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Considering the impacts of time delays and different kinds of stochastic perturbations, we propose two three-species delayed
cooperative systems with stochastic perturbations in this paper.We establish the sufficient criteria of the asymptotical stability and
stability in probability by constructing a neutral stochastic differential equation and some suitable functionals..e impacts of time
delays and stochastic perturbations to the system dynamics are revealed by some numerical simulations at the end.

1. Introduction

In biological world, mutualism is an important interaction and
many cooperative models have been proposed to describe such
biological phenomena (see [1–3] and references cited therein).

In nature, time delays usually appear and bring some
important influence to the dynamics of ecosystem models.
Kuang [4] says that ignoring time delays means ignoring the
reality. It is essential to take the influence of time delays into
account in mathematical modelling [5–9]. Furthermore, in
view of the complexity of natural world, single-species or
two-species ecological models often cannot describe some
natural phenomena accurately and many vital behaviours
can only be exhibited by systems with three or more species
[10–13]. Considering the effect of time delays to three-
species cooperative system, we propose the following de-
terministic model:

dN1(t) � N1(t) r1 − a11N1(t) + a12N2 t − τ12( 􏼁 + a13N3 t − τ13( 􏼁( 􏼁dt,

dN2(t) � N2(t) r2 + a21N1 t − τ21( 􏼁 − a22N2(t) + a23N3 t − τ23( 􏼁( 􏼁dt,

dN3(t) � N3(t) r3 + a31N1 t − τ31( 􏼁 + a32N2 t − τ32( 􏼁 − a33N3(t)( 􏼁dt.

⎧⎪⎪⎨

⎪⎪⎩

(1)

For (1), we define

α1 � a11, −a12, −a13( 􏼁
T
,

α2 � −a21, a22, −a23( 􏼁
T
,

α3 � −a31, −a32, a33( 􏼁
T
,

R � r1, r2, r3( 􏼁
T
,

A � det α1, α2, α3( 􏼁,

A1 � det R, α2, α3( 􏼁,

A2 � det α1, R, α3( 􏼁,

A3 � det α1, α2, R( 􏼁,

(2)

and assume that there exists a unique positive equilibrium
point as follows:

N
∗
1 �

A1

A
,

N
∗
2 �

A2

A
,

N
∗
3 �

A3

A
.

(3)
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On the contrary, the growth of populations is often
subject to environmental fluctuation, so it is necessary to
consider stochastic perturbation in the process of mathe-
matical modelling [14–18]. Usually, there are many kinds of
stochastic perturbations. .e authors in [19] proposed that

the stochastic perturbation of state variable around the
steady-state N∗1 , N∗2 , and N∗3 was Brownian white noise,
which was proportional to the distance from the equilibrium
state. Consequently, we obtain the following three-species
stochastic cooperative system with time delays:

dN1(t) � N1(t) r1 − a11N1(t) + a12N2 t − τ12( 􏼁(

+ a13N3 t − τ13( 􏼁􏼁dt + σ1 N1(t) − N
∗
1( 􏼁dω1(t),

dN2(t) � N2(t) r2 + a21N1 t − τ21( 􏼁 − a22N2(t)(

+ a23N3 t − τ23( 􏼁􏼁dt + σ2 N2(t) − N
∗
2( 􏼁dω2(t),

dN3(t) � N3(t) r3 + a31N1 t − τ31( 􏼁 + a32N2 t − τ32( 􏼁(

− a33N3(t)􏼁dt + σ3 N3(t) − N
∗
3( 􏼁dω3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

with initial data

Ni(θ) � ϕi(θ) > 0, θ ∈ [−τ, 0], i � 1, 2, 3, (5)

where Ni(t) stands for the population size of the ith species
at time t, ri > 0 is the growth rate of Ni(t), aii > 0 represents
the intraspecific competitive coefficient of Ni(t), aij is the
interspecific cooperative rate, τij > 0 is time delay,
τ � max τ12, τ13, τ21, τ23, τ31, τ32􏼈 􏼉, ϕi(θ) is positive and

continuous function defined on [−τ, 0], σ2i denotes the in-
tensity of white noise, and ωi(t)t>0 is the standard inde-
pendent Brownianmotion defined on a complete probability
space (Ω,F,Ft≥0, P), i, j � 1, 2, 3, j≠ i.

Furthermore, Liu [20] proposed that the stochastic
perturbation of state variable was proportional to Ni(Ni−

N∗i )(i � 1, 2, 3), and then, we get the following model:

dN1(t) � N1(t) r1 − a11N1(t) + a12N2 t − τ12( 􏼁 + a13N3 t − τ13( 􏼁( 􏼁dt

+ σ1N1(t) N1(t) − N
∗
1( 􏼁dω1(t),

dN2(t) � N2(t) r2 + a21N1 t − τ21( 􏼁 − a22N2(t) + a23N3 t − τ23( 􏼁( 􏼁dt

+ σ2N2(t) N2(t) − N
∗
2( 􏼁dω2(t),

dN3(t) � N3(t) r3 + a31N1 t − τ31( 􏼁 + a32N2 t − τ32( 􏼁 − a33N3(t)( 􏼁dt

+ σ3N3(t) N3(t) − N
∗
3( 􏼁dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

For the deterministic system, whether there exists a
positive equilibrium state is an important topic, which at-
tracts many attentions of researchers, while stochastic model
cannot tend to a positive fixed point; i.e., there exists no
traditional positive equilibrium state, so it is popular to study
the dynamics of stochastic system around the equilibrium
state of its corresponding deterministic system. Further-
more, some kinds of delays are considered in biological
systems, but many obtained results have no relation with
delays and the effects of time delays are not revealed clearly
[9, 11]. Time delays are the sources of instability in pop-
ulation dynamics, and they can cause population fluctua-
tions, so it is interesting to study the effects of delays to the
system dynamics. Motivated by these, we propose two three-
species delayed cooperative systems with stochastic per-
turbation and aim to investigate how time delays affect the
stability in probability around the equilibrium state and then
by numerical examples to validate our theoretical results. To
the best of our knowledge, this paper is the first attempt to

investigate the influence of time delays on the stability in
probability of a stochastic three-species cooperative system.

.e rest work of this paper is structured as follows.
Section 2 begins with definitions and some important
lemmas and notations. Section 3 focuses on the asymptotical
stability and stability in probability of (4) and (6), respec-
tively. Some numerical simulations are given in Section 4 to
validate our theoretical results. Finally, a brief conclusion
and future direction are given in Section 5 to conclude the
paper.

2. Preliminaries

Let Ω, σ, P{ } be a probability space and ft, t≥ 0􏼈 􏼉 be a family
of σ-algebras. We consider the following neutral stochastic
differential equation:

d x(t) − F t, xt( 􏼁( 􏼁 � a t, xt( 􏼁dt + b t, xt( 􏼁dω(t), x0 � ϕ ∈ H,

(7)
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where H represents the space with all f0-adapted functions
ϕ(s) ∈ Rn and xt(s) � x(t + s), s≤ 0,ω(t) denotes the
m-dimensional ft-adapted Brownian process, a(t, ϕ) and
b(t, ϕ) are n-dimensional vector and n × m-dimensional
matrix, respectively. Define

‖ϕ‖0 � sup
s≤0

|ϕ(s)|,

‖ϕ‖1 � sup
s≤0

E |ϕ(s)|
2

􏽮 􏽯,
(8)

where E denotes the mathematical expectation.

Definition 1 (see [19]). .e zero solution of (7) is said to be
stable in probability if for any ε, ε> 0, there exists a number
δ > 0 such that the solution x(t) � x(t, ϕ) satisfies
P |x(t, ϕ)|> ε􏼈 􏼉< ε for any initial function ϕ ∈ H such that
P ‖ϕ0‖≤ δ􏼈 􏼉 � 1, in whichP is the probability of an event.

Lemma 1. Systems (4) and (6) have a unique globally positive
solution on t> −τ for any initial data given above,
respectively.

Remark 1. .e proof is standard. For more details, refer to
[20, 21].

Lemma 2 (see [19, 22]). If there exists a functional V(t, x)

such that

λ1|x(t)|
2 ≤V t, xt( 􏼁≤ λ2 xt

����
����
2
0, λ1, λ2 > 0, LV t, xt( 􏼁≤ 0,

(9)

for any function ϕ ∈ H such that P ‖ϕ‖0 ≤ δ􏼈 􏼉 � 1, δ > 0, is
sufficiently small positive constant, and then, the zero solution
of (7) is stable in probability.

For convenience in the later, if there is no special
mention, we always denote f(t), t ∈ R, by f and give the
following notations to end this section:

ξ1 � a21 a21 + a23( 􏼁,

η1 � a31 a31 + a32( 􏼁,

ξ2 � a12 a12 + a13( 􏼁,

η2 � a32 a31 + a32( 􏼁,

ξ3 � a13 a12 + a13( 􏼁,

η3 � a23 a21 + a23( 􏼁,

Δ1 � 2a11 − a12 − a13 −
σ21
N
∗
1
,

Δ2 � 2a22 − a21 − a23 −
σ22
N
∗
2
,

Δ3 � 2a33 − a31 − a32 −
σ21
N
∗
3
,

􏽥Δ1 � 2a11 − a12 − a13 − σ21N
∗
1 ,

􏽥Δ2 � 2a22 − a21 − a23 − σ22N
∗
2 ,

􏽥Δ3 � 2a33 − a31 − a32 − σ21N
∗
3 .

(10)

3. Stochastic Stability

In this section, we investigate the asymptotical stability and
stable in probability of (4) and (6) around the equilibrium
state of (1), respectively. Let x1 � N1 − N∗1 , x2 � N2 − N∗2 ,
and x3 � N3 − N∗3 , then system (4) is transformed to the
following equivalent system:

dx1(t) � −a11N
∗
1x1(t) + a12N

∗
1x2 t − τ12( 􏼁 + a13N

∗
1x3 t − τ13( 􏼁 − a11x

2
1􏼐

+ a12x1x2 t − τ12( 􏼁 + a13x1x3 t − τ13( 􏼁􏼁dt + σ1x1dω1(t),

dx2(t) � a21N
∗
2x1 t − τ21( 􏼁 − a22N

∗
2x2(t) + a23N

∗
2x3 t − τ23( 􏼁 − a22x

2
2􏼐

+ a21x2x1 t − τ21( 􏼁 + a23x2x3 t − τ23( 􏼁􏼁dt + σ2x2dω2(t),

dx3(t) � −a33N
∗
3x3(t) + a31N

∗
3x3 t − τ31( 􏼁 + a31N

∗
3x3 t − τ32( 􏼁 − a33x

2
3􏼐

+ a31x3x1 t − τ31( 􏼁 + a32x3x2 t − τ32( 􏼁􏼁dt + σ3x3dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

By the equivalent property of above transformation,
the stability of (4) around the equilibrate state of (1) is
equivalent to the stability of zero solution of

corresponding equivalent system (11). Consequently, we
only need to study the stability of zero solution of system
(11).

Discrete Dynamics in Nature and Society 3



By use of the definition of derivative, system (11) is
equivalent to the following neutral system:

d x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

� −a11N
∗
1x1 + a12N

∗
1x2 + a13N

∗
1x3 − a11x

2
1 + a12x1x2 t − τ12( 􏼁􏼐

+ a13x1x3 t − τ13( 􏼁􏼁dt + σ1x1dω1(t),

d x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

� a21N
∗
2x1 − a22N

∗
2x2 + a23N

∗
2x3 − a22x

2
2 + a21x2x1 t − τ21( 􏼁􏼐

+ a23x2x3 t − τ23( 􏼁􏼁dt + σ2x2dω2(t),

d x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

� a31N
∗
3x1 + a32N

∗
3x2 − a33N

∗
3x3 − a33x

2
3 + a31x3x1 t − τ31( 􏼁􏼐

+ a32x3x2 t − τ32( 􏼁􏼁dt + σ3x3dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

.e linear case of (12) is as follows:

d x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

� −a11N
∗
1x1 + a12N

∗
1x2 + a13N

∗
1x3( 􏼁dt + σ1x1dω1(t),

d x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

� a21N
∗
2x1 − a22N

∗
2x2 + a23N

∗
2x3( 􏼁dt + σ2x2dω2(t),

d x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

� a31N
∗
3x1 + a32N

∗
3x2 − a33N

∗
3x3( 􏼁dt + σ3x3dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

For the linear and neutral system (13), the following
statement is true.

Theorem 1. If the following condition holds,

H1( 􏼁

Δ1 −a21 −a31

−a12 Δ2 −a32

−a13 −a23 Δ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N
∗
1

N
∗
2

N
∗
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠> 2τ

0 ξ1 η1
ξ2 0 η2
ξ3 η3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N
∗
1( 􏼁

2

N
∗
2( 􏼁

2

N
∗
3( 􏼁

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(14)

then the zero solution of (13) is globally asymptotically stable,
almost surely, i.e., limt⟶∞xi(t) � 0, i � 1, 2, 3.

Proof. First, by the characteristics of neutral functional
differential system (13), we define

V1 � x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

2

,

V2 � x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

2

,

V3 � x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

2

.

(15)

Applying Itô formula to V1, we have

LV1 � 2 x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

× −a11N
∗
1x1 + a12N

∗
1x2 + a13N

∗
1x3( 􏼁 + σ21x

2
1

� −2a11N
∗
1x

2
1 + 2a12N

∗
1x1x2 + 2a13N

∗
1x1x3 + σ21x

2
1 − 2a11a22 N

∗
1( 􏼁

2
􏽚

t

t−τ12
x1(t)x2(s)ds

+ 2a
2
12 N
∗
1( 􏼁

2
􏽚

t

t−τ12
x2(t)x2(s)ds + 2a12a13 N

∗
1( 􏼁

2
􏽚

t

t−τ12
x3(t)x2(s)ds − 2a11a13 N

∗
1( 􏼁

2

× 􏽚
t

t−τ13
x1(t)x3(s)ds + 2a12a13 N

∗
1( 􏼁

2
􏽚

t

t−τ13
x2(t)x3(s)ds + 2a

2
13 N
∗
1( 􏼁

2
􏽚

t

t−τ13
x3(t)x3(s)ds

≤ − 2a11N
∗
1x

2
1 + a12N

∗
1 x

2
1 + x

2
2􏼐 􏼑 + a13N

∗
1 x

2
1 + x

2
3􏼐 􏼑 + σ21x

2
1

+ a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
x
2
2τ + a13 a13 + a12( 􏼁 N

∗
1( 􏼁

2
x
2
3τ

+ a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
􏽚

t

t−τ12
x
2
2(s)ds + a13 a12 + a13( 􏼁 N

∗
1( 􏼁

2
􏽚

t

t−τ13
x
2
3(s)ds.

(16)

By the same way, we have
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LV2 � 2 x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

× a21N
∗
2x1 − a22N

∗
2x2 + a23N

∗
2x3( 􏼁 + σ22x

2
2

� −2a22N
∗
2x

2
2 + 2a21N

∗
2x1x2 + 2a23N

∗
2x2x3 + σ22x

2
2 + 2a

2
21 N
∗
2( 􏼁

2
􏽚

t

t−τ21
x1(t)x1(s)ds

− 2a21a22 N
∗
2( 􏼁

2
􏽚

t

t−τ21
x2(t)x1(s)ds + 2a21a23 N

∗
2( 􏼁

2
􏽚

t

t−τ21
x3(t)x1(s)ds + 2a21a23 N

∗
2( 􏼁

2

× 􏽚
t

t−τ23
x1(t)x3(s)ds − 2a22a23 N

∗
2( 􏼁

2
􏽚

t

t−τ23
x2(t)x3(s)ds + 2a

2
23 N
∗
2( 􏼁

2
􏽚

t

t−τ13
x3(t)x3(s)ds

≤ − 2a22N
∗
2x

2
2 + a21N

∗
2 x

2
1 + x

2
2􏼐 􏼑 + a23N

∗
2 x

2
2 + x

2
3􏼐 􏼑 + σ22x

2
2

+ a21 a21 + a23( 􏼁2 N
∗
2( 􏼁

2
x
2
1τ + a23 a21 + a23( 􏼁 N

∗
2( 􏼁

2
x
2
3τ

+ a21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
􏽚

t

t−τ21
x
2
1(s)ds + a23 a21 + a23( 􏼁 N

∗
2( 􏼁

2
􏽚

t

t−τ23
x
2
3(s)ds,

LV3 � 2 x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

× a31N
∗
3x1 + a32N

∗
3x2 − a33N

∗
3x3( 􏼁 + σ23x

2
3

� −2a33N
∗
3x

2
3 + 2a31N

∗
3x1x3 + 2a32N

∗
3x2x3 + σ23x

2
3 + 2a

2
31 N
∗
3( 􏼁

2
􏽚

t

t−τ31
x1(t)x1(s)ds

+ 2a31a32 N
∗
3( 􏼁

2
􏽚

t

t−τ31
x2(t)x1(s)ds − 2a31a33 N

∗
3( 􏼁

2
􏽚

t

t−τ31
x3(t)x1(s)ds + 2a32a31 N

∗
3( 􏼁

2

× 􏽚
t

t−τ32
x1(t)x2(s)ds + 2a

2
32 N
∗
3( 􏼁

2
􏽚

t

t−τ32
x2(t)x2(s)ds − 2a32a33 N

∗
3( 􏼁

2
􏽚

t

t−τ32
x3(t)x2(s)ds

≤ − 2a33N
∗
3x

2
3 + a31N

∗
3 x

2
1 + x

2
3􏼐 􏼑 + a32N

∗
3 x

2
2 + x

2
3􏼐 􏼑 + σ23x

2
3

+ a32 a31 + a32( 􏼁 N
∗
3( 􏼁

2
x
2
2τ + a31 a31 + a32( 􏼁 N

∗
3( 􏼁

2
x
2
1τ

+ a31 a31 + a32( 􏼁 N
∗
3( 􏼁

2
􏽚

t

t−τ31
x
2
1(s)ds + a32 a31 + a32( 􏼁 N

∗
3( 􏼁

2
􏽚

t

t−τ32
x
2
2(s)ds.

(17)

Adding both sides of LV1, LV2, and LV3 yields

L V1 + V2 + V3( 􏼁≤ − 2a11 − a12 − a13( 􏼁N
∗
1 + σ21 + a21N

∗
2 + a31N

∗
3􏽨 􏽩x

2
1

+ τ a21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
+ a31 a31 + a32( 􏼁 N

∗
3( 􏼁

2
􏽨 􏽩x

2
1

+ a31 a31 + a32( 􏼁 N
∗
3( 􏼁

2
􏽚

t

t−τ31
x
2
1(s)ds + a21 a21 + a23( 􏼁 N

∗
2( 􏼁

2
􏽚

t

t−τ21
x
2
1(s)ds

− 2a22 − a21 − a23( 􏼁N
∗
2 + σ22 + a12N

∗
1 + a32N

∗
3􏽨 􏽩x

2
2

+ τ a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
+ a32 a31 + a32( 􏼁 N

∗
3( 􏼁

2
􏽨 􏽩x

2
2

+ a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
􏽚

t

t−τ12
x
2
2(s)ds + a32 a31 + a32( 􏼁 N

∗
3( 􏼁

2
􏽚

t

t−τ32
x
2
2(s)ds

− 2a33 − a31 − a32( 􏼁N
∗
3 + σ21 + a13N

∗
1 + a23N

∗
2􏽨 􏽩x

2
3

+ τ a23 a21 + a23( 􏼁 N
∗
2( 􏼁

2
+ a13 a13 + a12( 􏼁 N

∗
1( 􏼁

2
􏽨 􏽩x

2
3

+ a23 a21 + a23( 􏼁 N
∗
2( 􏼁

2
􏽚

t

t−τ23
x
2
3(s)ds + a13 a12 + a13( 􏼁 N

∗
1( 􏼁

2
􏽚

t

t−τ13
x
2
3(s)ds.

(18)
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Define

V4 � a21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
􏽚

t

t−τ21
θ − t + τ21( 􏼁x

2
1(θ)dθ

+ a31 a31 + a32( 􏼁 N
∗
3( 􏼁

2
􏽚

t

t−τ31
θ − t + τ31( 􏼁x

2
1(θ)dθ,

V5 � a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
􏽚

t

t−τ12
θ − t + τ12( 􏼁x

2
2(θ)dθ

+ a32 a31 + a32( 􏼁 N
∗
3( 􏼁

2
􏽚

t

t−τ32
θ − t + τ32( 􏼁x

2
2(θ)dθ,

V6 � a13 a12 + a13( 􏼁 N
∗
1( 􏼁

2
􏽚

t

t−τ13
θ − t + τ13( 􏼁x

2
3(θ)dθ

+ a23 a21 + a23( 􏼁 N
∗
2( 􏼁

2
􏽚

t

t−τ23
θ − t + τ23( 􏼁x

2
3(θ)dθ.

(19)

Let V � 􏽐
6
i�1 Vi, then

LV≤ − 2a11 − a12 − a13 −
σ21
N
∗
1

􏼠 􏼡N
∗
1 + a21N

∗
2 + a31N

∗
3􏼢 􏼣􏼨

+2τa21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
+ 2τa31 a31 + a32( 􏼁 N

∗
3( 􏼁

2
􏽯x

2
1(t)

+ − 2a22 − a21 − a23 −
σ22
N
∗
2

􏼠 􏼡N
∗
2 + a12N

∗
1 + a32N

∗
3􏼢 􏼣􏼨

+2τa12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
+ 2τa32 a31 + a32( 􏼁 N

∗
3( 􏼁

2
􏽯x

2
2

+ − 2a33 − a31 − a32 −
σ21
N
∗
3

􏼠 􏼡N
∗
3 + a13N

∗
1 + a23N

∗
2􏼢 􏼣􏼨

+2τa23 a21 + a23( 􏼁 N
∗
2( 􏼁

2
+ 2τa13 a12 + a13( 􏼁 N

∗
1( 􏼁

2
􏽯x

2
3.

(20)

By the hypothesis (H1), it is easy to get LV< 0 along all
trajectories in R3

+ except N∗i . Hence, by the stability theory of
stochastic functional differential equations [23], the zero
solution of (13) is globally asymptotically stable. .is
completes the proof. □

Remark 2. .e globally asymptotical stability of zero so-
lution of (13) means the globally asymptotical stability of the
solution of (4) around the equilibrate state of (1), that is,
lim

t⟶∞
Ni(t) � N∗i , i � 1, 2, 3.

Remark 3. .e proof method is motivated in [19]. We apply
the theory of neutral functional differential equation and
define some suitable functionals V1, V2, and V3 to obtain the
sufficient conditions assuring the globally asymptotical
stability of (13) around the equilibrium state N∗i , which are
much different from those of [20].

Theorem 2. If (H1) holds, then the zero solution of system
(12) is stable in probability; that is, system (4) around the
equilibrium state of (1) is stable in probability.
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Proof. For system (12), define V1, V2, and V3 as before and
assume that there exists a number δ > 0 such that

supt≥τ|xi(s)|< δ, i � 1, 2, 3. By the Itô formula, we calculate
LV1, LV2, and LV3 along system (12), respectively, then

LV1 � 2 x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

· −a11N
∗
1x1 + a12N

∗
1x2 + a13N

∗
1x3 − a11x

2
1 + a12x1x2 t − τ12( 􏼁 + a13x1x3 t − τ13( 􏼁􏼐 􏼑 + σ21x

2
1

≤ − 2a11N
∗
1x

2
1 + a12N

∗
1 x

2
1 + x

2
2􏼐 􏼑 + a13N

∗
1 x

2
1 + x

2
3􏼐 􏼑

+ σ21x
2
1 + a12 a12 + a13( 􏼁 N

∗
1( 􏼁

2
x
2
2τ + a13 a13 + a12( 􏼁 N

∗
1( 􏼁

2
x
2
3τ

+ a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
􏽚

t

t−τ12
x
2
2(s)ds + a13 a12 + a13( 􏼁 N

∗
1( 􏼁

2
􏽚

t

t−τ13
x
2
3(s)ds

+ 2δ a12 + a13( 􏼁x
2
1 + a12 + a13( 􏼁

2
N
∗
1τδx

2
1 + δa

2
12N
∗
1 􏽚

t

t−τ12
x
2
2(s)ds + δa

2
13N
∗
1 􏽚

t

t−τ13
x
2
3(s)ds,

LV2 � 2 x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

· −a22N
∗
2x2 + a21N

∗
2x1 + a23N

∗
2x3 + a21x2x1 t − τ21( 􏼁 − a22x

2
2 + a23x2x3 t − τ23( 􏼁􏼐 􏼑 + σ22x

2
2

≤ − 2a22N
∗
2x

2
2 + a21N

∗
2 x

2
1 + x

2
2􏼐 􏼑 + a23N

∗
2 x

2
2 + x

2
3􏼐 􏼑 + σ22x

2
2

+ a21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
x
2
1τ + a23 a21 + a23( 􏼁 N

∗
2( 􏼁

2
x
2
3τ

+ a21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
􏽚

t

t−τ21
x
2
1(s)ds + a23 a21 + a23( 􏼁 N

∗
2( 􏼁

2
􏽚

t

t−τ23
x
2
3(s)ds + 2δ a21 + a23( 􏼁x

2
2

+ a21 + a23( 􏼁
2
N
∗
2τδx

2
2 + δa

2
21N
∗
2 􏽚

t

t−τ23
x
2
1(s)ds + δa

2
23N
∗
2 􏽚

t

t−τ23
x
2
3(s)ds,

LV3 � 2 x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

· a31N
∗
3x1 + a32N

∗
3x2 − a33N

∗
3x3 + a31x3x1 t − τ31( 􏼁 + a32x3x2 t − τ32( 􏼁 − a33x

2
3􏼐 􏼑 + σ23x

2
3

≤ − 2a33N
∗
3x

2
3 + a31N

∗
3 x

2
1 + x

2
3􏼐 􏼑 + a32N

∗
3 x

2
2 + x

2
3􏼐 􏼑 + σ23x

2
3

+ a32 a31 + a32( 􏼁 N
∗
3( 􏼁

2
x
2
2τ + a31 a31 + a32( 􏼁 N

∗
3( 􏼁

2
x
2
1τ

+ a31 a31 + a32( 􏼁 N
∗
3( 􏼁

2
􏽚

t

t−τ31
x
2
1(s)ds

+ a32 a31 + a32( 􏼁 N
∗
3( 􏼁

2
􏽚

t

t−τ32
x
2
2(s)ds + 2δ a31 + a32( 􏼁x

2
3 + a31 + a32( 􏼁

2
N
∗
3τδx

2
3

+ δa
2
31N
∗
3 􏽚

t

t−τ31
x
2
1(s)ds + δa

2
32N
∗
3 􏽚

t

t−τ32
x
2
2(s)ds.

(21)

Define 􏽥V4,
􏽥V5, and 􏽥V6 as follows:
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􏽥V4 � a21 a21 + a23( 􏼁 N
∗
2( 􏼁

2
+ δa

2
21N
∗
2􏽨 􏽩 􏽚

t

t−τ21
θ − t + τ21( 􏼁x

2
1(θ)dθ

+ a31 a31 + a32( 􏼁 N
∗
3( 􏼁

2
+ δa

2
31N
∗
3􏽨 􏽩 􏽚

t

t−τ31
θ − t + τ31( 􏼁x

2
1(θ)dθ,

􏽥V5 � a12 a12 + a13( 􏼁 N
∗
1( 􏼁

2
+ δa

2
12N
∗
1􏽨 􏽩 􏽚

t

t−τ12
θ − t + τ12( 􏼁x

2
2(θ)dθ

+ a32 a31 + a32( 􏼁 N
∗
3( 􏼁

2
+ δa

2
32N
∗
3􏽨 􏽩 􏽚

t

t−τ32
θ − t + τ32( 􏼁x

2
2(θ)dθ,

􏽥V6 � a13 a12 + a13( 􏼁 N
∗
1( 􏼁

2
+ δa

2
13N
∗
1􏽨 􏽩 􏽚

t

t−τ13
θ − t + τ13( 􏼁x

2
3(θ)dθ

+ a23 a21 + a23( 􏼁 N
∗
2( 􏼁

2
+ δa

2
23N
∗
2􏽨 􏽩 􏽚

t

t−τ23
θ − t + τ23( 􏼁x

2
3(θ)dθ.

(22)

Let V � 􏽐
3
i�1 Vi + 􏽐

6
j�4

􏽥Vj. Computing the derivatives of
􏽥Vj(j � 4, 5, 6) and adding both sides of LVi(i � 1, 2, 3) and
LVj(j � 4, 5, 6) reads

LV≤ − 2a11 − a12 − a13 −
σ21
N
∗
1

􏼠 􏼡N
∗
1 + a21N

∗
2 + a31N

∗
3􏼢 􏼣 + 2τa21 a21 + a23( 􏼁 N

∗
2( 􏼁

2
􏼨

+2τa31 a31 + a32( 􏼁 N
∗
3( 􏼁

2
+ τδ a

2
12N
∗
1 + a

2
32N
∗
3􏼐 􏼑􏽯x

2
1(t)

+ − 2a22 − a21 − a23 −
σ22
N
∗
2

􏼠 􏼡N
∗
2 + a12N

∗
1 + a32N

∗
3􏼢 􏼣 + 2τa12 a12 + a13( 􏼁 N

∗
1( 􏼁

2
􏼨

+2τa32 a31 + a32( 􏼁 N
∗
3( 􏼁

2
+ τδ a

2
13N
∗
1 + a

2
23N
∗
2􏼐 􏼑􏽯x

2
2

+ − 2a33 − a31 − a32 −
σ21
N
∗
3

􏼠 􏼡N
∗
3 + a13N

∗
1 + a23N

∗
2􏼢 􏼣 + 2τa23 a21 + a23( 􏼁 N

∗
2( 􏼁

2
􏼨

+2τa13 a12 + a13( 􏼁 N
∗
1( 􏼁

2
+ τδ a

2
21N
∗
2 + a

2
31N
∗
3􏼐 􏼑􏽯x

2
3.

(23)

By choosing sufficiently small δ > 0 such that (H1) holds,
then we have LV< 0. .us, it follows from Lemma 2 that the
zero solution of (12) is stable in probability. .e proof is
completed.

Remark 4. In the process of our proof, the same method
applied in linear case (.eorem 1) is generalized to non-
linear case. We define 􏽥Vj(j � 4, 5, 6) and compute their

derivatives so as to eliminate the integral items appeared in
LVi(i � 1, 2, 3). By Lemma 2, we obtain the sufficient
conditions assuring the stability in probability of (4) around
the equilibrium state N∗i , which is relatively new in some
sense.

Next, we consider system (6). By setting x1 � N1 − N∗1 ,
x2 � N2 − N∗2 , and x3 � N3 − N∗3 , and then, (6) is trans-
formed to the following equivalent system:

dx1(t) � −a11N
∗
1x1(t) + a12N

∗
1x2 t − τ12( 􏼁 + a13N

∗
1x3 t − τ13( 􏼁 − a11x

2
1􏼐

+a12x1x2 t − τ12( 􏼁 + a13x1x3 t − τ13( 􏼁􏼁dt + σ1x1 x1 + N
∗
1( 􏼁dω1(t),

dx2(t) � −a22N
∗
2x2(t) + a21N

∗
2x1 t − τ21( 􏼁 + a23N

∗
2x3 t − τ23( 􏼁 − a22x

2
2􏼐

+a21x2x1 t − τ21( 􏼁 + a23x2x3 t − τ23( 􏼁􏼁dt + σ2x2 x2 + N
∗
2( 􏼁dω2(t),

dx3(t) � −a33N
∗
3x3(t) + a31N

∗
3x3 t − τ31( 􏼁 + a31N

∗
3x3 t − τ32( 􏼁 − a33x

2
3􏼐

+a31x3x1 t − τ31( 􏼁 + a32x3x2 t − τ32( 􏼁􏼁dt + σ3x3 x3 + N
∗
3( 􏼁dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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Similarly, the stability of (6) around the equilibrate state
of (1) is equivalent to the stability of zero solution of (24).
Consequently, we only need to study the stability of zero

solution of (24). By use of transformation, system (24) is
equivalent to the following system:

d x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

� −a11N
∗
1x1 + a12N

∗
1x2 + a13N

∗
1x3 − a11x

2
1􏼐

+a12x1x2 t − τ12( 􏼁 + a13x1x3 t − τ13( 􏼁􏼁dt + σ1x1 x1 + N
∗
1( 􏼁dω1(t),

d x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

� a21N
∗
2x1 − a22N

∗
2x2 + a23N

∗
2x3 − a22x

2
2􏼐

+a21x2x1 t − τ21( 􏼁 + a23x2x3 t − τ23( 􏼁􏼁dt + σ2x2 x2 + N
∗
2( 􏼁dω2(t),

d x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

� a31N
∗
3x1 + a32N

∗
3x2 − a33N

∗
3x3 − a33x

2
3􏼐

+a31x3x1 t − τ31( 􏼁 + a32x3x2 t − τ32( 􏼁􏼁dt + σ3x3 x3 + N
∗
3( 􏼁dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Consider the following linear case of (25):

d x1 + a12N
∗
1 􏽚

t

t−τ12
x2(s)ds + a13N

∗
1 􏽚

t

t−τ13
x3(s)ds􏼠 􏼡

� −a11N
∗
1x1 + a12N

∗
1x2 + a13N

∗
1x3( 􏼁dt + σ1x1N

∗
1dω1(t),

d x2 + a21N
∗
2 􏽚

t

t−τ21
x1(s)ds + a23N

∗
2 􏽚

t

t−τ23
x3(s)ds􏼠 􏼡

� a21N
∗
2x1 − a22N

∗
2x2 + a23N

∗
2x3( 􏼁dt + σ2x2N

∗
2dω2(t),

d x3 + a31N
∗
3 􏽚

t

t−τ31
x1(s)ds + a32N

∗
3 􏽚

t

t−τ32
x2(s)ds􏼠 􏼡

� a31N
∗
3x1 + a32N

∗
3x2 − a33N

∗
3x3( 􏼁dt + σ3x3N

∗
3dω3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

For system (25), the following result holds.

Theorem 3. If the following (H2) holds,

H2( 􏼁

􏽥Δ1 −a21 −a31

−a12
􏽥Δ2 −a32

−a13 −a23
􏽥Δ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N
∗
1

N
∗
2

N
∗
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠> 2τ

0 ξ1 η1
ξ2 0 η2
ξ3 η3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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,

(27)

then system (25) around the equilibrium state N∗i is stable in
probability; i.e., system (6) around the equilibrium state N∗i is
stable in probability.

Proof. Applying the same manner as before, consider the
linear system (26) and define V1, V2, and V3 as before. By
using the Itô formula and computing the derivatives of V1,
V2, and V3 along solutions of (26), then
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(28)

.e rest proof is similar to proofs of.eorems 1 and 2, so
we omit it. .e proof is completed. □

Remark 5. .eorems 1–3 show that both time delays
(τij, i, j � 1, 2, 3) and stochastic disturbances (σi, i � 1, 2, 3)
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Figure 1: Unstable cases with large time delay, where σ1 � 0.2, σ2 � 0.1, σ3 � 0.3, and τ � 0.8. Simulations reveal that too large time delay
destroys the stability of (4) and (6), respectively. (a) .e state graph of system (4); (b) the state graph of system (6).
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have important impacts on the globally asymptotical sta-
bility and stability in probability around the positive
equilibrium state. Conditions (H1) and (H2) imply that
too large time delays or white noises may destroy the
stability of above systems, which are also verified by nu-
merical simulations (see Figures 1 and 2 in the next
section).

Remark 6. .eorems 1–3 highlight the effects of time delays
and stochastic disturbances on the stability around the
positive equilibrium state, where conditions (H1) and (H2)

seem complexity, but they are not difficult to be verified by
computation software like Matlab.

4. Numerical Simulations

In this section, we present some numerical simulations to
verify the theoretical result. After giving values of all pa-
rameters, by applying the method [24] and writing some
suitable Matlab code, we can obtain the numerical results as
follows. Let a11 � 1, a12 � 0.2, a13 � 0.3, a21 � 0.3, a22 � 1,

a23 � 0.2, a31 � 0.2, a32 � 0.3, a33 � 1, r1 � 1, r2 � 1.2, and
r3 � 1.5. .en, an easy computation yields that
A � 0.785, A1 � 1.783, A2 � 1.928, A3 � 2.098 and
N∗1 � 2.2713, N∗2 � 2.4561, N∗3 � 2.6726.

If σ1 � 0.2, σ2 � 0.1, σ3 � 0.3, and τ � 0.5, with the help
of Matlab, by computation, we have

Δ1 � 1.4824,

Δ2 � 1.4959,

Δ3 � 1.4663,

􏽥Δ1 � 1.4091,

􏽥Δ2 � 1.4754,

􏽥Δ3 � 1.2592,

(29)

and hence,
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(30)

By verification, both (H1) and (H2) hold, and then,
.eorems 2 and 3 hold. .eorem 2 implies system (4) is
stable around the equilibrium of (1). .e state graphs of each
population are illustrated in Figure 3. Furthermore,
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Figure 2: Unstable cases for (4) and (6) with large stochastic perturbations, respectively, which show that too large stochastic disturbances
destroy the stability of above systems. (a) For system (4), with σ1 � 2, σ2 � 2, σ3 � 2, and τ � 0.5; (b) for system (6), with
σ1 � 0.9, σ2 � 0.9, σ3 � 0.9, and τ � 0.5.

Discrete Dynamics in Nature and Society 11



0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
St
at
e-
ax
is

t-axis
N∗

1
N∗

2
N∗

3

(a)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

St
at

e-
ax

is

t-axis
N1 (t)
N2 (t)
N3 (t)

(b)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

St
at

e-
ax

is

t-axis
N∗

1
N1 (t)

(c)

0 5 10 15 20
0

0.5

1

1.5

2

2.5
St

at
e-

ax
is

t-axis
N∗

2
N2 (t)

(d)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

t-axis

St
at

e-
ax

is

N∗

3
N3 (t)

(e)

Figure 3: Stable case of system (4) with σ1 � 0.2, σ2 � 0.1, σ3 � 0.3, and τ � 0.5: (a) equilibrium of (1) with N∗1 � 2.2713,

N∗2 � 2.4561, and N∗3 � 2.6726; (b) the state graph of three species of (4); (c), (d), and (e) are state graphs of populations N1, N2, and N3 of
(4) around their corresponding equilibrium points N∗1 , N∗2 , and N∗3 , respectively.
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.eorem 3 indicates system (6) around the equilibrium N∗i
is also stable. .e state graphs of each population are il-
lustrated in Figure 4.

If τ � 0.8, other parameters are same as before, then
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An easy computation yields that neither (H1) nor
(H2) holds; hence, (4) and (6) around the equilibrium
point may be unstable (see Figures 1(a) and 1(b),

respectively). .e state graphs of each population in
Figure 1 show that too large time delays destroy the
stability of (4) and (6).

Finally, if σ1 � 2, σ2 � 2, σ3 � 2, τ � 0.5, then
Δ1 � −0.2611,Δ2 � −0.1286,Δ3 � 0.0434. Hence, (H1) does
not hold and system (4) may be unstable, which is shown in
Figure 2(a). If σ1 � 0.9, σ2 � 0.9, σ3 � 0.9, τ � 0.5, then
􏽥Δ1 � −0.3398, 􏽥Δ2 � −0.4894, 􏽥Δ3 � −0.6648. Hence, (H2)

does not hold and system (6) may be unstable too (see
Figure 2(b)). .e state graphs of each population in Figure 2
show that too large stochastic disturbances destroy the
stability of above systems.
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Figure 4: Stable case of system (6) with σ1 � 0.2, σ2 � 0.1, σ3 � 0.3, and τ � 0.5: (a) the state graph of three species; (b), (c), and (d) are the
state graphs of the populations N1, N2, and N3 around their corresponding equilibrium points N∗1 , N∗2 , and N∗3 , respectively.
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5. Conclusion and Future Direction

In this paper, we investigate the stability of two three-species
cooperative systems with time delays and stochastic dis-
turbances..eorem 1 gives the sufficient conditions assuring
the globally asymptotical stability around the equilibrium
state of the corresponding deterministic system..eorems 2
and 3 imply that systems (4) and (6) are stable in probability
around the equilibrium states under some conditions, re-
spectively. By giving Remarks 3–5, we clarify the difference
of our proof from some existing methods and, particularly,
show that time delays and stochastic perturbations bring
some significant impacts on the globally asymptotical sta-
bility and stability in probability.

In this paper, we assume time delays are constants,
whereas in practice, time delays may be time-varying (see
[25–27]), so it is necessary to study the dynamics with time-
varying delays. Furthermore, for multispecies predator-prey
system or multispecies competitive system, whether some
similar results can be obtained?.ese are interesting and left
for our future work.
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