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We study a first-price auction with two bidders where one bidder is characterized by a constant relative risk aversion utility
function (i.e., a concave power function) while the other has a general concave utility function. We establish the existence and
uniqueness of the optimal strategic markups and analyze the effects of one bidder’s risk aversion level on the optimal strategic
markups of him and his opponent’s, the allocative efficiency of the auction, and the seller’s expected revenue, respectively.

1. Introduction

)ough the rules of a first-price auction are simple, the same
cannot necessarily be said for the case that bidders are
asymmetric, especially when the bidders are risk averse.
Previous studies on the asymmetric auctions with risk
neutral bidders within the independent private value (IPV)
model have been extensively studied by Lebrun [1], Maskin
and Riley [2, 3], Kirkegaard [4], and Kaplan and Zamir [5].
Also, the symmetric auctions with risk-averse preferences
have been much studied in the literature (e.g., Riley and
Samuelson [6], Matthews [7], and Hu et al. [8]). In this
paper, we build on the model outlined by Maréchal and
Morand [9] (henceforth MM) and study first-price sealed-
bid auctions with asymmetric bidders in terms of risk
aversion.

)e MM’s model is initiated by Von Ungern-Sternberg
[10] (henceforth VUS) in his theoretical analysis on Swiss
construction industry of simultaneous sealed-bid multi-
object auctions, where each bidder are ex ante symmetric
relative to the informational knowledge and he can predict
his private valuation with certainty but has no grounds for
believing it to be higher or lower on average than his op-
ponent’s. Formally, VUS models this by assuming that the
different bidders’ valuations are independent drawings from
a uniform distribution with an unknown mean; thereby, the

bidders can use this information to infer the mean and
indirectly infer his opponent’s valuation. )erefore, the ex
ante and ex post distribution are not the same, which is the
main difference between the standard IPV model and the
VUS model.

MM follows the VUS model and extends it to the case of
two risk-averse bidders who had the same parametric family
of (CRRA) functions, but their measures of risk aversion
differ. )en, they derive the explicit expressions of asym-
metric bidding equilibrium. To the best of our knowledge, it
seems that only Maréchal and Morand consider asymmetric
first-price auctions where two bidders assume different
CRRA utility functions. By allowing risk aversion levels of
both bidders to vary simultaneously, they show that as one
bidder becomes less risk averse and the other one becomes
more risk averse, (i) the less risk-averse bidder reduces his
markup when asymmetry in terms of risk aversion between
both bidders is sufficiency large; (ii) the allocative efficiency
decreases when asymmetry increases; and (iii) the seller’s
expected revenue increases as bidders become more
asymmetric in terms of risk aversion.

We generalize the work by MM to a more general case
where one bidder is characterized by a CRRA utility function
while the other has a general concave utility function. Our
work makes a contribution to the asymmetric auction lit-
erature and is different from MM in several respects: (i) we
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establish the existence and uniqueness of the optimal
strategic markups of two bidders (see Propositions 1 and 2);
(ii) we study effects of one bidder’s risk aversion on bidding
behavior. We find that when one bidder becomes more risk
averse and the other bidder’s risk averse remain unchanged,
both bidders reduce their optimal strategic markups, and an
illustrative example shows that the rate at which his markup
decreases is higher than the rate at which his opponent’s
markup decreases (see Propositions 3 and 4); (iii) the
allocative efficiency becomes complicated as one bidder
becomes more (less) risk averse (see our Proposition 6); (iv)
we study effects of one bidder’s risk aversion on expected
revenue. We find that the seller’s expected revenue increases
when one bidder becomes more risk averse, given that the
other bidder’s risk averse remain unchanged (see Proposi-
tion 7). Section 4 concludes the paper.

2. Model

In this paper, we study a two-bidder first-price sealed-bid
auction selling an indivisible single item whereas adopting
the framework of the model as in MM. Differentiating from
their framework, we further generalize the MM model by
accommodating the case where one bidder has a general
concave utility function and the other still has a CRRA utility
function.

2.1.%eMM’sModel. In MM, the key assumptions conclude
the following: (a) both bidders are ex ante symmetric relative
to the informational knowledge; (b) each bidder has a private
valuation; (c) the valuations are independently drawn from a
known uniform distribution F and distributes around the
unknown mean μ over [μ − a, μ+ a] with frequency 1/2a,
where a is common knowledge; (d) the optimal strategy is to
bid a simple markup b below his valuation and the markup b
is independent of his valuation.

Such as bidder α, when he observes his own valuation vα,
since assumption (c), he can draw inferences about
μ ∈ [vα − a, vα + a] according to the cumulative Fμ with
corresponding density fμ. Due to assumption (a), he can
indirectly draw inferences about his opponent’s valuation
vβ ∈ [vα − 2a, vα + 2a] according to the cumulative Fβ with
corresponding density fβ.

Suppose bidder i ∈ {α, β} has a private valuation of vi and
places a bid Bi. Due to assumption (d), the bid has the form
Bi (vi)� vi − bi. When his competitor chooses amarkup equal
to b− i (− i means i’s opponent), bidder i’s probability of
winning Probi (win) is given by

􏽚
μ
prob Bi >B− i( 􏼁fμ(μ)dμ. (1)

Consider bidder α, the probability of winning P is

P � 􏽚
μ
Fβ vα − bα + bβ􏼐 􏼑fμ(μ)dμ, μ ∈ vα − a, vα + a􏼂 􏼃.

(2)

)en, we have

P � 􏽚
μ

1
2a

a − bα + bβ + vα − μ
2a

􏼠 􏼡dμ. (3)

Similarly, consider bidder β, the probability of winning
Q is

Q � 􏽚
μ
Fα vβ − bβ + bα􏼐 􏼑fμ(μ)dμ, μ ∈ vβ − a, vβ + a􏽨 􏽩.

(4)

)en, we have

Q � 􏽚
μ

1
2a

a + bα − bβ + vβ − μ
2a

􏼠 􏼡dμ. (5)

2.2.%e General Utility Function of Bidders. Bidders are risk
averse and one bidder has a CRRA utility
functionui(x) � xρi (with 0< ρi≤ 1), while the other bidder
− i has a general utility function u− i (x) satisfying u− i (0)� 0,
u− i
′ (x)> 0, and u− i

″(x)≤ 0, x is bidder’s income. Specifically,
we consider two models as shown in the following:

Model I: suppose that bidder α has a utility function
uα(x) � xρα (with 0< ρα≤ 1) and bidder β has a general
utility function uα (x) satisfying uα (0)� 0, uα′ (x)> 0,
and uα″(x)≤ 0. )en, the respective expected utility
maximization problems for bidders α and β are

max
bα

Euα � bα( 􏼁
ραP bα, bβ􏼐 􏼑, (6)

max
bβ

Euβ � uβ bβ􏼐 􏼑Q bα, bβ􏼐 􏼑, (7)

where P (bα, bβ) and Q (bα, bβ) are the respective
probabilities of winning of bidder α and β when they
choose strategic markups bα and bβ,

P bα, bβ􏼐 􏼑 �
2a − bα + bβ􏼐 􏼑

2

8a
2 , (8)

Q bα, bβ􏼐 􏼑 �
4a

2
+ 4a bα − bβ􏼐 􏼑 − bα − bβ􏼐 􏼑

2

8a
2 . (9)

Model II: suppose that bidder α has a general utility
function uα (x) and bidder β has a utility function
uβ(x) � xρβ (with 0< ρβ≤ 1) (see page 109 of MM for
the detailed proof).)en, the respective expected utility
maximization problems for bidders α and β are

max
bα

Euα � uα bα( 􏼁P bα, bβ􏼐 􏼑, (10)

max
bβ

Euβ � bβ􏼐 􏼑
ρβ

Q bα, bβ􏼐 􏼑, (11)

where bα, bβ, P (bα, bβ), and Q (bα, bβ) have the same
meanings as in Model I.

Define ci � ui/ui
′ . Let Ri � − ui

″/ui
′ denote the Arrow–

Pratt measure of absolute risk aversion. Since
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ci
′ � [(ui
′ )2 − uiui

″]/(ui
′ )2 � 1 − (ciui

″)/ui
′ , ci is related to Ri

byci
′ � 1 + Rici. Since ci (x)≥ 0 and Ri (x)≥ 0 for x≥ 0,

ci
′ (x)> 0forx≥ 0. Let 􏽢ui be another utility function of bidder
i satisfying the same assumptions as ui, with an absolute risk
aversion measure 􏽢Ri(x) such that 􏽢Ri(x)>Ri(x) on (0,∞].
)en, 􏽢Ri(x)>Ri(x)on (0, ∞) implies 􏽢ci(x)> ci(x) on (0,
∞) (see page 1191 of Hu et al. [8]).

)roughout the paper, we keep the assumption of
bα≥ bβ. (Similarly, as in MM, the two probabilities given in
(8) and (9) will be changed when we assume that bα≤ bβ.
With this assumption, we can get results that are entirely
parallel to the existing propositions in Section 3.) )at is
used to derive the two probabilities of winning of (8) and (9)
as in MM. )e following examples verify this assumption.

Example 1. Suppose that bidder α has a CRRA utility
function uα(x) � xρα with 0< ρα≤ 1, and bidder β has a
constant absolute risk aversion (CARA) utility function uβ
(x)� 1 − exp (− θβx) with θβ> 0. Substituting uβ (x) into (15)
yields

− 1 + e
θβbβ

θβ
�
2a

2 ρα + 2( 􏼁

bβ + 2a
−

bβ + 2a

ρα + 2
. (12)

)is and (14) constitute a system. Let a� 1. Solving the
respective six systems associated with six pairs of (ρα, θβ), we
obtain six pairs of optimal markups as shown in Table 1.

Table 1 shows the optimal markups satisfy bα≥ bβ.

Example 2. Suppose that bidder α has a CARA utility
function uα (x)� 1 − exp (− θαx) with θα> 0, and bidder β has
a CRRA utility functionuβ(x) � xρβ with 0< ρβ≤ 1.
Substituting uα (x) into (18) yields

− 1 + e
θαbα

θα
�
2a − bα +

����������������������

2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

2 2 + ρβ􏼐 􏼑
. (13)

)is and (17) constitute a system. Let a� 1. Solving the
respective six systems associated with six pairs of (θα, ρβ) as
shown in the following Table 2, we obtain six pairs of optimal
markups.

Table 2 shows that the optimal markups satisfy bα≥ bβ.

3. Optimal Strategic Markups and
Their Properties

3.1. Existence of Optimal Strategic Markups

Proposition 1. Consider Model I. %en,

(i) %e optimal strategic markups for both bidders (bα,
bβ) are characterized by (when uβ(x) � xρβ , we get
the same optimal strategic markups as in MM)

bα �
ρα 2a + bβ􏼐 􏼑

2 + ρα
, (14)

cβ bβ􏼐 􏼑 � G bβ􏼐 􏼑, (15)
where

G(x) �
2a

2 ρα + 2( 􏼁

x + 2a
−

x + 2a

ρα + 2
, on [0,∞). (16)

(ii) %ere exists a unique optimal strategic markup (bα,
bβ) with bα, bβ ∈ (0, aρα].

(iii) bα and bβ increase with the uncertainty parameter a.

Proof. See Appendix.
Part (iii) of Proposition 1 is in line with intuition and

conventional results in auction theory (see among others
Klemperer [11] and Krishna [12]). □

Proposition 2. Consider Model II. %en,

(i) %e optimal strategic markups for both bidders (bα,
bβ) are characterized by (when uα(x) � xρα , we have
the same optimal strategic markups as in MM)

bβ � g bα( 􏼁, (17)

cα bα( 􏼁 � L bα( 􏼁, (18)

where g (x) and L (x) are defined on [0, ∞),

g(x) �
1 + ρβ􏼐 􏼑(x − 2a) +

���������������������
(2a − x)

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑
􏽱

2 + ρβ
,

(19)

L(x) �
2a − x +

���������������������
(2a − x)

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑
􏽱

2 2 + ρβ􏼐 􏼑
.

(20)

(ii) %ere exists a unique optimal strategic markup (bα,
bβ) with bα, bβ ∈ [aρβ, a).

(iii) bα and bβ are increasing with respect to the uncer-
tainty parameter a.

Proof. See Appendix. □

3.2. Impact of theDegrees of RiskAversion onBidders’Optimal
Markups. Suppose that bidder α’s risk aversion level re-
mains unchanged. )en, Proposition 3 (i) shows that the

Table 1: Verification of the assumption bα≥ bβ.
ρα 0.8 0.8 0.9 0.9 0.9 0.9
θβ 0.6 0.7 0.3 0.7 0.8 0.9
bα 0.7971 0.7926 0.8955 0.8726 0.8674 0.8624
bβ 0.7900 0.7743 0.8858 0.8118 0.7951 0.7790

Table 2: Verification of the assumption bα≥ bβ.
θα 0.2 0.3 0.35 0.4 0.41 0.8
ρβ 0.7 0.8 0.8 0.8 0.8 0.2
bα 0.8762 0.8635 0.8492 0.8354 0.8328 0.6400
bβ 0.7915 0.8347 0.8269 0.8194 0.8179 0.3114
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optimal strategic markups for both bidders α and β decrease
in risk aversion of bidder β. Part (ii) shows that a change in
bidder β’s optimal strategic markup is greater than a change
in bidder α’s optimal strategic markup as bidder β becomes
more risk averse.

Proposition 3. Consider Model I. Let bα and bβ be the
optimal strategic markups for bidder α and β associated with
utility functions uα(x) � xρα and uβ (x), satisfying that
bα≥ bβ. Let 􏽢bα and 􏽢bβ be the optimal strategic markups for
both bidders associated with utility functions uα(x) � xρα

and􏽢uβ, satisfying that 􏽢bα ≥ 􏽢bβ. %en, we have the following:

(i) 􏽢bα < bα, 􏽢bβ < bβ

(ii) bα − 􏽢bα < bβ − 􏽢bβ
(i.e.,(vα − 􏽢bα) − (vα − bα)< (vβ − 􏽢bβ) − (vβ − bβ))

Proof. See Appendix.
)e following Examples 3 and 4 illustrate the influence of

the degrees of bidder β’s risk aversion on the markups of
both bidders. □

Example 3. Consider Example 1 again. Suppose that bidder
β becomesmore risk averse. Let θβ become θβ+ ε, where ε is a
positive real number.)en, the optimal strategic markups bα
and bβ satisfy

− 1 + e
θβ+ε( 􏼁􏽢bβ

θβ + ε􏼐 􏼑
�
2a

2 ρα + 2( 􏼁

􏽢bβ + 2a
−

􏽢bβ + 2a

ρα + 2
,

􏽢bα �
ρα 2a + 􏽢bβ􏼐 􏼑

2 + ρα
,

􏽢bα, 􏽢bβ 0, αρα( 􏼃.

(21)

Figure 1 depicts the optimal strategic markups bα and bβ
for ε ∈ (0, 0.1) (the choice of ε’s range must guarantee the
optimal strategic markups exist in the interval (0, aρα),
where a � 1, θβ � 0.6, and ρα � 0.8. It shows that both op-
timal strategic markups are declining with ε, implying that
as bidder β becomes more risk averse, both bα and bβ
decrease (i.e., part (i) of Proposition 3 holds), bβ is more
rapidly decreased than bα, and the magnitude of the
asymmetry effects on the optimal bid markup becomes
smaller for bidder α but becomes bigger for bidder β. It also
shows that the magnitude of the asymmetry effects is less
for bidder α than that for bidder β (i.e., part (i) of Prop-
osition 3 holds).

Example 4. Consider that both bidders exhibit constant
relative risk aversion (CRRA) utility functions, ui(x) � xρi

(with 0< ρi≤ 1, i ∈ {α, β}), where 1 − ρi is the Arrow–Pratt
measure of CRRA.)en, we can derive explicitly the optimal
strategic markups for both bidders

bα �
aρα(1 + A)

2 + ρα + ρβ
,

bβ �
a 2 + ρα( 􏼁A − 2 − ρα − 2ρβ􏼐 􏼑

2 + ρα + ρβ
,

(22)

whereA �
�����������������
1 + 2ρβ(2 + ρα + ρβ)

􏽱
.

Suppose that bidder β becomes more risk averse. Let ρβ
become ρβ− δ, where δ is a positive real number. )en, we
have

􏽢bα �
aρα(1 + 􏽢A)

2 + ρα + ρβ − δ
,

􏽢bβ �
a 2 + ρα( 􏼁􏽢A − 2 − ρα − 2 ρβ − δ􏼐 􏼑􏼐 􏼑

2 + ρα + ρβ − δ
,

(23)

where 􏽢A �
������������������������
1 + 2(ρβ − δ)(2 + ρα + ρβ − δ)

􏽱
.

Figure 2 depicts the optimal strategic markups bα and bβ
for δ ∈ (0, 0.55), where a� 1, ρα � 0.9, and ρβ � 0.6. It shows
that both optimal strategic markups are declining with δ,
implying that as bidder β becomes more risk averse, both bα
and bβ decrease (i.e., part (i) of Proposition 3 holds), bβ is
more rapidly decreased than bα, and the magnitude of the
asymmetry effects on the optimal bid markup becomes
smaller for bidder α but becomes bigger for bidder β. It also
shows that the magnitude of the asymmetry effects is less for
bidder α than that for bidder β (i.e., part (ii) of Proposition 3
holds).

Suppose that bidder β’s risk aversion level remains
unchanged. When bidder α becomes more risk averse,
Proposition 4 has a similar meaning as Proposition 3.

Proposition 4. Consider Model II. Let bα and bβ be optimal
strategic markups for bidder α and β associated with uα (x)
and uβ(x) � xρβ , satisfying that bα≥ bβ. Let bα and bβ be the
optimal strategic markups for both bidders associated with
utility functions uβ(x) � xρβand􏽢uα, satisfying that bα ≥ bβ.
%en, we have the following:

(i) bα < bα, bβ < bβ

bα

bβ

0.02 0.04 0.06 0.08 0.10

0.775

0.780

0.785

0.790

0.795

M
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p

ε

Figure 1: Plot of the optimal strategic markups bα and bβ increase
with the degrees of bidder β’s risk aversion.
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(ii) bβ − bβ < bα − bα (i.e., (vβ − bβ) − (vβ − bβ)< (vα −

bα)− (vα − bα))

Proof. See Appendix.
)e following Examples 5 and 6 illustrate the influence of

the degrees of bidder α’s risk aversion on the markups of
both bidders. □

Example 5. Consider Example 2 again. Suppose that bidder
α becomes more risk averse. Let θα becomes θα+ ζ, where ζ is
a positive real number, and the larger ζ is, the bidder α
becomes more risk averse. )en, the optimal strategic
markups satisfy

− 1 + e
θα+ζ( )bα

θα + ζ
�

2a − bα +

����������������������

2a − bα􏼐 􏼑
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽲

2 2 + ρβ􏼐 􏼑

bβ �
1 + ρβ􏼐 􏼑 bα − 2a􏼐 􏼑 +

����������������������

2a − bα􏼐 􏼑
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

2 + ρβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, and bα, bβ ∈ αρβ, α􏽨 􏼑. (24)

Figure 3 depicts the optimal strategicmarkups bα and bβ for
ζ ∈ (0, 0.1), where a� 1, θα � 0.18, and ρβ � 0.85. It shows that
both optimal strategic markups are declining with ζ, implying
that as bidder α becomes more risk averse, both bα and bβ
decrease (i.e., part (i) of Proposition 4 holds), bα is more rapidly
decreased than bβ, and the magnitude of the asymmetry effects
on the optimal bid markup becomes smaller for bidder β but
becomes bigger for bidder α. It also shows that the magnitude
of the asymmetry effects is less for bidder β than that for bidder
α (i.e., part (ii) of Proposition 4 holds).

Example 6. Consider Example 4 again. Suppose that bidder
α becomes more risk averse. Let ρα become ρα− δ, where δ is a
positive real number. )en, the optimal strategic markups
(22) become

bα �
a ρα − δ( 􏼁(1 + A)

2 + ρα − δ + ρβ
,

bβ �
a 2 + ρα − δ( 􏼁A − 2 − ρα − δ( 􏼁 − 2 ρβ􏼐 􏼑􏼐 􏼑

2 + ρα − δ + ρβ
,

(25)

where A �
��������������������
1 + 2ρβ(2 + ρα − δ + ρβ)

􏽱
.

Figure 4 depicts the optimal strategic markups bα and bβ
for δ ∈ (0, 0.69), where a� 1, ρα � 0.9, and ρβ � 0.2. It shows
that both optimal strategic markups are declining with δ,
implying that as bidder α becomes more risk averse, both bα
and bβ decrease (i.e., part (i) of Proposition 3 holds), bα is
more rapidly decreased than bβ, and the magnitude of the
asymmetry effects on the optimal bid markup becomes
smaller for bidder β but becomes bigger for bidder α. It also
shows that the magnitude of the asymmetry effects is more
for bidder α than that for bidder β (i.e., part (ii) of Prop-
osition 3 holds).

From Proposition 3 and Proposition 4, we can find that
the two bidders make uniformly higher bids as bidder β or
bidder α becomes more risk averse. )is is consistent with
the traditional result on symmetric auctions.

3.3. Impact of the Degrees of Risk Aversion on
Allocative Efficiency

Proposition 5

(i) Suppose vβ > vα. Both auctions associated withModels
I and II are always efficient.

bidder α’s markup

bidder β’s markup

0.1 0.2 0.3 0.4 0.5
δ

0.2

0.4

0.6

0.8

Bi
dd

er
’s 

m
ar

ku
p

Figure 2: Plot of the optimal strategic markups bα and bβ increase
with the degree of bidder β’s risk aversion.
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Figure 3: Plot of the optimal strategic markups bα and bβ increase
with the degree of bidder α’s risk aversion.
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(ii) Suppose vα > vβ. For Model I, the auction is inefficient
if and only if vα − vβ < 2 (aρα − bβ)/(2 + ρα); the auc-
tion is efficient if and only if vα − vβ > 2 (aρα − bβ)/
(2 + ρα). For Model II, the auction is inefficient if and
only if vα − vβ < p (bα); the auction is efficient if and
only if vα − vβ > p (bα), where

p bα( 􏼁 �
1

2 + ρβ
bα + 2a 1 + ρβ􏼐 􏼑 −

����������������������

2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

􏼒 􏼓.

(26)

Proof. See Appendix.
Notice that if vβ > vα, the auctions are always efficient. In

the following, we just consider that vα > vβ. □

Proposition 6

(i) Consider Model I; suppose that bidder α’s risk
aversion level remains unchanged. (a) If the auction is
inefficient, as bidder β becomes more risk averse, the
more inefficient the allocation can be, while as bidder
β becomes less risk averse, allocative efficiency be-
comes ambiguous. (b) If the auction is efficient, as
bidder β becomes less risk averse, allocative efficiency
becomes ambiguous, while as bidder β becomes less
risk averse, the auction is still efficient.

(ii) Consider Model II; suppose that bidder β’s risk
aversion level remains unchanged. (a) If the auction is
inefficient, as bidder α becomes more risk averse,
allocative efficiency becomes ambiguous. Consider
Example 2. Suppose that vα − vβ � 0.02 and a� 1.
Substituting a� 1 and the related data in column 2 of
Table 2 (i.e., θα � 0.3, ρβ � 0.8, and bα � 0.8635) into
(26), we have p(bα)≈ 0.0260. %us, vα − vβ < p(bα),
implying that the auction is inefficient by Proposition
5 (ii). Now, suppose that bidder α becomes more risk

averse such that θα � 0.35 or θα � 0.41. For θα � 0.35,
using the data of column 3 in Table 2, we have vα − vβ
< p (bα)≈ 0.0223, implying that the auction is inef-
ficient. But for θα � 0.41, using the data of column 5 in
Table 2, we have vα − vβ > p (bα)≈ 0.0149, implying
that the auction is efficient by Proposition 5 (ii), while
as bidder α becomes less risk averse, the auction
becomes more inefficient. (b) If the auction is efficient,
as bidder α becomes more risk averse, the auction is
still efficient, while as bidder α becomes less risk
averse, allocative efficiency becomes ambiguous.

Proof. See Appendix.
)e following Examples 7 and 8 illustrate the magnitude

of the asymmetry effects on the efficiency established in
Proposition 6. □

Example 7. Consider Example 1 again. Suppose that vα > vβ
in Proposition 6 (i). )en, the auction is efficient if
vα − bα> vβ − bβ (i.e., vα − vβ > bα − bβ).

Let θβ become θβ+ ε, implying that bidder β becomes less
risk averse and let θβ become θβ − ε, implying that bidder β
becomes more risk averse, where ε ∈ (0, 0.06):

(a) If the auction is inefficient. Let vα − vβ � 0.0025,
θβ � 0.6, ρα � 0.8 and a� 1, we have bα − bβ � 0.0071.
)en, vα − vβ < bα − bβ. Figure 5 shows the relation-
ship between bα − bβ and vα − vβ as bidder β becomes
less or more risk averse. )e bα − bβ is found to be
increasing as β becomes more risk averse. And the
higher the bα − bβ is, the more inefficient the allo-
cation can be. While as β becomes less risk averse,
bα − bβ declines to be lower than vα − vβ, the auction
may be efficient.

(b) If the auction is efficient. Let vα − vβ � 0.0117,
θβ � 0.6, ρα � 0.8 and a� 1, we have bα − bβ � 0.0071.
)en vα − vβ > bα − bβ. Figure 6 shows the relation-
ship between bα − bβ and vα − vβ as bidder β becomes
less or more risk averse. Clearly, as β becomes less
risk averse bα − bβ is always lower than vα − vβ, then,
the auction is still efficient. While as β becomes more
risk averse, bα − bβ may be higher than vα − vβ, then,
the auction may become inefficient.

Example 8. Consider Example 2 again. Suppose that vα > vβ
in Proposition 6 (ii). )en, the auction is efficient if
vα − bα> vβ − bβ, i.e., vα − vβ > bα − bβ.

Let θα becomes θα+ ε implies that bidder β becomes less
risk averse and let θα becomes θα − ε implies that bidder α
becomes more risk averse, where ε ∈ (0, 0.1):

(a) Consider the auction when inefficient. Let
vα − vβ � 0.020, θα � 0.18, ρβ � 0.85, and a� 1; we have
bα − bβ � 0.026. )en, vα − vβ < bα − bβ. Figure 7
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Figure 4: Plot of the optimal strategic markups bα and bβ increase
with the degree of bidder α’s risk aversion.
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depicts the relationship between bα − bβ and vα − vβ
as bidder α becomes less or more risk averse. Clearly,
bα − bβ is increasing as α becomes less risk averse.
And the higher the bα − bβ is, the more inefficient the
allocation can be. While as α becomes more risk

averse, bα − bβ declines to be lower than vα − vβ; the
auction may become efficient.

(b) Consider the auction when efficient. Let
vα − vβ � 0.030, θα � 0.18, ρβ � 0.85, and a� 1; we have
bα − bβ � 0.026. )en, vα − vβ > bα − bβ. Figure 8
shows that bα − bβ is increasing as α becomes
more risk averse and as α becomes less risk averse,
bα − bβ increases to be higher than vα − vβ, and the
auction may become efficient.

3.4. Impact of the Degrees of Risk Aversion on Expected
Revenue. Our following proposition shows that the seller’s
expected revenue increases with each bidder’s risk aversion,
which is the same as that in the standard first-price sealed-
bid auctions (see Riley and Samuelson [6], among others).
)is result for the standard first-price auctions comes di-
rectly from the increase of a bidder’s equilibrium bid in risk
aversion. However, this result in this paper cannot be ob-
tained in the same way. )e reason is as follows.

Under the assumption bα≥ bβ, the seller’s expected
revenue can be derived as (equation (10) of MM)

ER � 􏽚
a+μ

bα− bβ+μ− a
vα − bα( 􏼁F vα − bα + bβ􏼐 􏼑f vα( 􏼁dvα

+ 􏽚
a− bα+bβ+μ

μ− a
vβ − bβ􏼐 􏼑F vβ + bα − bβ􏼐 􏼑f vβ􏼐 􏼑dvβ + 􏽚

a+μ

a− bα+bβ+μ
vβ − bβ􏼐 􏼑f vβ􏼐 􏼑dvβ.

(27)

By simplifying it, we have

ER �
1
4a

2
4
3
a
3

+ 4μa
2

− 2a
2

bα + bβ􏼐 􏼑 + a bα − bβ􏼐 􏼑
2

−
1
6

bα − bβ􏼐 􏼑
3

􏼒 􏼓.

(28)

Proposition 7

(i) In Model I, given that bidder α’s risk aversion level
remains unchanged, the seller’s expected revenue
increases as bidder β becomes more risk averse.

(ii) In Model II, given that bidder β’s risk aversion level
remains unchanged, the seller’s expected revenue
increases as bidder α becomes more risk averse.

By Propositions 3 and 4, for Model I, the optimal bid
markups of both bidders α and β become smaller (i.e., both
bidders bid higher) as bidder β becomes more risk averse
and the risk aversion level of bidder α is fixed, similarly, for
Model II, the optimal strategic markups for both bidders
become smaller (i.e., both bidders bid higher) as bidder α
becomes more risk averse and the risk aversion level of

β becomes more risk averse
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Figure 5: Plot showing that allocative efficiency is affected by the
decrease of the degree of bidder β’s risk aversion.
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Figure 6: Plot showing that allocative efficiency is affected by the
increase of the degree of bidder β’s risk aversion.
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Figure 7: Plot shows that allocative efficiency is affected by the
increase of the degree of bidder α’s risk aversion.
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bidder β is fixed. Intuitively, this implies that the seller’s
expected revenue will become higher. Clearly, this result is
not obvious by (28) (see the proof of this proposition for
details).

Examples 9 and 10 illustrate the magnitude of the
asymmetry effects on the seller’s expected revenue estab-
lished in Proposition 7.

Example 9. Consider Example 3 again. Suppose that bidder
β becomes more risk averse in Proposition 7 (i). Let θβ
becomes θβ+ ε, where ε is a positive real number. )en, the
optimal strategic markups satisfy (21). Obviously, we cannot
derive the closed form of the optimal strategic markups for
both bidders. )en, we calculate it with numerical method.
Substituting the numerical results obtained into (28), the
seller’s expected revenue is

􏽢ER �
1
4a

2
4
3
a
3

+ 4μa
2

− 2a
2 􏽢bα + 􏽢bβ􏼐 􏼑 + a 􏽢bα − 􏽢bβ􏼐 􏼑

2
−
1
6

􏽢bα − 􏽢bβ􏼐 􏼑
3

􏼒 􏼓.

(29)

In addition, in order to satisfy the optimal strategic
markups for both bidders exist in the interval (0, aρα], the
range of parameter ε we set is very small. )erefore, the
nonlinear curve looks nearly linear in the following figure.

Figure 9 depicts the seller’s expected revenue ER for
ε ∈ (0, 0.1), where a � 1, θβ � 0.6 and ρα � 0.8. It shows that
the seller’s expected revenue is increasing with ε, implying
that as bidder β becomes more risk averse, the seller’s
expected revenue increases (i.e., part (i) of Proposition 7
holds).

Example 10. Consider Example 4 again. Suppose that bidder
β becomes more risk averse. Let ρβ become ρβ− δ, where δ is a
positive real number. )en, the optimal strategic markups
satisfy (23). By substituting (23) into (28), we obtain the
seller’s expected revenue (29).

Figure 10 depicts the seller’s expected revenue􏽢ERfor
δ ∈ (0, 0.55), where a� 1, μ� 5, ρα � 0.9, and ρβ � 0.6. It shows
that the seller’s expected revenue is increasing with δ, im-
plying that as bidder β becomes more risk averse, the seller’s
expected revenue increases (i.e., part (i) of Proposition 7
holds).

Example 11. Consider Example 5 again. Suppose that bidder
α becomes more risk averse in Proposition 7 (ii). Let θα
become θα+ ζ, where ζ is a positive real number, and the
larger ζ is, bidder α becomes more risk averse. )en, the
optimal strategic markups satisfy (24). We cannot derive the
closed form of the optimal strategic markups for both
bidders. )en, we calculate it with numerical method.
Substituting the numerical results obtained into (28), we
obtain the seller’s expected revenue

ER �
1
4a

2
4
3
a
3

+ 4μa
2

− 2a
2

bα + bβ􏼐 􏼑 + a bα − bβ􏼐 􏼑
2

−
1
6

bα − bβ􏼐 􏼑
3

􏼒 􏼓.

(30)

Figure 11 depicts the seller’s expected revenue ER for
ζ ∈ (0, 0.1), where a� 1, μ� 5, θα � 0.18, and ρβ � 0.85. It is
clear that ER increases with ζ. It shows that the seller’s
expected revenue is increasing with ζ, implying that as
bidder α becomes more risk averse, the seller’s expected
revenue increases (i.e., part (ii) of Proposition 7 holds).

Example 12. Consider Example 6 again. Suppose that bidder
α becomes more risk averse. Let ρα become ρα− δ, where δ is a
positive real number. )en, the optimal strategic markups
satisfy (25). By substituting (25) into (28), we obtain the
seller’s expected revenue (30).

Figure 12 depicts the seller’s expected revenue ER for
δ ∈ (0, 0.69), where a� 1, μ� 5, ρα � 0.9, and ρβ � 0.2. It shows
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Figure 8: Plot showing that allocative efficiency is affected by the
decrease of the degree of bidder α’s risk aversion.
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Figure 10: Plot of the seller’s expected revenue increases with the
degree of bidder β’s risk aversion.
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that the seller’s expected revenue is increasing with δ, im-
plying that as bidder α becomes more risk averse, the seller’s
expected revenue increases (i.e., part (ii) of Proposition 7
holds).

4. Conclusion

In this paper, we study the asymmetric first-price sealed-
bid auctions with two bidders where one bidder has a
general concave utility function and the other one has a
CRRA utility function. We first establish the existence
and uniqueness of the optimal strategic markups of both
bidders (then the existence and uniqueness of the
asymmetric equilibrium bidding strategies are proved).
)en, analyze the impact of one bidder’s risk aversion on
both bidders’ optimal markups, allocative efficiency of the
auction, and the seller’s expected revenue. We have
shown that when one bidder becomes more risk averse
and his opponent’s risk aversion level is fixed, (i) both
bidders will reduce their markups; (ii) the change in his
markup is greater than the change in his opponent’s
markup; and (iii) the seller’s expected revenue will in-
crease. In addition, the change of one bidder’s risk
aversion level can also add complexity to the allocative
efficiency.

Appendix

Proof of Proposition 1.
Part (i) )e first-order condition of bidder α’s expected

utility maximization problem (6) is

bα � −
ραP bα, bβ􏼐 􏼑

P1′ bα, bβ􏼐 􏼑
. (A.1)

Substituting (8) into (A.1) and simplifying, the authors
obtain (14). )e first-order condition of bidder β’s expected
utility maximization problem (7) is

cβ bβ􏼐 􏼑 �
uβ bβ􏼐 􏼑

uβ′ bβ􏼐 􏼑
� −

Q bα, bβ􏼐 􏼑

Q2′ bα, bβ􏼐 􏼑
. (A.2)

Substituting (9) into (A.2) and simplifying, the authors
obtain

cβ bβ􏼐 􏼑 �
4a

2
+ 4a bα − bβ􏼐 􏼑 − bα − bβ􏼐 􏼑

2

2 2a + bβ − bα􏼐 􏼑
. (A.3)

By substituting (14) into (A.3) and simplifying, the
authors obtain (15). (ii) Differentiating (16) with respect to x,
the authors obtain
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Figure 11: Plot of the seller’s expected revenue ER increases with the degree of bidder α’s risk aversion.
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G′(x) �
− 2a

2 ρα + 2( 􏼁 − (x + 2a)
2

(x + 2a)
2 ρα + 2( 􏼁

< 0. (A.4)

Define F (x)� cβ (x) − G (x) on [0, ∞). )en, F (0)� cβ
(0) − G(0)� − G(0)< 0 since G(0) � a((ρα + 2)2− 2)/ρα +

2> 0. )e concavity of uβ implies that cβ (x)≥ x. )us,

F(x)≥x − G(x) � H(x), (A.5)

where H(x) � x − ((2a2(2 + ρα)/ x + 2a) − (x + 2a/2+ ρα)).
Clearly, H’ (x)> 0 for x ∈ [0, ∞). Solving H (x)> 0, or
equivalently, (3 + ρα) x2 + a (8 + 2ρα) x − a2 (4 + 2ρ2α + 8ρα)
> 0, we have x> x1, where H (x1)� 0,

x1 �
a

2 3 + ρα( 􏼁
− 8 + 2ρα( 􏼁 +

������������������������������

8 + 2ρα( 􏼁
2

+ 4 3 + ρα( 􏼁 4 + 2ρ2α + 8ρα􏼐 􏼑

􏽱

􏼒 􏼓,

�
a

3 + ρα( 􏼁
− 4 + ρα( 􏼁 +

����������������������������

4 + ρα( 􏼁
2

+ 3 + ρα( 􏼁 4 + 2ρ2α + 8ρα􏼐 􏼑

􏽱

􏼒 􏼓

>
a

3 + ρα( 􏼁
− 4 + ρα( 􏼁 +

�������������������������������������

4 + ρα( 􏼁
2

+ ρ2α 3 + ρα( 􏼁
2

+ 2ρα 3 + ρα( 􏼁 4 + ρα( 􏼁

􏽱

􏼒 􏼓

�
a

3 + ρα( 􏼁
− 4 + ρα( 􏼁 +

������������������

4 + ρα + ρα 3 + ρα( 􏼁( 􏼁
2

􏽱

􏼒 􏼓

�
a

3 + ρα( 􏼁
ρα 3 + ρα( 􏼁( 􏼁

� aρα.

(A.6)

Let x2> x1; then, H (x2)>H (x1)� 0 since H (x) is in-
creasing. )us, using (A.4), the authors have F (x2)> 0. By
the intermediate value theorem, there is a b∗β ∈ (0, x2) such
that F(b∗β)� 0. Combining the assumption of bα≥ bβ with
(14), the authors have bβ≤ aρα. Since x2> x1> aρα, there
exists bidder β’s optimal markup with b∗β ∈ (0, aρα]. It follows
that bidder α’s optimal markup b∗α also exists because of (14).
Since cβ′ (x)> 0 and G′ (x)< 0 for x≥ 0, F′ (x)> 0 for x≥ 0.
)us, b∗β is unique. It follows from (14) that b∗α is also unique.

Furthermore, the authors have 0< b∗α ≤ ρα (2a+ aρα)/
(2 + ρα)� aρα by (14). )e authors need to verify b∗α ≥ b∗β . In
fact, using (14) and aρα≥ b∗β , the authors have
b∗α ≥ (2b∗β + b∗βρα)/(2 + ρα)� b∗β .

Part (iii) Define F (a, ρα; bβ)� cβ (bβ) − G (bβ). )en, by
(15) and part (ii) of Proposition 1, the optimal markup b∗β
over (0, aρα] satisfies F (a, ρα; bβ)� 0. Since ci

′ (x)> 0 and G′
(x)< 0 forx≥ 0, Fbβ

′ (a, ρα; bβ) � cα′ (bβ) − G′(bβ)> 0. Since
bβ ∈ (0, aρα], the authors have

zF a, ρα; bβ􏼐 􏼑

za
�

− 4a ρα + 2( 􏼁
2

bβ + 2a􏼐 􏼑 + 4a
2 ρα + 2( 􏼁 + 2 bβ + 2a􏼐 􏼑

2

bβ + 2a􏼐 􏼑
2
ρα + 2( 􏼁

,

�
− 4a ρα + 2( 􏼁

2
bβ − 4a

2 ρα + 2( 􏼁 + 2 bβ + 2a􏼐 􏼑
2

bβ + 2a􏼐 􏼑
2
ρα + 2( 􏼁

�
− 4a ρα + 2( 􏼁

2
bβ + 2b

2
β − 4a

2ρα + 8abβ

bβ + 2a􏼐 􏼑
2
ρα + 2( 􏼁

<
− 4a ρα + 2( 􏼁

2
+ 8a􏼐 􏼑bβ + 2 aρα( 􏼁

2
− 4a

2ρα
bβ + 2a􏼐 􏼑

2
ρα + 2( 􏼁

�
− 4a ρα + 2( 􏼁

2
+ 8a􏼐 􏼑bβ + 4a

2 ρ2α − 1􏼐 􏼑

bβ + 2a􏼐 􏼑
2
ρα + 2( 􏼁

< 0.

(A.7)
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)us,

zbβ a, ρα( 􏼁

za
� −

zF a, ρα; bβ􏼐 􏼑/za􏼐 􏼑

zF a, ρα; bβ􏼐 􏼑/zbβ
> 0. (A.8)

)en, bβ is increasing with a. It follows by (14) that bα is
also increasing with a. □

Proof of Proposition 2.

(i) )e first-order condition of bidder β’s expected utility
maximization problem (11) is

bβ � −
ρβQ bα, bβ􏼐 􏼑

Q2′ bα, bβ􏼐 􏼑
. (A.9)

Similarly, the first-order condition of bidder α’s expected
utility maximization problem (10) is

cα bα( 􏼁 �
uα bα( 􏼁

uα′ bα( 􏼁
� −

P bα, bβ􏼐 􏼑

P1′ bα, bβ􏼐 􏼑
. (A.10)

Substituting (8) into (A.10) and simplifying, the authors
obtain

cα bα( 􏼁 �
2a − bα − bβ􏼐 􏼑

2
. (A.11)

Substituting (9) into (A.9) and simplifying, the authors
obtain

bβ � − ρβ
4a

2
+ 4a bα − bβ􏼐 􏼑 − bα − bβ􏼐 􏼑

2
􏼔 􏼕

2 bα − bβ − 2a􏼐 􏼑
. (A.12)

After simplifying, the authors obtain a quadratic
equation with the unknown variable of bβ:

2 + ρβ􏼐 􏼑b
2
β + 2 1 + ρβ􏼐 􏼑 2a − bα( 􏼁bβ + b

2
α − 4a

2
− 4abα􏼐 􏼑ρβ � 0.

(A.13)

Solving it for bβ, the authors obtain two solutions:

b
1
β �

1 + ρβ􏼐 􏼑 bα − 2a( 􏼁 +
��
Δ

√

2 + ρβ􏼐 􏼑
� g bα( 􏼁,

b
2
β �

1 + ρβ􏼐 􏼑 bα − 2a( 􏼁 −
��
Δ

√

2 + ρβ􏼐 􏼑
,

(A.14)

where

Δ � 1 + ρβ􏼐 􏼑
2
2a − bα( 􏼁

2
− 2 + ρβ􏼐 􏼑ρβ b

2
α − 4a

2
− 4abα􏼐 􏼑,

� 2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑> 0.

(A.15)

Furthermore, the concavity of uα implies that cα (bα)≥ bα
for bα≥ 0. )us, using (A.11), the authors have
bα≤ [2a − (bα − bβ)]/2. )is and bα≥ bβ imply that bα≤ a.
Since bα≤ a, b2β < 0. )e authors reject b2β on economic
grounds and get (17) after omitting the subscript 1. By
substituting (17) into (A.11) and simplifying, the authors
obtain (18).

Part (ii) Combining bα≥ bβ with (17) and (19), the au-
thors have

bα − bβ � bα − g bα( 􏼁 �
1

2 + ρβ
bα + 2a 1 + ρβ􏼐 􏼑 −

����������������������

2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

􏼒 􏼓≥ 0. (A.16)

)us,

bα + 2a 1 + ρβ􏼐 􏼑 −

����������������������

2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

≥ 0,

bα + 2a 1 + ρβ􏼐 􏼑≥
����������������������

2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

,

b
2
α + 4a

2 1 + ρβ􏼐 􏼑
2

+ 4a 1 + ρβ􏼐 􏼑bα ≥ 2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑,

bα 2 + ρβ􏼐 􏼑≥ aρβ 2 + ρβ􏼐 􏼑.

(A.17)

)erefore, bα≥ aρβ. )en, using bα≤ a from the proof of
part (i), the authors have bα ∈ [aρβ, a].

Differentiating (20) with respect to x, the authors obtain

L′(x) �
− 1 + bα − 2a/

����������������������

(2a − x)
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

􏼒 􏼓

2 2 + ρβ􏼐 􏼑
< 0.

(A.18)
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Define h(ρβ) � 1 +
�������������
1 + 8(ρ2β + 2ρβ)

􏽱
/2(2 + ρβ) on (0, 1].

)en, L (a)� ah (ρβ) by (20). Since

h′ ρβ􏼐 􏼑 �
30 − 2

�������������
1 + 8 ρ2β + 2ρβ􏼐 􏼑

􏽱
+ 16ρβ

4 2 + ρβ􏼐 􏼑
2

�������������

1 + 8 ρ2β + 2ρβ􏼐 􏼑

􏽱 > 0, (A.19)

L (a)� ah (ρβ)≤ ah (1)� a.
Define Q (x)� cα (x) − L (x) on [0,∞). )en, Q (0)� cα

(0) − L (0)< 0 by L (0)> 0.)e concavity of uα implies that cα
(x)≥ x. )us,

Q(a) � cα(a) − L(a),

≥ a − L(a)

� a −
2a − a +

���������������������
(2a − a)

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑
􏽱

2 2 + ρβ􏼐 􏼑

�
a 3 + 2ρβ −

������������

8ρ2β + 16ρβ + 1
􏽱

􏼒 􏼓

2 2 + ρβ􏼐 􏼑

�

a 3 + 2ρβ􏼐 􏼑
2

−
������������
8ρ2β + 16ρβ + 1

􏽱
􏼒 􏼓

2
􏼠 􏼡

2 2 + ρβ􏼐 􏼑 3 + 2ρβ +

������������

8ρ2β + 16ρβ + 1
􏽱

􏼒 􏼓

�
a 8 − 4ρ2β − 4ρβ􏼐 􏼑

2 2 + ρβ􏼐 􏼑 3 + 2ρβ +

������������

8ρ2β + 16ρβ + 1
􏽱

􏼒 􏼓

> 0.

(A.20)

By the intermediate value theorem, there is a b∗α ∈ (0, a)
such that Q (b∗α)� 0. Since the authors have proved that
bα ∈ [aρβ, a], there exists bidder α’s optimal markup with
b∗α ∈ [aρβ, a). It follows that bidder β’s optimal markup b∗β
also exists because of (17). Since cα′ (x)> 0 and L′ (x)< 0 for
x≥ 0, Q′ (x)> 0 for x≥ 0. )us, b∗α is unique. It follows from
(17) that b∗β is also unique.

Differentiating (19) with respect to x, the authors obtain

g′(x) �
1 + ρβ􏼐 􏼑

���������������������
(2a − x)

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑
􏽱

+(x − 2a)

2 + ρβ􏼐 􏼑
����������������������
(2a − x)

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑
􏽱 > 0,

(A.21)

which implies that g (x) is increasing on [aρβ, a). It follows
from b∗α ∈ [aρβ, a) and (17) that we have

bβ ≥g aρβ􏼐 􏼑 �
1

2 + ρβ
1 + ρβ􏼐 􏼑 aρβ − 2a􏼐 􏼑 −

�����������������������

2a − aρβ􏼐 􏼑
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽲

􏼠 􏼡 � αρβ,

bβ <g(a) �
1

2 + ρβ
1 + ρβ􏼐 􏼑(a − 2a) −

���������������������

(2a − a)
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

􏼒 􏼓

�
a

2 + ρβ
− 1 + ρβ􏼐 􏼑 +

������������

1 + 8ρ2β + 16ρβ
􏽱

􏼒 􏼓

<
a

2 + ρβ
− 1 + ρβ􏼐 􏼑 +

��������

3 + 2ρβ􏼐 􏼑
2

􏽲

􏼠 􏼡 � a.

(A.22)

By (17), we need to verify b∗β ≤ b∗α . In fact, using (17) and
aρβ≤ b∗α , we have

b
∗
β ≤

1
2 + ρβ

1 + ρβ􏼐 􏼑b
∗
α − 2a − 2b

∗
α −

�����������������������

2a − b
∗
α( 􏼁

2
+ 8 b

∗
α( 􏼁

2
+ 16ab

∗
α

􏽱

􏼒 􏼓 � b
∗
α . (A.23)
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Part (iii) Define F (a, ρβ; bα)� cα (bα) − L (bα). )en, by
(18) and part (ii) of Proposition 2, the optimal markup b∗α
over [aρβ, a) satisfies F (a, ρβ; bα)� 0. Since ci

′ (x)> 0 and L′

(x)< 0 forx≥ 0, Fbα
′ (a, ρα; bβ) � cα′ (bα) − L′(bα)> 0. Since

bα ∈ [aρβ, a), the authors have

zF a, ρα; bβ􏼐 􏼑

za
� −

2 + 2 2a − bα( 􏼁 + 8a ρ2β + 2ρβ􏼐 􏼑􏼐 􏼑

����������������������
2a − bα( 􏼁

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑

􏽱

2 2 + ρβ􏼐 􏼑
< 0. (A.24)

)us,

zbα a, ρβ􏼐 􏼑

za
� −

zF a, ρβ; bα􏼐 􏼑/za

zF a, ρβ; bα􏼐 􏼑/zbα
> 0. (A.25)

)en, bα is increasing with a. It follows by (17) that bβ is
also increasing with a. □

Proof of Proposition 3.
Part (i) By Proposition 1 (i), the authors have

􏽢cβ
􏽢bβ􏼐 􏼑 � G 􏽢bβ􏼐 􏼑, and cβ bβ􏼐 􏼑 � G bβ􏼐 􏼑. (A.26)

)e authors prove􏽢bβ < bβ by contradiction. Suppose that
􏽢bβ > bβ or 􏽢bβ � bβ. )e authors first assume 􏽢bβ > bβ.
Since􏽢Rβ(·)>Rβ(·)implies􏽢cβ(·)> cβ(·), the authors have
􏽢cβ(􏽢bβ)> c(􏽢bβ). Since cβ (x) strictly increases in x,
cβ(􏽢bβ)> cβ(bβ). )erefore, the authors have􏽢cβ(􏽢bβ)> c(bβ).
Since G (x) is strictly decreasing in x, G(􏽢bβ)<G(bβ). It
follows from the first equality of (A.26), cβ (bβ)<G (bβ),
which contradicts with the second equality of (A.26). Next,

the authors assume 􏽢bβ � bβ. )en, 􏽢cβ(􏽢bβ) � cβ(bβ)which
contradicts with 􏽢cβ(·)> cβ(·).

By Proposition 1 (i),

􏽢bα �
ρα 2a + 􏽢bβ􏼐 􏼑

2 + ρα
. (A.27)

Using (14), (A.27), and 􏽢bβ < bβ, the authors have􏽢bα < bα.
(ii) Using (14) and (A.27), bα − 􏽢bα � ρα/(2 + ρα)(bβ − 􏽢bβ).
)us, by ρα ∈ (0, 1], the authors have bα − 􏽢bα < bβ − 􏽢bβ. □

Proof of Proposition 4.

(i) By Proposition 2 (i), bβ � g (bα) and cα (bα)� L (bα),
bβ � g(bα), andcα � L(bα). We can provebα < bαin a
similar way by which we prove􏽢bβ < bβin Proposition
3. )us, bβ < bβsince g(x) is increasing on [aρβ, a).

(ii) Let m � (2a − bα)2 + 8a2(ρ2β+ 2ρβ),n � (2a − bα)
2 + 8a2(ρ2β + 2ρβ). )en, using (17), we obtain

bβ − bβ �
1 + ρβ􏼐 􏼑 bα − bα􏼐 􏼑 +

��
m

√
−

�
n

√

2 + ρβ
,

�
1 + ρβ􏼐 􏼑 bα − bα􏼐 􏼑 + 2a − bα( 􏼁

2
− 2a − bα􏼐 􏼑

2
􏼒 􏼓/

��
m

√
+

�
n

√
􏼒 􏼓

2 + ρβ

�
1 + ρβ􏼐 􏼑 bα − bα􏼐 􏼑 + bα − bα􏼐 􏼑 bα + bα − 4a􏼐 􏼑􏼐 􏼑/

��
m

√
+

�
n

√

2 + ρβ

�
1 + ρβ
2 + ρβ

+
bα + bα − 4a

2 + ρβ􏼐 􏼑(
��
m

√
+

�
n

√
)

⎛⎝ ⎞⎠ bα − bα􏼐 􏼑

<
1 + ρβ
2 + ρβ

+
bα + bα − 4a

2 + ρβ􏼐 􏼑 1 + ρβ􏼐 􏼑 4a − bα + bα􏼐 􏼑􏽨 􏽩
⎛⎝ ⎞⎠ bα − bα􏼐 􏼑

<
1 + ρβ
2 + ρβ

−
1

2 + ρβ􏼐 􏼑 1 + ρβ􏼐 􏼑
⎛⎝ ⎞⎠ bα − bα􏼐 􏼑

�
ρβ

1 + ρβ
bα − bα􏼐 􏼑< bα − bα.

(A.28)
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)e second equality holds by using
(

��
m

√
+

�
n

√
)(

��
m

√
−

�
n

√
) � m − n; the first inequality is true

because a< 2a − bα< 2a by bα ∈ [aρβ, a), 8a2> 4a2> (2a − bα)
2, and then

����������������������

2a − bα( 􏼁
2

+ 8a
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

>
���������������������������

2a − bα( 􏼁
2

+ 2a − bα( 􏼁
2 ρ2β + 2ρβ􏼐 􏼑

􏽱

,

� 2a − bα( 􏼁 1 + ρβ􏼐 􏼑.

(A.29)

□
Proof of Proposition 5.

(i) If vβ > vα, we have vβ − bβ> vα − bα, since bα≥ bβ that
is assumed throughout the paper. )us, the auction
is always efficient.

(ii) If vα > vβ. Substituting (14) into vα − bα< (>) vβ − bβ
and rearranging, we have vα − vβ < (>) 2 (aρα − bβ)/
(2 + ρα). Substituting (17) into vα − bα< (>) vβ − bβ
and rearranging, we have vα − vβ < (>) p (bα). )is
completes the proof. □

Proof of Proposition 6.

(i) Since the auction in Model I is inefficient. Equiva-
lently, we have vα − vβ < 2 (aρα − bβ)/(2 + ρα) by
Proposition 5 (ii). When bidder β becomes more
(less) risk averse, we have 2(aρα − bβ)/(2 + ρα)<
(> )2(aρα − 􏽢bβ)/(2 + ρα) since 􏽢bβ < (> )bβ by
Proposition 3 (i). )us, the auction may become
more inefficient (may be efficient or may be not).
Suppose that the auction in Model I is efficient.
Equivalently, we have vα − vβ > 2 (aρα − bβ)/(2 + ρα)
by Proposition 5 (ii). When bidder β becomes more
(less) risk averse, we have 2(aρα − bβ)/(2 + ρα)<
(> )2(aρα − 􏽢bβ)/(2 + ρα) since 􏽢bβ < (> )bβ by
Proposition 3 (i). )us, the auction may be efficient
or may be not (is still efficient).

(ii) Since the auction in Model II is inefficient. Equiv-
alently, we have vα − vβ < p (bα) by Proposition 5 (ii).
Using (26), we have

p′ bα( 􏼁 �
1

2 + ρβ
1 −

2a − bα( 􏼁
����������������������
2a − bα( 􏼁

2
+ 8a

2 ρ2β + 2ρβ􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠> 0.

(A.30)

When bidder α becomes more (less) risk averse, from
Proposition 4 (i), the authors have bα < (> )bα, implying
p(bα)< (> )p(bα). )us, vα − vβ < p (bα)<p(bα) and then
the auction in Model II becomes more inefficient if bidder α
becomes less risk averse. But when the bidder α becomes
more risk averse the auction may be efficient or may be not
since the authors cannot conclude the inequality
vα − vβ >p(bα).

Suppose that the auction in Model II is efficient.
Equivalently, the authors have vα − vβ > p (bα) by Proposition
5 (ii). Since p′ (bα)> 0, when bidder α becomes more (less)
risk averse, from Proposition 4 (i), the authors have
bα < (> )bα, implying p(bα)< (> )p(bα). )us, vα − vβ > p
(bα)>p(bα) and then the auction in Model II is still efficient
if bidder α becomes more risk averse. But when the bidder α
becomes less risk averse, the auction may be efficient or may
be not since the authors cannot conclude the inequality
vα − vβ >p(bα). □

Proof of Proposition 7.
Consider Model I. Substituting (14) into (28), the au-

thors obtain the expected revenue of the seller ER (bβ)�V
(bβ), where

V(x) �
1
4a

2
4
3
a
3

+ 4μa
2

− 2a
2 ρα(2a + x)

2 + ρα
+ x􏼠 􏼡 + a

ρα(2a + x)

2 + ρα
− x􏼠 􏼡

2

−
1
6

ρα(2a + x)

2 + ρα
− x􏼠 􏼡

3
⎛⎝ ⎞⎠. (A.31)

Similarly, when the bidder β becomes more risk averse
and has a utility function 􏽢uβ, the expected revenue of the
seller is 􏽢ER(􏽢bβ) � V(􏽢bβ).

ER bβ􏼐 􏼑 − 􏽢ER
􏽢bβ􏼐 􏼑 �

bβ − 􏽢bβ􏼐 􏼑

12a
2 2 + ρα( 􏼁

3 h 􏽢bβ, bβ􏼐 􏼑, (A.32)

where h(􏽢bβ, bβ) � 4􏽢b
2
β + (4bβ + 12a − 6aρα)􏽢bβ+ 4b2β + (12a −

6aρα)bβ − 16a2 − 56a2ρα − 20a2ρ2α − 4a2ρ3α, 􏽢bβ, bβ ∈ (0, aρα]
and ρα ∈ (0, 1].

)e authors have 4bβ+ 12a − 6aρα> 0, 12a − 6aρα> 0 for
bβ ∈ (0, aρα], ρα ∈ (0, 1]. When􏽢bβ, bβ � aρα, the authors

obtainh(aρα, aρα) � − 16a2 − 32a2ρα − 20a2ρ2α − 4a2ρ3α < 0.
)en, h(􏽢bβ, bβ)< 0. Since bβ > 􏽢bβ. )us, the authors have
ER < 􏽢ER.

Consider Model II. When bidder α becomes more risk
averse, the expected revenue of the seller is

ER �
1
4a

2
4
3
a
3

+ 4μa
2

− 2a
2

bα + bβ􏼐 􏼑 + a bα − bβ􏼐 􏼑
2

−
1
6

bα − bβ􏼐 􏼑
3

􏼒 􏼓.

(A.33)

By (28), the authors obtain
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ER − ER �
1
4a

2 2a
2

bα − bα + bβ − bβ􏼐 􏼑 + a bα − bβ􏼐 􏼑
2

− bα − bβ􏼐 􏼑
2

􏼒 􏼓 +
1
6

bα − bβ􏼐 􏼑
3

−
1
6

bα − bβ􏼐 􏼑
3

􏼒 􏼓. (A.34)

By simplifying, the authors have

ER − ER �
1
4a

2 2a
2

bα − bα + bβ − bβ􏼐 􏼑􏼐 + bα − bβ􏼐 􏼑
2

a −
1
6

bα − bβ􏼐 􏼑􏼒 􏼓 + bα − bβ􏼐 􏼑
2 1
6

bα − bβ􏼐 􏼑 − a􏼒 􏼓,

< bα − bβ􏼐 􏼑
2

a −
1
6

bα − bβ􏼐 􏼑􏼒 􏼓 + bα − bβ􏼐 􏼑
2 1
6

bα − bβ􏼐 􏼑 − a􏼒 􏼓

� a −
1
6

bα − bβ􏼐 􏼑􏼒 􏼓 bα − bβ􏼐 􏼑
2

− bα − bβ􏼐 􏼑
2

􏼒 􏼓

< a −
1
6

bα − bβ􏼐 􏼑􏼒 􏼓 bα − bβ + bα − bβ􏼐 􏼑 bα − bβ − bα + bβ􏼐 􏼑< 0,

(A.35)

where the first inequality follows from bα < bα and bβ < bβ
(Proposition 4) and the second one holds since
bα − bβ < bα − bβ(Proposition 4). □
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