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Traffic peak is an important parameter of modern transport systems. It can be used to calculate the indices of road congestion,
which has become a common problem worldwide. With accurate information about traffic peaks, transportation administrators
can make better decisions to optimize the traffic networks and therefore enhance the performance of transportation systems. We
present a traffic peak detection method, which constructs the Voronoi diagram of the input traffic flow data and computes the
prominence of candidate peak points using the diagram. Salient peaks are selected based on the prominence. The algorithm takes
O(n log n) time and linear space, where 7 is the size of the input time series. As compared with the existing algorithms, our
approach works directly on noisy data and detects salient peaks without a smoothing prestep and thus avoids the dilemma in
choosing an appropriate smoothing scale and prevents the occurrence of removing/degrading real peaks during smoothing step.
The prominence of candidate peaks offers the subsequent analysis the flexibility to choose peaks at any scale. Experiments
illustrated that the proposed method outperforms the existing smoothing-based methods in sensitivity, positive predictivity,

and accuracy.

1. Introduction

Accurate information about traffic peaks is important in
planning, maintenance, and control of modern transport
systems. Traffic congestion has become widespread in large
metropolitan areas. Peak-hour congestion is also a problem
in many suburban areas. Traffic peaks can be used to
compute congestion indices, helping individuals and traffic
management units to avoid traffic jam and minimize travel
time [1-4]. By monitoring traffic peaks, transportation
administrators can make better decisions to optimize the
traffic networks and therefore enhance the performance of
transportation systems [5-7]. Automatic traffic event de-
tection is important in intelligent transportation systems
(ITSs). The detection can be performed with streaming data

clustering [8], marking points clustering [9], and deep
learning methods [10].

Effective peak detection remains a challenging problem
in many fields, including asteroseismology [11, 12], ana-
Iytical chemistry [13, 14], disease diagnosis [15, 16], and
traffic analysis [7, 17]. Mathematically, a peak of a function is
a local maximum point where the height of the function is
the greatest in an interval around the point. Billauer de-
veloped an algorithm that detects peaks using the local
maxima (peak) and minima (valley) values [18, 19]. In [20],
the first-order derivative of chromatographic signal is
computed to automatically extract peaks in the data. In [21],
overlapped peaks are detected by examination of the second
derivative of the raw mass spectrum. In existing algorithms,
smoothing techniques are needed to eliminate or reduce
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noise [7, 13-15]. The major problems with the existing peak
detection methods are related to the smoothing step:

(i) The smoothing often removes the fine details and
makes the peaks vanish or degrade. The effect is
unrecoverable; that is to say, if a real peak is re-
moved/degraded during the smoothing step, it is not
recovered in the subsequent analysis.

(ii) The goal of smoothing is to eliminate or reduce the
fluctuation and noise to avoid weak and false peaks,
and it is crucial to select an appropriate smoothing
scale. Choosing such a scale for a given traffic data
requires prior knowledge about the data, which is

often not available before the data analysis is
finished.

For traffic flow data, most fluctuation and noise have
smaller amplitude than the peaks we are interested in. Based
on this property, we introduce a Voronoi diagram-based
traffic peak detection method. The new method has the
following advantages. Firstly, it works on noisy data directly
and avoids the difficulty in choosing an appropriate
smoothing scale. Secondly, it computes the prominence of
candidate peak points and offers the subsequent analysis step
the flexibility to choose peaks at any scale. The algorithm
takes O(n log n) time and linear space, where 7 is the size of
the input time series.

The rest of this paper is organized as follows. We in-
troduce the related work in Section 2 and describe in detail
the proposed method in Section 3. Following that in Section
4, we give the experiment results. We conclude the paper
with a brief discussion in Section 5.

2. Related Work

Traffic network optimization improves a traffic network,
maximizing its performance. The problem is formulated as
an NP-hard integer program, and there exists no exact
polynomial-time algorithm; heuristic methods such as ge-
netic algorithms (GAs) are common ways to solve the
problem [22]. An enhanced GA was introduced in [22],
which performs the mutation in a goal-oriented manner by
local optimization: changing an individual into the best one
in its neighborhood. The enhanced GA performs better than
a standard GA with respect to the trip duration.

Mao et al. [23] proposed a traffic signal control opti-
mization method using GAs and machine learning models,
minimizing the total travel time in urban networks. They
assume that the O-D demands are predefined and use the
traffic assignment model to get the deterministic link traffic
flows. In case study, they applied a static traffic assignment
modelling scenario to obtain the initial link flows assigned to
each road section during morning peak. Comparison shows
that the proposed method is faster than the original GAs and
can be successfully applied under nonrecurrent incident
conditions.

Paricio et al. proposed evolutionary algorithms for the
traffic weighted multimap (TWM) technique to solve the
traffic assignment problem, minimizing total travel time and
providing the best-cost routes to vehicles [5]. The complexity
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of optimal TWM distributions depends on several factors,
like the O/D directionality and traffic flow volumes. Ob-
tained results show that TWM performs good in optimal
routing at the system level, avoiding the need for continuous
route calculus based on traffic status data streaming.

Bianchin and Pasqualetti [6] studied the problem of
controlling intersections with the goal of optimizing net-
work-wide congestion. They cast an optimization problem to
describe the goal of optimally controlling automated in-
tersections and relate congestion objectives with the prob-
lem of optimizing a metric of controllability of the associated
dynamical system. The system performance is characterized
in relation to optimal configurations, and conditions are
identified to guarantee network stability. With respect to
established models, the framework relies on a continuous
time and discrete space characterization of the traffic flows
and allows for a more tractable network analysis.

When assessing and optimizing traffic networks, traffic
flow peaks are an important parameter. However, peak
detection is still a challenge since peaks in real applications
are sensitive to local variation and noise. Simple maxima or
derivative methods yield poor results when the signal
contains noise. Smoothing techniques are applied to elim-
inate or reduce noise. Common smoothing methods used in
peak detection include average [7, 24], Gaussian [13, 25],
Savitzky-Golay [15, 16], and wavelet smoothing [11, 14].

A rise/fall analysis was used to detect air traffic peaks [7].
A peak exists where there is a change from rising to falling.
To smooth out the noises, a 10th order rolling average is
applied before the peaks are identified. Zhao et al. [24]
presented a stripe peak detection method for structured
light-based 3D reconstruction. In this approach, a weighted
average method is applied to determine accurate peak po-
sition in stripe areas after they are segmented.

Lu et al. [25] introduced an adaptive ion-connecting
network-based strategy for ion chromatogram (IC) extrac-
tion based on which a multiscale Gaussian smoothing-based
peak detection method is applied after bad ICs are removed.
Fu et al. [13] proposed a multiscale Gaussian smoothing-
based approach for chromatographic peak extraction, where
peaks appear as local maximum values under various
smoothing window widths and can be detected through the
ridge lines of maximum values under these window scales
and of signal-to-noise ratios greater than a threshold.

The work in [15] proposed a technique for T-wave peak
detection using simple root mean square-based decision
rule. A Savitzky-Golay smoothing filter is applied for pre-
processing. The filter essentially performs a local polynomial
regression on the signal to determine the smoothed value for
each point. The approach in [16] detects R peaks in ECG
signals, where the Shannon energy envelope with the
Savitzky-Golay filter was designed to suppress noise and
enhance the QRS-complex.

The algorithm in [11] uses a continuous wavelet trans-
form (CWT)-based pattern-matching approach. The CWT
serves as a pattern-matching function where the signal is
compared with a wavelet function specifically chosen to have
similar features as the most common peaks that contain
signal. Zheng et al. [14] proposed a peak detection algorithm
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based on continuous wavelet transform, which identifies
peaks by drawing ridges based on the movement of particles
in the CWT coeflicient matrix.

3. Proposed Method

Daily traffic volume data are a time series or mathematically
a discrete function, consisting of a list of 2D points, and each
point is a time-volume pair. With the point list as input, our
method takes 4 main steps, as shown in Figure 1.

Given a collection of geometric primitives, its Voronoi
diagram is a subdivision of space into cells such that all
points in a cell are closer to one primitive than to any other
[26, 27]. For a generalized Voronoi diagram, the geometric
primitives can be points, line segments, or circular arcs. In
our algorithm, we compute the Voronoi diagram of a
polyline, where the geometric primitives are either line
segments or points (endpoints of line segments). Based on
the Voronoi diagram, we give our definitions (Section 3.1)
and report the algorithm (Section 3.2).

3.1. Definitions. We first define function curve.

Definition 1. Given a discrete function, we connect the
adjacent points by line segments and get a curve, called the
function curve.

A function curve is a polyline. From the example in
Figure 2, we can see that the Voronoi diagram divides the
plane into cells, each of which is associated with a line
segment or an endpoint of a line segment.

We define Voronoi tree.

Definition 2. The Voronoi diagram of a function curve is
partitioned by the function curve into two parts, upper and
lower parts; for each Voronoi edge e,

(i) If e crosses the function curve, then e is partitioned
into two parts, e, and e, which are, respectively,
above and below the function curve. We put e, and
e, respectively, to the upper and lower parts of the
Voronoi diagram.

(ii) Otherwise, e is put to the upper/lower part of the
Voronoi diagram if it is above and below the
function curve.

The edges in the lower part of the Voronoi diagram make
a forest; we add a virtual root node to make it rooted. The
virtual root represents an infinite point. The rooted tree is
called the Voronoi tree of the function (see Figure 3).

To define the prominence of a Voronoi edge and of a
function point, we use as an example a time series (Figure 4)
of traffic flow data in vehicles per 15 minutes over 24 hours.

Definition 3. Ina Voronoi tree, the subtree led by a Voronoi
edge represents a hill in the function curve (Figure 5(b)). We
find a top point in the hill and record it as the peak site of the
Voronoi edge; we compute the height difference between the
peak site and the higher of the left and right bottom points of

Salient peaks selection

«

Prominence computation

«

Voronoi tree computation

E 3

Voronoi diagram construction

FIGURE 1: The main steps of the proposed method.

FIGURE 2: Voronoi diagram of a polyline of 18 points in the plane.

the hill and record it as the prominence of the Voronoi edge
(Figure 5(b)).

Definition 4. For a function f, we define the prominence of a
function point p as the greatest prominence of a Voronoi
edge with p as its peak site. The function points of positive
prominence are the candidate peak points.

In computing the Voronoi diagram, since the x and y
values of time series data are of different features (time and
traffic volume, respectively), we need to unify them by a
feature normalization process. In our algorithm, we adopt a
commonly used normalization approach: scaling the time
and traffic volume values of a time series to the range [0, 1].

3.2. Algorithm. Our algorithm consists of 4 main steps
(Figure 1), and among them, the first 2 steps are straight-
forward by definition. We address the 3 and 4™ steps.

We first compute the prominences of the Voronoi edges.
For any Voronoi edge, if its left/right Voronoi cell is as-
sociated with an endpoint of a line segment, we let its left/
right input site be the endpoint; otherwise (it is associated
with a line segment), we let its left/right input site be the
right/left endpoint of the line segment.

For each Voronoi edge e in a Voronoi tree, we denote its
input sites as p; and p; with i<j. We compute the following
properties of e. The algorithm to compute these properties is
given in Algorithm 1.

The prominences of the points are obtained straight-
forwardly by definition. We collect the points of positive
prominences as the candidate peak points (Figure 6(a)) and
sort their prominences (Figure 6(b)), making the sorted
prominence curve. We then connect the first and last
prominence dots by a line (the green dash line) and find in
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FIGURE 3: (a) The edges in the lower part of the Voronoi diagram in Figure 2. (b) The 3 top levels of the Voronoi tree.
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FIGURE 5: (a) The Voronoi diagram of the data in Figure 4. (b) A Voronoi edge (thick red line) and its descendent edges (thin red lines),
representing a hill in the function curve. The height difference between the two black horizontal lines is the prominence of the Voronoi edge.

the prominence curve the dot (the yellow dot) farthest from
the line. This dot is called the prominence bending dot. The
prominence dots before the bending dot represent the peak
points detected (Figure 7(a)).

For a peak point, the hill represented by the Voronoi
edge of the greatest prominence is called the supporting hill.
The supporting hills of the peak points are not exclusive
from each other; they are nested instead (Figure 7(b)).

3.3. Computation Time and Space. In the following discus-
sion, we assume that the input time series has n points. The
total computation time is O(n log 1), where

(i) We first construct the Voronoi diagram, taking O(n
log n) time [26]. The diagram has O(n) edges.

(ii) We then examine each Voronoi edge and split the
diagram into 2 parts (partitioned by the function
curve) and make the lower part the Voronoi tree,
taking O(n) time.

(iii) We visit the Voronoi tree bottom-up and compute
the prominences of the nodes (Voronoi edges) in the
tree, taking O(n) time. The prominence of a function
point p is the greatest prominence of a Voronoi edge
with p as its peak site. The prominences of the
function points are computed in O(n) time.
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Input: a function f and its Voronoi tree T

Output: the left valley site of each Voronoi edge, represented by Valley" (e), the right valley site of each Voronoi edge, represented by
Valley® (e), the peak site of each Voronoi edge, represented by Peak (e), and the prominence of each Voronoi edge, represented by
Prominence (®)

Begin

(I)for each Voronoi edge e in T 'do //T is visited in a bottom-up order.

(2) Let the two input sites be p; and p; with i<j.

(3) if j=i then //in this case e is a leaf node.

(4) Peak(e) = ValleyL(e) = ValleyR(e) =p;

(5) else

(6) let the first and second child nodes of e be, respectively, e; and e,

(7) if y(Peak (e;)) < y(Peak (e,)) then

(8) Peak (e) = Peak (e,)

9) ValleyL (e) = the lowest of ValleyL (ey), ValleyR (ey), and ValleyL (e3)
(10) Valley® () = Valley® (e,)

(11) else

12) Peak (e) =Peak (e;)

(13) ValleyL (e) :ValleyL (ey)

(14) ValleyR (e) = the lowest of ValleyR (ey), ValleyL (e5), and ValleyR (e3)

(15) Prominence(e) = y(Peak (e))-max(y(Valley" (e)), y(Valley® (e)))
(16)return ValleyL (o), ValleyR (®), Peak (), and Prominence ().
End

ALGORITHM 1: Compute prominence of VoronoiEdges (f, T).
(i) The peak site, py, is a highest point among p;, p;. 1, ..., and p;
(ii) The left valley site, p,, is a lowest point among p;, p; 1, - - ., and py

(i) The right valley site, p,, is a lowest point among py,px+1, - - -» and p;
(iv) The prominence, equals to y( p,) — max(y(p,), ¥ (p,)), where y(®) is the y coordinate of a point

TaBLE 1: The results of the average filter of different sizes.

Filter size The roads where the average filter of the size detects the peaks successfully
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FIGURE 6: (a) The candidate peak points of the data in Figure 4, each labeled by its number in the sorted prominences. (b) The sorted
prominences in dots, where the x-axis represents the ordinal number, the y-axis represents the prominence, the green dash line connects the
first and last dots, the blue dash line is a tangent line parallel to the green line, the yellow dot is the bending dot, and the 4 red dots correspond

to the 4 peak points detected.
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(b)

FIGURE 7: (a) The 4 peak points detected. (b) The supporting hills of the peak points, where each supporting hill is illustrated by a bottom-
open trapezoid with the top line passing the peak point and the 2 base points specifying the range of the hill.

(iv) We sort the positive prominences of the function
points, taking O(n log n) time; connect the first
and last prominence dots by a line, taking O(1)
time; find the prominence bending dot, taking
O(n) time; output the peak points detected (the
prominence dots before the bending dot in the
sorted prominence curve), taking O(n) time.

The computation takes total O(n) space:

(i) The Voronoi diagram takes O(n) space [26]
(ii) The Voronoi tree takes O(n) space

(iii) The prominences of the Voronoi edges and the
function points take O(n) space

(iv) The peak points detected take O(n) space

4. Experiments

We implemented our algorithm in C++ and ran experiments
on a ThinkPad X270 laptop with 2.80 GHz i7-7500U CPU
and 8 GB RAM. We performed experiments on the data
provided by the Traffic Management Bureau of Hebei
Provincial Public Security Department in China. The bureau
maintains a road traffic congestion index system by inte-
grating the real-time traffic data from taxi GPS, traffic pa-
trols, and road detectors. The system dynamically monitors
traffic volume peaks, which are fused with occupancy and
speed data to compute the traffic congestion indices.

We report experiments on 6 selected series in Section 4.1
and on a set of series with quantitative performance in
Section 4.2. The experiments in Section 4.1 show that noise
in the traffic data has different scales, and the existing
smoothing-based methods fail on some of the series since
there does not exist a uniform smoothing scale for all of the
series. On the other hand, the proposed method adapts itself
to different noise scales by finding the bending dot in the
sorted prominence curve. The statistical test in Section 4.2
uses performance indices of sensitivity, positive predictivity,
and accuracy. For each existing smoothing-based method,
we choose a best parameter such that the overall accuracy is
maximized. In the comparison, our method outperformed
the smoothing-based methods on all the performance in-
dices. The experiments verify the advantages of the proposed

algorithm, which avoids the difficulty in choosing an ap-
propriate smoothing scale and offers the subsequent analysis
step the flexibility to choose peaks at any scale.

4.1. Experiments on Examples. We choose 6 time series of
traffic volume data, namely, Road1 to Road6 data (Figure 8),
to demonstrate the effectiveness of our method. The traffic
volume was measured in vehicles per 5 minutes.

For each time series, we computed the prominences of the
data points, got the candidate peak points (points with positive
prominences), sorted their prominences, and selected the peak
points by finding the prominence bending dot. The supporting
hills of the peak points are nested, and their prominence dots
form a steep section in the prominence curve. Variation and
noise in the time series often have repeated patterns, and their
prominence dots form a slowly declining section. The two
sections are separated at the bending dot. We report the sorted
prominences, the peak points detected, and their supporting
hills of the Roadl to Road6 data, respectively, in Figures 9-14.
In all tested time series data, our method successfully detected
the salient peaks, even in Road5 and Road6 data, where the
prominence of the last detected peak (the third one in both
data) is not much greater than the greatest prominence of the
noise. The results demonstrate the effectiveness of our method
in traffic data with noise.

For comparison, the average, Gaussian, Savitzky-Golay,
and Wavelet smoothing methods were applied to the data,
followed by Billauer’s peak picking method. Billauer’s
method has the ability to skip peaks of amplitude less than a
threshold. We set the amplitude threshold as 2, which is
obtained through trial and error.

The average, Gaussian, and Savitzky-Golay methods use a
smoothing filter of a given size. Savitzky-Golay filter requires
the filter size to be odd. We chose 5 filter sizes, 9, 19, .. ., 49.
The results of the average, Gaussian, and Savitzky-Golay
smoothing are shown in Figures 15-17, respectively. In the
figures, the x-coordinates represent the time in unit of 5
minutes. We list the detected results of the 3 filters of the 5
sizes in Tables 1-3, respectively, and see that there does not
exist a single size with which the 3 filters work successfully on
all data. The best results are achieved by Savitzky-Golay filter
of sizes 19 and 29, each of which only fails on only one series.
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FiGure 8: Six time series of traffic volume data.
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FIGURE 9: (a) Sorted prominences of the candidate peak points of Roadl data in bars, where the ratio of the 4th (the prominence of the last
detected peak) to the 5th (the greatest prominence of the noise) is 223%. (b) Sorted prominences in dots, where the long dash line connects
the first and last dots, the short dash line is a tangent line parallel to the long dash line, the yellow dot is the bending dot, and the 4 red dots
correspond to the 4 peak points detected. (c) The detected peak points (each marked by its prominence ordinal number) and the supporting
hills.
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FiGure 10: (a) Sorted prominences of Road2 data, where the ratio of the 5th (the prominence of the last detected peak) to the 6th (the

greatest prominence of the noise) is 201%. (b) The detected peak points (each marked by its prominence ordinal number) and the supporting
hills.
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FIGURE 11: (a) Sorted prominences of Road3 data, where the ratio of the second (the prominence of the last detected peak) to the third (the
greatest prominence of the noise) is 250%. (b) The detected peak points (each marked by its prominence ordinal number) and the supporting
hills.
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FIGURE 12: (a) Sorted prominences of Road4 data, where the ratio of the second (the prominence of the last detected peak) to the third (the
greatest prominence of the noise) is 194%. (b) The detected peak points (each marked by its prominence ordinal number) and the supporting
hills.
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FIGURE 13: (a) Sorted prominences of Road5 data, where the ratio of the third (the prominence of the last detected peak) to the fourth (the

greatest prominence of the noise) is 131%. (b) The detected peak points (each marked by its prominence ordinal number) and the supporting
hills.
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FIGURE 14: (a) Sorted prominences of Road6 data, where the ratio of the third (the prominence of the last detected peak) to the fourth (the
greatest prominence of the noise) is 132%. (b) The detected peak points (each marked by its prominence ordinal number) and the supporting
hills.

The noise in the 6 series has different scales, and we Wavelet smoothing transforms the data into wavelet space
cannot use one uniform smoothing scale for all of them. The =~ and thresholds small coeflicients and performs the inverse
proposed method adapts itself to different noise scales by ~ wavelet transform to get the smoothed data. We used 3
finding the bending dot in the sorted prominence curve,  wavelets, db4, db6, and symb5 in the experiments and report the
which is then separated into rapidly and slowly declining  results in Figures 18-20. In the experiments, the wavelet db4
sections. failed on Road3 and Road4 data, db6 failed on Road2 and
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F1GURE 15: The data smoothed by the average filter and the peaks picked by Billauer’s method on the smoothed data. For each time series, we
list the original data, followed by the smoothed data with the 5 filter sizes (fsize). In this and the following figures, the x-coordinates represent
the time in unit of 5 minutes.
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FiGgure 16: Continued.
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FIGURE 16: The data smoothed by Gaussian filter and the peaks picked.
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Figure 17: Continued.
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FiGure 17: The data smoothed by Savitzky-Golay filter and the peaks picked.
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TABLE 2: The results of Gaussian filter of different sizes.

Filter size

The roads where the Gaussian filter of the size detects the peaks successfully

9

19
29
39
49

Roadl, Road2, Road5, Road6
Roadl, Road2
Road3, Road4
Road3, Road4
Road3, Road4

TaBLE 3: The results of Savitzky—Golay filter of different sizes.

Filter size

The roads where Savitzky-Golay filter of the size detects the peaks successfully

9 Road2
19 Roadl, Road2, Road4, Road5, Road6
29 Roadl, Road2, Road3, Road4, Road5
39 Roadl, Road3, Road4
49 Road3, Road4
Roadl Road2 Road3
150 T T 150 T T 80
100 100 60
50 50 40
0 . . 0 . . 20 . .
50 100 150 0 50 100 150 0 50 100 150
Road4 Road5 Road6
100 ‘ 60 50
- s
50 E
50 / ; 40
40 1
0 . . 30 . . 30 . .
0 50 100 150 0 50 100 150 0 50 100 150

FiGure 18: The data smoothed with the wavelet db4 and the peaks picked.

Roadé6, and sym5 failed on Roadl, Road2, and Road6. Our
method transforms the noisy data to sorted prominences,
similar to a wavelet transform decomposing the signal
spectrum into different frequency ranges. The experiments
demonstrated the superiority of the sorted prominences to the
wavelet transforms.

4.2. Quantitative Comparison. To compare quantitatively,
we use one week (2018) daily data, from 12 midnight to 12
midnight, of different roadways, including 10 national
highways, 10 provincial highways, and 10 urban roads. The
data were sampled every 10 minutes, and each data series
contains 24 * 6 =144 points.

For the average, Gaussian, and Savitzky-Golay
smoothing methods, we used 20 filter sizes, 5, 7, 9, .. ., 43.
For wavelet smoothing, we used 3 wavelets, db4, db6, and

symb5. Sensitivity (SE), positive predictivity (PP), and ac-
curacy (AC) were used as performance indices. For a method
m with a parameter p on a series data d,

TP
SE(m. p.d) = 15 TNy
TP
P 1
PP (m, p,d) (TP + FB) (1)
AC(ma P; d) = (SE (m, p’ d) tPP (m, p) d)))

2

where the true positive (TP) is the number of correctly
detected peaks in the series, the false negative (FN) is the
number of ground-truth peaks undetected, and false positive
(FP) is the number of nonground-truth peaks detected as
peaks.
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FIGURE 19: The data smoothed with the wavelet db6 and the peaks picked.
Roadl Road2 Road3
100 T T 150 80
100 1 60 .
50 . ;
50 1 40 1
0 . . 0 . . 20 . .
0 50 100 150 0 50 100 150 0 50 100 150
Road4 Road5 Road6
100 60 50
80 1 50
. 40 -
60 . 40
40 L L 30 L L 30 L .
0 50 100 150 0 50 100 150 0 50 100 150
FIGURE 20: The data smoothed with the wavelet sym5 and the peaks picked.
TaBLE 4: Comparing to the smoothing methods with a best parameter.
Method SE (%) PP (%) AC (%) Time (ms)
Average smoothing (fsize=11) 81.4 73.4 77.4 34
Gaussian smoothing (fsize =9) 82.7 74.2 78.4 50
Savitzky-Golay smoothing (fsize = 19) 85.8 69.1 77.5 39
Wavelet smoothing (with db4) 82.7 70.5 76.6 62

Voronoi diagram 96.8 86.4 91.6 42
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TaBLE 5: Comparing to the smoothing methods with an oracle.

Method SE® (%) PP (%) AC® (%)

Average smoothing 93.4 89.6 91.5

Gaussian smoothing 94.9 88.9 91.9

Savitzky-Golay smoothing 95.5 89.3 92.4

Wavelet smoothing 91.1 86.6 88.9
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FiGuRre 21: The detected peaks on 3 series by our method and the smoothing-based methods with a best parameter (as listed in Table 4). For
each series, the sorted prominences are also depicted. The peaks by our method are marked and labeled on the raw data, and the peaks by the
smoothing methods are marked on the smoothed data.
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We computed the overall performance of a method m
with a parameter p on all series as the average performance
of m with p on all series:

SE(m, p) = (X SES”’ b di)), (2)
PP (m, p) = (X PPS’”’ ps di)), (3)
AC(m, p) = (SE(m, p) + PP (m, P)). (4)

2

For each existing smoothing-based method, we choose a
best parameter p such that the overall accuracy AC(m, p) is
maximized. The overall performance of the 4 smoothing
methods with a best parameter is compared with ours, as
reported in Table 4. In the table, the best parameters are
given in parentheses. In the comparison, our method out-
performed the 4 others in sensitivity, positive predictivity,
and accuracy. In Table 4 (last column), we also list the
average computation time in milliseconds, which shows that
the computation time of the proposed method is comparable
to that of the smoothing-based methods.

To verify that the proposed method can effectively
avoid the dilemma in choosing an appropriate smoothing
scale, we extended the existing smoothing-based methods
with an “oracle” which “knows” how to choose a best
parameter for each series. We then compared the pro-
posed method with the idealized smoothing-based
methods. For a smoothing-based method on a series, we
choose a parameter with the best accuracy, and let the SE
and PP of the parameter be the SE and PP of the method
on the series. We then compute the average of the SE and
PP on all series, which are used as the overall SE and PP of
the idealized method, respectively. Formally, for a
method m and a series d;, let p(m,i) be a parameter p
which maximizes the accuracy AC(m, p,d;). Then, we
define

SE° (m) = (Z?:l SE (m;p(m, i),d,-))’ (5)
PP (1m) = (X, PP (m’np(m’ i), di)), (6)
AC® () = (SE/(m) + SE (m)) (7)

2

Notice that the parameter p in formulas (5) and (6) is
series-dependent as is different in formulas (2) and (3). The
overall performance of the idealized smoothing methods is
reported in Table 5, revealing that our method is compa-
rable in accuracy to the smoothing-based methods with an
oracle, which of course does not exist in reality. This
comparison verifies again the effectiveness of the proposed
method.

We select 3 series to discuss the strength and the
weakness of the proposed method (Figure 21). The 3 series
belong to one road on 3 different days. The road is a
provincial 2-way 4-lane highway. In all 3 series, the first 2

Discrete Dynamics in Nature and Society

peaks are visually salient and reported as detected peaks by
all methods. In series 1, the 3™ peak (the thorn shape
between the first 2 peaks, not labeled) has a much lower
prominence than the first 2 and is correctly classified as not
detected by our method and the average smoothing. In
series 2, the 3™ peak has a prominence comparable to the
2™ peak and is correctly detected by all methods except the
average smoothing. In series 3, the 3™ peak is a false
positive though its prominence is also comparable to that of
the 2" peak. If we compare the 3™ peaks in series 2 and 3,
we find that the peak in series 3 is sharper and covers a
shorter time period, and it is more likely a noise or fluc-
tuation. In this case, a simple shape-based outlier removal
process can be applied to remove this false peak. In general
cases, whether a salient sharp peak is a false peak cannot be
determined solely by traffic volume. Other traffic param-
eters, such as speed, density, and headway, are needed. As a
prestep, our method provides salient candidates for further
comprehensive analysis where multiple traffic parameters
are involved.

5. Conclusion

We introduced a traffic peak detection method based on
Voronoi diagram. The method computes the prominence of
candidate peak points and selects the salient peaks by finding
the bending dot in the sorted prominence curve. It works
directly on noisy data and avoids the difficulty in choosing
an appropriate smoothing scale. The prominence of can-
didate peak points also offers the subsequent analysis step
the flexibility to choose peaks at any scale.

The introduced method relies on the assumption that
noise has smaller amplitude than the salient peaks. For data
not satisfying the assumption, an outlier removal process is
needed. Other future work includes improving the traffic
network model by computational intelligence approaches,
such as monarch butterfly optimization [28], earthworm
optimization [29], and elephant herding optimization al-
gorithms [30].
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