t)≥ 0, then

lim
t⟶+∞

P(t) � 0. (16)

Remark 1. A function θ(t, ξ(t), ξ(t − τ)) ∈ C([0, T], Rn) is
called a Lipschitz continuous if ∃η> 0 such that the constant
η satisfies the following inequality:

θ(t, ξ(t), ξ(t − τ)) − θ t, ξ′(t), ξ′(t − τ)( 􏼁
����

����

≤ η ξ(t) − ξ′(t)
����

���� + ξ(t − τ) − ξ′(t − τ)
����

����􏼐 􏼑,
(17)

for any t ∈ [0, T], where ‖.‖ refers to a matrix norm.
If the delayed time fractional system has the form

D
αξ(t) � M0ξ(t) + M1ξ(t − τ) + θ(t, ξ(t), ξ(t − τ)), 0≤ t≤T,

ξ(t) � ϕ(t), − τ ≤ t≤ 0,

(18)

where T ∈ R+ orT represents +∞, θ(t, ξ(t), ξ(t − τ))

∈ C([0, T], Rn), τ > 0, and M0 and M1 are constant ma-
trices, then we obtain the following results:

Remark 2 (see [47]). A necessary and sufficient condition
for a continuously differentiable function ξ: [− τ, T]⟶ Rn

to be a solution of (18) is

ξ(t) �
ϕ(0) +

􏽒
t

0 M0ξ(ζ) + M1ξ(ζ − τ) + θ(ζ , ξ(ζ), ξ(ζ − τ))/(t − ζ)
1− α

􏼐 􏼑dζ􏼔 􏼕

Γ(α)
, as t ∈ [0, T],

ϕ(t), as t ∈ [− τ, 0].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Theorem 1 (see [47]). If the nonlinear function θ(t, ξ(t),

ξ(t − τ)) ∈ C([0, T], Rn) is Lipschitz continuous, then there
exists a unique and continuous solution for general system (18).

Finally, we end this section with the following lemmas:

Lemma 3 (see [48]). Consider that the generalized fractional
system Dαξ(t) � θ(ξ), α ∈ (0, 1], such that there exists a
Lyapunov function P(ξ) for the equilibrium solution ξ in case
of α � 1; then, ξ is at least locally asymptotically stable (LAS)
as α ∈ (0, 1).

Lemma 4 (see [48]). Let M ∈ Cn×n be a Hermitian matrix
whose all principal minor determinants P1, P2, . . . , Pn ∈ R+;
then, the quantity − ξT

Mξ ∈ R− and ∀ξ ≠ 0 belong to a do-
main Ω ⊂ Cn that contains a neighborhood of ξ � 0.

3. The Chaotic FOS Model

(e FOS is described by Kumar et al. [18]:

D
α
x(t) �

1
3

yz − ax +
1
�
6

√ z,

D
α
y(t) � − xz + by,

D
α
z(t) � xy −

�
6

√
x − cz,

(20)

where a, b, and c ∈ R+. FOS model (20) exhibits a variety
of rich dynamics including chaotic attractors, as outlined
in Figure 1, using a � 0.4, b � 0.175, and c � 0.4. (e
corresponding bifurcation diagrams are depicted in
Figure 2.
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Calculations of the Lyapunov spectrum show that the
FOS system is still chaotic for a wide range of parameters
beyond α � 0.9 since the maximal Lyapunov exponents are
positive. (is interesting observation is depicted in Figure 3,
and it verifies the existence of rich chaotic dynamics in the
FOS system.

4. Solution’s Existence and Uniqueness in the
FOS Model

(e FOS system is represented in the following form:

D
α
U(t) � G(U(t)), t ∈ (0, T], U(0) � U0, (21)
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Figure 1: 3D plots of FOSmodel (20) with a � 0.4, b � 0.175, and c � 0.4 showing that (a) chaos exists at α � 0.99; (b) chaos exists at α � 0.97;
(c) chaos exists at α � 0.95; (d) chaos exists at α � 0.93; (e) quasi-periodic attractor exists at α � 0.92; (f) asymptotic attractor exists at α � 0.90.
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Figure 2: Bifurcation diagram of FOS model (20) as varying (a) a with b � 0.175, c � 0.4, and α � 0.99; (b) b with setting
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where

U �

x

y

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

U0 �

x0

y0

z0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G(U) �

1
3

yz − ax +
1
�
6

√ z

− xz + by

xy −
�
6

√
x − cz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

Let C[0, T] be a class of continuous functions. Hence, the
supremum norm is defined as

‖Ω‖ � sup
t∈(0,T]

|Ω(t)|, Ω(t) ∈ C[0, T]. (23)

Furthermore, for a matrix A � [aij[t]], the norm is
described as

‖A‖ � 􏽘
i,j

sup
t∈(0,T]

aij[t]
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (24)

We next discuss the existence and uniqueness of the
solution of the FOS model in the region Φ × (0, T] where

Φ � (x, y, z): max(|x|, |y|, |z|)≤ υ􏼈 􏼉. (25)

According to Remark 2, with setting τ � 0, the solution
of chaotic FOS system (20) is obtained as

U � U0 +
1
Γ(α)

􏽚
t

0
(t − χ)

α− 1
G(U(χ))dχ � Ψ(U). (26)

So,

Ψ U1( 􏼁 − Ψ U2( 􏼁 �
1
Γ(α)

􏽚
t

0
(t − χ)

α− 1
G U1(χ)( 􏼁 − G U2(χ)( 􏼁􏼂 􏼃dχ.

(27)
Consequently, we obtain

Ψ U1( 􏼁 − Ψ U2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
t

0

(t − χ)
α− 1

Γ(α)
G U1(χ)( 􏼁 − G U2(χ)( 􏼁􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dχ,

(28)

which is reduced to

Ψ U1( 􏼁 − Ψ U2( 􏼁
����

����≤
T
α

Γ(α + 1)
max

�
6

√
+ a + 2υ,

�
6

√

6
+ c +

4
3
υ, b +

4
3
υ􏼨 􏼩

U1 − U2
����

����,≤ η U1 − U2
����

����,

(29)

where

η �
T
α

Γ(α + 1)
max

�
6

√
+ a + 2υ,

�
6

√

6
+ c +

4
3
υ, b +

4
3
υ􏼨 􏼩.

(30)

If η< 1, then U � Ψ(U) is a contraction mapping, and
the following theorem gives a sufficient condition for ex-
istence and uniqueness of the solution of FOS model (20).

Theorem 2. A sufficient condition for solution’s existence
and uniqueness of FOS system (20) in the region Φ × (0, T]

with initial conditions U(0) � U0 and t ∈ (0, T] is

η �
T
α

Γ(α + 1)
max

�
6

√
+ a + 2υ,

�
6

√

6
+ c +

4
3
υ, b +

4
3
υ􏼨 􏼩.

(31)

5. Chaos Control of the Chaotic FOSModel via a
Linear Feedback Criterion

Suppose that X � (xe, ye, ze) denotes an equilibrium point
of chaotic FOS model (20) and k1, k2, and k3 are the positive
feedback control gains (FCGs). (en, a controlled form of
FOS model (20) is introduced by

D
α
x(t) �

1
3

yz − ax +
1
�
6

√ z − k1 x − x
e

( 􏼁,

D
α
y(t) � − xz + by − k2 y − y

e
( 􏼁,

D
α
z(t) � xy −

�
6

√
x − cz − k3 z − z

e
( 􏼁.

(32)

In case of the node equilibrium point of chaotic FOS
model (20), we have the following theorem:

Theorem 3. @e chaotic behaviors in FOS model (20) are
suppressed to its zero steady state if the following conditions
hold:

k1 > − a,

k2 > b,

k3 > − c −
1

144 a + k1( 􏼁

5
�
6

√

6
+ 2μy􏼠 􏼡

2

,

(33)

where μy > |y|.

Proof. Chaotic FOS system (32) matches the following
Lyapunov function:

V(x, y, z) � 0.5 x
2

+ y
2

+ z
2

􏼐 􏼑. (34)

Hence, we obtain
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D
1
V(x, y, z) � x(t)D

1
x(t) + y(t)D

1
y(t) + z(t)D

1
z(t)

� − a + k1( 􏼁x
2

+ b − k2( 􏼁y
2

− c + k3( 􏼁z
2

−
5

�
6

√

6
xz +

1
3

xyz

≤ − a + k1( 􏼁|x|
2

+ b − k2( 􏼁|y|
2

− c + k3( 􏼁|z|
2

+
1
6

5
�
6

√

6
+ 2μy􏼠 􏼡|x||z| � − ΧT

QΧ,

(35)

where

Χ � |x| |y| |z|􏼂 􏼃
T
,

Q �

a + k1 0 −
5

�
6

√

72
+
1
6
μy􏼠 􏼡

0 k2 − b 0

−
5

�
6

√

72
+
1
6
μy􏼠 􏼡 0 c + k3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

(e Hermitian matrix Q is strictly positive if all con-
ditions (33) hold. (erefore, according to Lemma 4, it
follows that the integer-order derivative of V is negative
when (x, y, z) is not origin, while it is vanished at the origin.
(en, based on Lemma 3, the origin equilibrium of chaotic
FOS model (20) is at least LAS.

Controlled FOS model (32) is numerically integrated with
a � 0.4, b � 0.175, c � 0.4, and α � 0.96. Now, according to
inequalities (33), the FCGs can be chosen as k1 � 1, k2 �

2, and k3 � 1. (e results are given in Figure 4. □

6. Chaotic Dynamics in the FOS Delay Model

A time-delay version of FOS model (20) is represented here
by

D
α
x(t) �

1
3

y(t)z(t) − ax(t) +
1
�
6

√ z(t),

D
α
y(t) � − x(t)z(t) + by(t − τ),

D
α
z(t) � x(t)y(t) −

�
6

√
x(t) − cz(t),

(37)

where τ is the delay constant. Chaotic attractors in FOS delay
model (37) are depicted in Figure 5 using different values of
α and fixing other model’s parameters at
a � 0.4, b � 0.175, c � 0.4, and τ � 0.2. Moreover, chaotic
behaviors are depicted in x(t)x(t − τ) plane, as shown in
Figure 6. Also, the bifurcation plot corresponding to the
aforementioned parameter set is illustrated in Figure 7.

To prove existence and uniqueness of FOS delay model
(37), we carry out similar analysis, as given by (eorem 2,
that lead to the following inequality (for any t ∈ [0, T]):

Ψ U1(t), U1(t − τ)( 􏼁 − Ψ U2(t), U2(t − τ)( 􏼁
����

����

≤ η U1(t) − U2(t)
����

���� + U1(t − τ) − U2(t − τ)
����

����􏼐 􏼑,
(38)

where

η �
T
α

αΓ(α)
max

1
�
6

√ +
4
3
υ + c, b, 2υ +

�
6

√
+ a􏼨 􏼩> 0. (39)

(us, Ψ(t, U(t), U(t − τ)) ∈ C([0, T], Rn) has been
shown to be Lipschitz continuous. (en, according to
(eorem 1, there exists a unique and continuous solution for
FOS delay model (37).

7. Chaos Control of the Chaotic FOS Delay
Model via a Linear Feedback Criterion

A controlled version of FOS delay model (37) to its origin
steady state is described as

D
α
x(t) �

1
3

y(t)z(t) − ax(t) +
1
�
6

√ z(t) − k1x(t),

D
α
y(t) � − x(t)z(t) + by(t − τ) − k2y(t),

D
α
z(t) � x(t)y(t) −

�
6

√
x(t) − cz(t) − k3z(t).

(40)

Theorem 4. @e chaotic behaviors in FOS delay model (40)
are suppressed to their zero steady state if all the FCGs satisfy
the inequality η> b/4, where η � min a + k1 − c,􏼈 k2 − (b/2),

c + k3 − c} and c � (1/12)((5
�
6

√
/6) + 2μy).

Proof. (e following Lyapunov function is constructed for
controlled FOS delay system (40):

x,
y,z

2

1.5

1

0.5

0

–0.5

t
0 10 20 30 40 50 60 70 80 90 100

x
y
z

Figure 4: Trajectories of chaotic FOS system (32) converge to the
origin steady state using a � 0.4, b � 0.175, c � 0.4, and α � 0.96
and the FCGs k1 � 1, k2 � 2, and k3 � 1.
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P(t) � 0.5 x
2

+ y
2

+ z
2

􏼐 􏼑. (41)

Hence, according to Lemma 1, we obtain

D
α
P(t)≤x(t)D

α
x(t) + y(t)D

α
y(t) + z(t)D

α
z(t)

� − a + k1( 􏼁|x(t)|
2

− k2|y(t)|
2

− c + k3( 􏼁|z(t)|
2

+ b|y(t)||y(t − τ)| + 2c|x(t)||z(t)|

≤ − a + k1( 􏼁|x(t)|
2

− k2|y(t)|
2

− c + k3( 􏼁|z(t)|
2

+
b

2
|y(t)|

2
+|y(t − τ)|

2
􏼐 􏼑 + c |x(t)|

2
+|z(t)|

2
􏼐 􏼑

� − a + k1 − c( 􏼁|x(t)|
2

− k2 −
b

2
􏼠 􏼡|y(t)|

2

− c + k3 − c( 􏼁|z(t)|
2

+
b

2
|y(t − τ)|

2

≤ − 2ηP(t) +
b

2
P(t − τ).

(42)

Referring to Lemma 2, the controlled system is stabilized
to the origin steady state if we choose η> b/4.

Controlled FOS model (40) is integrated with
a � 0.4, b � 0.175, c � 0.4, and α � 0.99. Now, according to

(eorem 4, the FCGs can be chosen as k1 � 1, k2 � 2,

and k3 � 1. (e results are given in Figure 8. □

8. Conclusion

(is work has investigated the rich chaotic behaviors that
existed in the FOS model with and without time delay.
Various numerical techniques such as three-dimensional
attractors, bifurcation diagrams, and Lyapunov spectrum
have been employed to examine the existence of chaotic
dynamics in the FOS model. We also proved the solution’s
existence and uniqueness in the FOS equations with and
without time delay. Furthermore, a simple linear control
criterion was successfully applied to achieve chaos control in
the FOS model. (is method is very simple and easy to be
implemented in the model.

On the contrary, a rich variety of chaotic dynamics in a
time-delayed version of the FOS model has been shown
using various numerical experiments such as two- and three-
dimensional attractors and bifurcation diagrams. Finally, the
abovementioned linear feedback controller has also been
implemented into the FOS model with time delay. (e
obtained results show that the time-delay version of the FOS
model is also stabilized to its origin equilibrium state when
using the same FCGs whose selection is based on the LSTof
fractional-order systems with time delay. Moreover, these
numerical results point out that the state variables of the
controlled FOS equations are controlled to the origin state
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Figure 8: Trajectories of chaotic FOS delay system (40) with a � 0.4, b � 0.175, c � 0.4, and α � 0.99 (a) are not stabilized to (0,0,0) when
no control is applied and (b) converge to the origin steady state using the FCGs k1 � 1, k2 � 2, and k3 � 1.
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faster than their time-delay counterpart does when using the
same linear controllers.

According to the abovementioned discussion, this work
helps us to understand, quantify, and predict the complex
dynamics arising from the proposed satellite system. A
future work may be devoted to studying the physical in-
terpretation and bifurcation analysis of the FOS model with
time delay.
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