
Research Article
Complexity Analysis of a Modified Predator-Prey System with
Beddington–DeAngelis Functional Response and Allee-Like
Effect on Predator

Shuangte Wang and Hengguo Yu

College of Mathematics and Physics, Wenzhou University, Wenzhou, China

Correspondence should be addressed to Shuangte Wang; wanshuangte@126.com

Received 25 June 2020; Revised 24 December 2020; Accepted 5 January 2021; Published 15 February 2021

Academic Editor: Rodica Luca

Copyright © 2021 Shuangte Wang and Hengguo Yu. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In this paper, complex dynamical behaviors of a predator-prey system with the Beddington–DeAngelis functional response and
the Allee-like effect on predator were studied by qualitative analysis and numerical simulations.+eoretical derivations have given
some sufficient and threshold conditions to guarantee the occurrence of transcritical, saddle-node, pitchfork, and nondegenerate
Hopf bifurcations. Computer simulations have verified the feasibility and effectiveness of the theoretical results. In short, we hope
that these works could provide a theoretical basis for future research of complexity in more predator-prey ecosystems.

1. Introduction

In reference [1], the authors simply considered a predator-
prey system with Holling type II functional response and
Allee-like effect on predator, which is described by the
following nonlinear ordinary differential equations (ODEs):

_x � r1x 1 −
x

K1
  −

qxy

a + x
− m1x − dx

2
, (1a)

_y � r2y 1 −
y

K2
 

y

y + e
+

e1qxy

a + x
− m2y, (1b)

subject to initial conditions x(0), y(0)≥ 0. Here we replace
the Holling type II functional response (qx)/(a + x) with a
functional response (qx)/(a + bx + cy) and denote the
parameter q as q1 for later use, and thus above system (1a)
and system (1b) have a modified version:

_x � r1x 1 −
x

K1
  −

q1xy

a + bx + cy
− m1x − dx

2
, (2a)

_y � r2y 1 −
y

K2
 

y

y + e
+

e1q1xy

a + bx + cy
− m2y, (2b)

where functions x � x(t) and y � y(t) are the densities of
prey and predator at time t, respectively. In terms of biology,
all above positive constants have practical considerations.
Parameters r1 and r2 denote the intrinsic growth rate of the
prey and predator, respectively; K1 and K2 represent the
carrying capacity of the environment; a is the half-saturation
constant; q1 is the search efficiency of predator for prey; m1
and m2 are the mortality rate of the prey and predator
species, respectively; e1 is the biomass conversion and we
denote e1q1 as q2 for convenience; d is the intraspecific
competition coefficient of the prey; e is the Allee effect

Hindawi
Discrete Dynamics in Nature and Society
Volume 2021, Article ID 5618190, 18 pages
https://doi.org/10.1155/2021/5618190

mailto:wanshuangte@126.com
https://orcid.org/0000-0003-0313-3119
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5618190


constant. +e specific growth term r1x(1 − (x/K1)) governs
the increase of prey in the lack of predator, while the specific
growth term r2y(1 − (y/K2)) governs the increase of
predator. +e square term dx2 is an intrinsic decrease term
on prey. +e term y/(y + e) on the specific growth term of
predator with multiply form is called the Allee-like effect
[2, 3] and is different from predator-prey systems in [4–8]
with Allee effect on prey.+e coupled term q1x/(a + bx + cy)

is named Beddington–DeAngelis (B-D) functional response
(named after Beddington and DeAngelis et al.) [9, 10]. It is
similar to the Holling type II functional response incorpo-
rating an extra term cy in denominator, which describes
mutual interference among predators [11, 12].+is functional
response has some of the same qualitative features as the
ratio-dependent form but avoids some of singular behaviors
of ratio-dependent models at low densities [11]. Obviously,
when b � 1 and c � 0, system (2a) and system (2b) reduce to
original system (1a) and system (1b).

When parameters d � m1 � e � 0 (without Allee effect)
and r2 − m2 < 0, system (2a) and system (2b) reduce to
System (2.1) in [13] and the author particularly conducted
stability (local and global) and bifurcation (saddle-node,
transcritical, Hopf–Andronov, and Bogdanov–Takens)
analysis with a detailed mathematical analysis. When
d � m1 � r2 � 0, system (2a) and system (2b) become model
system (3a) and model system (3b) in [14], which was also
independently and originally proposed in [9–11], while in
[14], the authors discussed local and global asymptotic
stability behavior of various equilibria and Hopf bifurcation
occurs when parameter m corresponding to reserved region
crosses some critical values. To mimic the real-world sce-
nario, they solved the inverse problem of estimation of
system parameter m by using the sampled data. System (1.3)
in [15] is similar to above system in [14] except the constant
rate harvesting term. In this reference, the authors showed
that it undergoes several kinds of bifurcations, such as the
saddle-node bifurcation, the subcritical and supercritical
Hopf bifurcation, and Bogdanov–Takens bifurcation by
choosing the death rate of the predator and the harvesting
rate of the prey as bifurcation parameters.

Motivated by previous progress of predator-prey systems
with B-D functional response or Allee-like effect, this paper
mainly concentrates on dynamical analysis of system (2a)
and system (2b). +e rest of this paper is structured as

follows. Preliminaries, such as boundedness, permanence,
and existence of trivial equilibria, are given in Section 2. +e
existence of interior equilibrium is presented in Section 3 by
virtues of the cobweb model and polynomial equations,
respectively. In Section 4, we give stability analysis of
equilibria and nonexistence of limit cycles. In Section 5, local
codimension one bifurcations are analyzed, especially the
Hopf bifurcation incorporating numerical simulations and
Hopf bifurcation curves. In Section 6, we carry out short
conclusions for our system.

2. Preliminaries

In this section, we devote to give some priori foundations.
Before presenting the main results, we denote the first
quadrant as R+2, and its closure is R2

+ � R+2. For biological
consideration, system (2a) and system (2b) are defined on
the domain R2

+ and all the solutions are non-negative with
initial conditions x(0), y(0)≥ 0, i.e., R2

+ is an invariant set
and any orbits starting from it cannot cross the coordinate
axes. Furthermore, all solutions are uniformly bounded. But
now we only need to prove following theorems.

2.1. Boundedness and Permanence

Theorem 1 (uniform boundedness). Suppose that a non-
negative function φ(x, y) and its partial derivatives φx and
φy are continuous in R2

+, then the system

_x � r1x 1 −
x

K1
  − φ(x, y) − m1x − dx

2
, (3a)

_y � r2y 1 −
y

K2
 

y

y + e
+ e1φ(x, y) − m2y, (3b)

subject to x(0), y(0)≥ 0 is uniformly bounded.

+is +eorem 1 holds obviously after introducing an
auxiliary function z � e1x + y [1, 16].+e following theorem
with the help of comparison principle in ODEs is about
permanence of system (2a) and system (2b).

Theorem 2 (permanence). If parameters satisfy

ω1 �
r1 − m1 − q1M2( / a + cM2( ( 

r1/K1(  + d
> 0,

a0 �
q2ω1(1 − λ)

a + bω1(1 − λ)
− m2 > 0,

a1 �
r2

e
−

cq2ω1(1 − λ)

a + bω1(1 − λ) 
2 < 0,

cρ≤ 1, e≥ ρ a + bω1(1 − λ) ,

(4)
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where M2 is a positive constant, λ ∈ (0, 1), and
ρ �

�����������������������������
((r2e(K2 + e))/(K2c

2q2ω1(1 − λ)))3


, then system (2a)
and system (2b) are permanent.

Proof. From above +eorem 1, we have a positive upper
bound ξ1 such that

max limsup
t⟶∞

x, limsup
t⟶∞

y ≤ ξ1. (5)

+en, we obtain M2 > 0 and sufficiently large T1, such
that

_x≥ x r1 − m1 −
q1M2

a + cM2
−

r1

K1
+ d x , ∀t≥T1. (6)

By using the lemmas in [17], we admit liminf t⟶∞x≥ω1.
+at is to say, there exist sufficiently large T2, such that
x≥ω1(1 − λ), ∀t≥T2. +en, we consider equation (2b)
again. It yields _y≥f(y)y; here the function f(y) incor-
porating its Taylor expression is

f(y) �
r2y

y + e
1 −

y

K2
  − m2 +

q2ω1(1 − λ)

a + bω1(1 − λ) + cy

� a0 + a1y +
1
2
f″ ξy y

2
, ξy ∈ [0, y],

(7)

in which the second order derivative of f(y) is

f″(y) � −
2r2e K2 + e( 

K2(y + e)
3 +

2c
2
q2ω1(1 − λ)

a + bω1(1 − λ) + cy 
3. (8)

From the conditions in this theorem, we know that
f″(y)≥ 0, when y≥ 0. +us, f(y)≥ a0 + a1y, ∀y≥ 0. By
using the lemmas in [17] again, the proof is completed. □

2.2. Existence of Trivial Equilibria. In this section, we will
discuss the existence conditions of trivial equilibria of system
(2a) and system (2b). Firstly, from [1], it is obvious that
system (2a) and system (2b) have trivial equilibria:
E0 ≔ (0, 0), E1 ≔ (x1, 0), and E

(k)
2 ≔ (0, yk), k � 1, 2, where

x1 ≔ ((r1 − m1)/((r1/K1) + d)) and

y1,2 ≔
r2 − m2 ±

��
Δ

√

2r2/K2),Δ ≔ r2 − m2( 
2

−
4r2m2e

K2
,

(9)

+e point E1 exists when r1 >m1, while the points E
(k)
2 all

exist if r2 >m2 and Δ> 0. If r2 >m2 but Δ � 0, then the two
equilibria E

(1)
2 and E

(2)
2 collide with each other and we

denote this equilibrium as E2 � (0, y2).

3. Existence of Interior Equilibrium

Here and below, we denote the interior equilibrium E∗ of
system (2a) and system (2b) as (x∗, y∗) or (s1, s2). +is
equilibrium must satisfy the following coupled algebraic
equations:

r1 1 −
x

K1
  −

q1y

a + bx + cy
− m1 − dx � 0, (10a)

r2 1 −
y

K2
 

y

y + e
+

q2y

a + bx + cy
− m2 � 0. (10b)

From equation (10a), we have (1)
y⟶ (((r1 − m1)a)/(q1 − (r1 − m1)c)) or ∞ (if
q1 � (r1 − m1)c) when x⟶ 0; (2) x⟶ x1 when y⟶ 0.
Bearing equation (10b) in mind, we have (1) y⟶ yk (if yk

exists) when x⟶ 0; (2) x⟶ ((am2)/(q2 − m2b)) or∞ (if
q2 � m2b). +e implicit derivative y′(x) from equation (10b) is

y′(x) �
q2K2(a + cy)(y + e)

2

r2 y
2

+ 2ey − K2e (a + bx + cy)
2

+ q2cK2x(y + e)
2,

(11)

and we denote the positive root of a quadratic equation y2 +

2ey − K2e � 0 as ys1
� − e +

�������
e2 + K2e


for later use.

3.1. Cobweb Model. Based on above approximate analysis
and the cobweb model, some cases about the existence of the
interior equilibrium E∗ will be illustrated when isoclines
from equations (10a) and (10b) all fall in R2

+.

Case 1. If parameters satisfy

r1 − m1( a

q1 − c r1 − m1( 
>yk >ys1

, x1 > 0, (12)

then an interior equilibrium exists. Here, we take r1 � 1,
r2 � 1, K1 � 20, K2 � 8, q1 � 0.12, q2 � 0.06, a � 4,
m1 � 0.3,m2 � 0.5, e � 0.3, b � 1, c � 0.1, and d � 5; the
first equilibrium is E3 ≈ (0.119085, 3.688431) and the
second equilibrium is E∗ ≈ (0.136769, 0.323748).
Case 2. If parameters satisfy

q1 � c r1 − m1( , yk >ys1
, x1 > 0, (13)

then an interior equilibrium exists. Here, we take r1 � 1,
r2 � 1, K1 � 20, K2 � 8, q2 � 0.6, a � 4, m1 � 0.3,
m2 � 0.5, e � 0.3, b � 1, c � 0.1, and d � 5; the first
interior equilibrium is E4 ≈ (0.126835, 3.83244), and the
second equilibrium is E7 ≈ (0.137621, 0.298566).
Case 3. If parameters satisfy

0< x1 <
am2

q2 − m2b
,

0<yk <min ys1
,

r1 − m1( a

q1 − c r1 − m1( 
 ,

(14)

then an interior equilibrium exists. Here, we take
r1 � 1, r2 � 1.5, K1 � 20, K2 � 50, q1 � 5, q2 � 1.1,
a � 4, b � 1, c � 0.1, m1 � 0.1, m2 � 0.5, e � 1, and
d � 3.565; an interior equilibrium is
E5 ≈ (0.0916118, 0.470837).
Case 4. If parameters satisfy
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0<x1,

q2 � m2b,

0<yk <min ys1
,

r1 − m1( a

q1 − c r1 − m1( 
 ,

(15)

then an interior equilibrium exists. Here, we take
r1 � 1, r2 � 1, K1 � 20, K2 � 8, q1 � 0.12, a � 4,
m1 � 0.3, m2 � 0.5, e � 0.3, b � 1, c � 0.1, and d � 5; an
interior equilibrium is E6 ≈ (0.136885, 0.303164).
Notice that another interior equilibrium
E∗ ≈ (0.118552, 3.79777) verifies Case 1.
Case 5. If parameters satisfy

0<x1 <
am2

q2 − m2b
,

0<yk <ys1
,

q1 � c r1 − m1( ,

(16)

then an interior equilibrium exists (see the second
equilibrium E7 in Case 2).
Case 6. If yk does not exist and parameters satisfy

0<
am2

q2 − m2b
< x1,

q1 > c r1 − m1( ,

(17)

then an interior equilibrium exists. Here, we take
r1 � 1, r2 � 1.5, K1 � 10, K2 � 2, q1 � 5, q2 � 1.1,
a � 4, b � 1, c � 0.1, m1 � 0.1, m2 � 0.5, e � 1, and
d � 0.05389805885 ≈ d

[H]
8 ; an interior equilibrium is

E8 ≈ (0.399541, 0.750397).
Case 7. If yk does not exist and parameters satisfy

0<
am2

q2 − m2b
<x1, q1 � c r1 − m1( , (18)

then an interior equilibrium exists. Here, we take
r1 � 1, r2 � 1.5, K1 � 10, K2 � 2, q2 � 1.1, a � 4, b � 1,
c � 0.1, m1 � 0.1, m2 � 0.5, e � 1, and d � 0.11; an
interior equilibrium is E9 ≈ (4.178700, 2.09452).

3.2. Polynomial Equations of x∗ and y∗. From equation
(10a), an expression of y is

y �
x1 − x(  r1/K1(  + d( (a + bx)

q1 − c r1 − m1(  + c r1/K1) + d( x.(
(19)

Substituting it into the equation (10b), a quintic algebraic
equation of x∗ can be derived in the form of
p(x) ≔ 

5
k�0 akxk � 0 (see coefficients ak in Appendix A.1).

+anks to Niels Henrik Abel and Evariste Gallois’s ingenious
works, quintic equations usually have no analytical form so-
lutions. But we can make some special efforts to numerically
derive positive roots for this equation p(x) � 0. For instance, if

p x1(  �
K2eq

3
1K

3
1

K1d + r1
am2 K1d + r1(  + K1 r1 − m1(  bm2 − q2(  > 0,

(20)

where x1 > 0 and a0 < 0, then there is a positive root x∗ such
that x∗ < x1.

Case 1. If parameters satisfy

p x1( > 0,

x1 > 0,

a0 < 0,

q1 ≥ c r1 − m1( ,

(21)

then an interior equilibrium exists. Here, we take
r1 � 1, r2 � 1, K1 � 10, K2 � 8, m1 � 0.3, m2 � 0.5,
d � 0.1, q1 � 0.12, q2 � 0.16, e � 0.3, a � 0.2, b � 0.3,
and c � 0.1; an interior equilibrium is
E10 ≈ (3.491956, 0.016748), and the following lemma is
verified.

Lemma 1. Suppose that f(x) � 
n
k�0 akxk is a polynomial

with real coefficients, an ≠ 0, n> 1. If ana0 < 0, then the
equation f(x) � 0 has a positive root.

Proof

We only consider the special case an > 0, and thus a0 < 0. It
is clear that the polynomial f(x) has a decomposition

f(x) � 
n− 1

k�0

1
n

anx
n− k

+ ak x
k
. (22)

If we take a sufficiently large positive number X such
that X>max0≤k≤n− 1 (n|ak|/an)1/(n− k)

 , then f(X)> 0,
and thus we complete the proof. □

Lemma 2. Suppose that f(x) � 
n
k�0 akxk is a real poly-

nomial, an ≠ 0, n> 1. If there is a positive number x0 > 0 such
that anf(x0)< 0, then the equation f(x) � 0 has a positive
root.

On the other hand, from equation (10b), we obtain an
expression

x �
(a + cy) m2(y + e) − r2y 1 − y/K2( (  

q2 − bm2( (y + e) + br2y 1 − y/K2( ( 
. (23)

And a quintic algebraic equation of y∗ can be written in
the form of q(y) ≔ 

5
k�0 bkyk � 0 (see coefficients bk in

Appendix A.2). Suppose that the denominator and
numerator of expression (23) are all positive for some
y∗ > 0; then, x∗ > 0. Notice that if b5 > 0 and b0 < 0,
there must exist a positive root for the quintic equation
q(y) � 0 (see Lemma 1).
Case 2. If parameters satisfy b0 < 0, m2 ≥ r2, q2 > bm2,
yu1
> 0, and q(yu1

)> 0, where
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yu1
�

q2 − bm2 + br2 +

����������������������������������

q2 − bm2 + br2( 
2

+ 4br2e/K2(  q2 − bm2( 



2br2/K2( 
, (24)

is a root of the quadric equation in the denominator of
(23), then an interior equilibrium exists. Here, we take
r1 � 1, r2 � 0.5, K1 � 10, K2 � 8, m1 � 0.3, m2 � 0.6,
d � 0.1, q1 � 0.8, q2 � 0.6, e � 0.3, a � 0.2, b � 0.2, and
c � 0.1, and an interior equilibrium is
E11 ≈ (0.169319, 0.212419).
Case 3. If parameters satisfy b0 < 0, y2 > 0, q(y2)> 0,
yu1
> 0, and q(yu1

)> 0, then an interior equilibrium
exists. Here, we take r1 � 1, r2 � 1, K1 � 20, K2 � 80,
q1 � 3, q2 � 10, a � 2, b � 1, c � 1, m1 � 0.1, m2 � 0.5,
e � 2, and d � 2.092753894 ≈ d[H]

12 , and an interior
equilibrium is E12 ≈ (0.067460, 0.695847).

Remark 1. Here we rewrite equations (10a) and (10b) as

f(x, y) � r1 1 −
x

K1
  − m1 − dx (a + bx + cy) − q1y � 0,

(25a)

g(x, y) � r2y 1 −
y

K2
 (a + bx + cy) + q2x(y + e)

− m2(a + bx + cy)(y + e) � 0.

(25b)

Furthermore, if we sort them asf(x, y) � a0(x)y+ a1(x),
g(x, y) � b0(x)y3 + b1(x)y2 + b2(x)y + b3(x), the first
eliminant

Ry(f, g) �

a0(x) a1(x) 0 0

0 a0(x) a1(x) 0

0 0 a0(x) a1(x)

b0(x) b1(x) b2(x) b3(x)





, (26)

also yields above quintic equation p(x) � 0. Similarly, if we
sort them as f(x, y) � a0(y)x2 + a1(y)x + a2(y),
g(x, y) � b0(y)x + b1(y), the second eliminant

Rx(f, g) �

a0(y) a1(y) a2(y)

b0(y) b1(y) 0

0 b0(y) b1(y)





, (27)

yields the quintic equation q(y) � 0.

4. Stability Analysis of System (2a) and
System (2b)

In this section, we use the Routh–Hurwitz criterion and
Perron’s theorems to analyze local stability of above equi-
libria in their existence interval, respectively. A theorem
about global asymptotic stability and a theorem about
nonexistence of limit cycles are also considered.

4.1. Local Stability Analysis. +e Jacobian matrix of system
(2a) and system (2b) takes the following form J � (Jij)2×2,
where four components are

J11 � r1 − m1 − 2x
r1

K1
+ d  −

q1(a + cy)y

(a + bx + cy)
2,

J12 � −
q1x(a + bx)

(a + bx + cy)
2,

J21 �
q2y(a + cy)

(a + bx + cy)
2,

J22 �
r2y

K2(y + e)
2 − 2y

2
− 3ey + K2y + 2K2e 

+
q2x(a + bx)

(a + bx + cy)
2 − m2.

(28)

For the trivial equilibrium E0 with r1 ≠m1 and the axial
equilibrium E1 with (q2x1/(bx1 + a))≠m2, we omit their
stability [1]. When r1 � m1, the transformation τ � − m2t

and equations (2a) and (2b) yield _x � (((r1/K1) + d)/m2)x
2

(we still use symbol t), and thus E0 is a saddle node and the
parabolic sector is on the right half plane.

In the case that two axial equilibria E
(k)
2 (k � 1, 2) exist,

the Jacobian matrices are

J E
(k)
2  �

r1 − m1 −
q1yk

a + cyk

0

q2yk

a + cyk

m2 − r2( yk + 2m2e

yk + e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

Since J22(E
(1)
2 )< 0, we have the following: (a) E

(1)
2 is a

saddle point if r1 − m1 > ((q1y1)/(a + cy1)); (b) E
(1)
2 is an

asymptotically stable node if r1 − m1 < ((q1y1)/(a + cy1)).
For the equilibrium E

(2)
2 , it is obvious that J22(E

(2)
2 )> 0, and

we have the following: (a) E
(2)
2 is an unstable node if

r1 − m1 > ((q1y2)/(a + cy2)); (b) E
(2)
2 is a saddle point if

r1 − m1 < ((q1y2)/(a + cy2)); (c) E
(2)
2 is an unstable higher-

order singular point if r1 − m1 � ((q1y2)/(a + cy2)). In the
special case that two axial equilibria E

(k)
2 (k � 1, 2) collide

with each other, the Jacobian matrix is

J E2(  �

r1 − m1 −
q1y2

a + cy2
0

q2y2

a + cy2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

and thus E2 is a higher-order singular point. If
r1 − m1 > ((q1y2)/(a + cy2)), E2 is unstable.
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For the interior equilibrium E∗, its Jacobian matrix is

J E∗(  �

J11 E∗( 
− q1x∗ a + bx∗( 

a + bx∗ + cy∗( 
2

q2y∗ a + cy∗( 

a + bx∗ + cy∗( 
2 J22 E∗( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

where

J11 E∗(  � −
r1

K1
+ d x∗ +

q1bx∗y∗

a + bx∗ + cy∗( 
2,

J22 E∗(  �
r2y∗

K2 y∗ + e( 
2 − y

2
∗ − 2ey∗ + K2e  −

q2cx∗y∗

a + bx∗ + cy∗( 
2.

(32)

Denoting a new discriminant Δ∗ ≔ A2
1 − 4A2 with the

trace A1 ≔ tr J(E∗) and the determinant A2 ≔ det J(E∗), we
have

(a) If A1 < 0 and (a1) A2 > 0,Δ∗ ≥ 0, then E∗ is an as-
ymptotically stable node; (a2) A2 > 0,Δ∗ < 0, then E∗
is an asymptotically stable focus; (a3) A2 < 0, then E∗
is a saddle point.

(b) If A1 � 0 and (b1) A2 > 0, then E∗ is a center or a
focus; (b2) A2 < 0, then E∗ is a saddle point.

(c) If A1 > 0, then E∗ is unstable and (c1) Δ∗ � 0, then
E∗ is a node; (c2) Δ∗ < 0, then E∗ is a focus; (c3)
Δ∗ > 0 and A2 > 0, then E∗ is a node; (c4) Δ∗ > 0 and
A2 < 0, then E∗ is a saddle point.

When A2 � 0 but A1 ≠ 0, E∗ is a stable (unstable) node if
A1 < 0 (A1 > 0) (see+eorem 7.1 in Zhifen Zhang’s book [18]
for more details). It is probable that E∗ has a cusp case of
codimension at least 2 which ensures potential Bogda-
nov–Takens bifurcation when A1 � A2 � 0.

4.2. Global Asymptotic Stability. Combining the stability
conclusions of the point E0 in above section, the positive
definite Lyapunov function V � e1x + y ensures that E0 is
globally asymptotically stable if one of the following con-
ditions holds:

(a) r1 ≤m1, r2 ≤m2;

(b) r1 ≤m1,Δ< 0.
(33)

Furthermore, conditions r1 <m1, r2 + (q2/b) − m2 ≤ 0 and
+eorem 1 deduce global asymptotical stability of E0 pronto. If
r1 >m1, r2 + (q2/b) − m2 ≤ 0, and ((q2x1)/(a+ bx1))− m1 ≤ 0,
equilibria E

(k)
2 , E2, and E∗ do not exist, and E0 is unstable, then

+eorem 1 ensures that E1 is globally asymptotically stable. For
the further consideration of point E∗, the following theorem
explains its global asymptotic stability.

Theorem 3 (global asymptotic stability of E∗ ). If a unique
interior equilibrium E∗ exists and parameters satisfy

r1

K1
+ d>

q1by∗
a a + bx∗ + cy∗( 

, y∗ >K2, (34)

then E∗ is globally asymptotically stable.

Proof. Here we take an unbounded positive definite Lya-
punov function

V � V(x, y) � x − x∗ − x∗ ln
x

x∗
 

+ A y − y∗ − y∗ ln
y

y∗
 ,

(35)

with A � ((q1(a + bx∗))/(q2(a + cy∗))). Introducing new
variables x � x − x∗ and y � y − y∗, computing derivative
along orbits of system (2a) and system (2b), we have

dV

dt
|(2) � −

r1

K1
− d +

q1by∗
(a + bx + cy) a + bx∗ + cy∗( 

 x
2

+ A
r2

(y + e) y∗ + e( 
e −

yy∗ + e y + y∗( 

K2
 

−
q2cx∗

(a + bx + cy) a + bx∗ + cy∗( 
y

2
.

(36)

It is obvious that (dV/dt)|(2) is negative definite. Con-
sequently, the Lyapunov function V satisfies the asymptotic
stability theorem in [19]. +us, we complete the proof.

If conditions ((q1by∗)/(a(a + bx∗ + cy∗)))≤ (r1/K1) +

d and y∗ ≥K2 hold, then A1 < 0, A2 > 0 and E∗ is an as-
ymptotically stable node or focus. Additionally, we could
solve a potential interior equilibrium E∗ with two control
variables λ ∈ ( 0, 1 ] and μ≥ 1 from such conditions, where

x∗ �
− a K1d + r1(  K2cμ + a( λ + q1bμK2K1

abλ K1d + r1( 
, y∗ � μK2,

(37)

and parameters m1 and m2 are constrained by
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m1 �
− a

2
K1d + r1( λ2 + a K1d + r1( a + K2cdμ + br1( K1 + cK2μr1 λ − q1bμK2K1

abλK1
,

m2 �
1

μK2K1q1b
2

K2μ + e( 
· 

3

k�0

akμ
k
, (38)

where coefficients are

a3 � − K1K
2
2b

2
q1r2,

a2 � − acdλ − bq1( q2 − r2b
2
q1 K1 + aλcq2r1K

2
2,

a1 � − a K1d + r1( (ce + a)λ − beK1q1 K2q2,

a0 � − a
2
q2λe K1d + r1( .

(39)

Here we set some values of parameters as r1 � 1.21,
r2 � 1.5, K1 � 2, K2 � 5, a � 1, b � 1.5, c � 1.7, d � 0.3,
e � 0.3, q1 � 1.2, and q2 � 0.21, and the unique globally
asymptotically stable node E∗ ≈ (0.655936, 5.04) with λ �

0.95 and μ � 1.008 is depicted in Figure 1 with characteristic
direction θ � θ2 ≈ 0.101084 which is solved from the
characteristic function

Θ(θ) ≈ 0.076926 cos (θ)
2

− 0.898114 sin(θ)cos(θ)

+ 0.014025

� C
(1)
2 θ − θ2(  + O θ − θ2



2

 ,

(40)

after we make the polar-coordinate-transformation
x � r cos(θ) + x∗, y � r sin(θ) + y∗. +e residual real simple
root of equation Θ(θ) � 0 in interval [0, 2π] is θ1 ≈ 1.555157.
+e power series of above characteristic function Θ(θ) up to
order two at the point θ2 admits indexesC

(1)
2 < 0 andR(θ2)< 0

with same negative sign, i.e., p � 1(odd number) and k � 2,
where function

R(θ) ≈ 0.898114 cos (θ)
2

+ 0.076926 sin(θ)cos(θ)

− 1.438292.
(41)

+us, θ � θ2 actually shows a fact that trajectories enter
the stable node along this direction. □

4.3.Nonexistence of LimitCycles. In this section, we consider
nonexistence of closed orbits and limit cycles of system (2a)
and system (2b). Firstly, taking a diffeomorphism φ: u �

x, v � y, τ � t/( (a + bx + cy)(y + e) ) which preserves the
orientation of time, system (2a) and system (2b) are topo-
logically equivalent to following system:

_x � P(x, y) ≔ r1x 1 −
x

K1
  − m1x − dx

2
 

· (a + bx + cy)(y + e) − q1xy(y + e),

(42a)

_y � Q(x, y) ≔ r2y
2 1 −

y

K2
 (a + bx + cy)

+ q2xy(y + e) − m2y(a + bx + cy)(y + e),

(42b)

since detDφ(u, v, τ) � (v + e)(a + bu + cv)> 0, where
matrix

Dφ(u, v, τ) �

1 0 0

0 1 0

∗ ∗ (v + e)(a + bu + cv)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (43)

Notice that we still denote u, v, and τ as x, y, and t.
Above system is a C∞-qualitatively equivalent polynomial
form of system (2a) and system (2b), and it is more con-
venient to consider limit cycles [4, 5, 20, 21].

Theorem 4 (nonexistence of limit cycles). For system (42a)
and system (42b), if parameters satisfy

m1 + m2 − r1 − r2( b + cde + a d − q2 ≥ 0,

a d + bm1 − br1 ≥ 0,

(ce + a)m2 − ar2 > 0,

c m2 − r2( K2 + ar2 ≥ 0,

(44)

then there are no closed orbits and limit cycles in R+2.

Proof. Here we take a Dulac function B(x, y) � 1/xy and
calculate following partial derivative:

z(BP)

zx
+

z(BQ)

zy
�

1
K1K2xy


1≤ i+j≤ 3

aijx
i
y

j
, (45)

where coefficients

a02 � − 2K1 c m2 − r2( K2 + ar2 ,

a11 � − K2 − r1 − r2 + m1 + m2( b + cde + a d − q2( 

· K1 + r1(ce + a),

a10 � − e a d + bm1 − br1( K1 + ar1 K2,

a01 � − K2 (ce + a)m2 − ar2 K1,

(46)

and other unlisted coefficients are all nonpositive. +us, we
complete the proof.

Here we take over values of parameters from Section 4.2
but m1 � m2 � 2, and system (2a) and system (2b) do not
have meaningful equilibria except a globally asymptotically
stable node E0 (the origin O) with the characteristic di-
rection θ � 0 (the positive x-axis) since the characteristic
equation Θ(θ) � (m1 − m2 − r1)sin(θ)cos(θ), and condi-
tions in+eorem 4 all hold. Hence, there are no closed orbits
and limit cycles in this numerical case.

In addition, system (2a) and system (2b) merely own a
saddle point E0 and a globally asymptotically stable node E1

Discrete Dynamics in Nature and Society 7



when we use parameters from Section 4.2 but set a � 2,
d � 3, m1 � 0.4, and m2 � 1.4. Conditions in +eorem 4 are
also satisfied. □

5. Local Bifurcations of System (2a) and
System (2b)

In this section, we will give sufficient conditions to show the
existence of saddle-node bifurcation, transcritical bifurca-
tion, and Hopf bifurcation of system (2a) and system (2b).
Firstly, we denote this system in the following form:

_x

_y
  � F(x, y), (47)

for simplicity and convenience.

5.1. Saddle-Node Bifurcation. +e two trivial equilibria
E

(k)
2 (k � 1, 2) collide with each other and system (47) has a

unique boundary equilibrium E2 when y> 0, if r2 >m2 and
y1 � y2, or

m2 � m
[SN]
2 ≔ r2 +

2r2e

K2
1 −

������

1 +
K2

e



 . (48)

+en, there is a chance of bifurcation around this higher-
order singular point. Here we choose m2 as a bifurcation

parameter and select eigenvector v �
0
1  corresponding to

the zero eigenvalue for matrix (30). +e eigenvector cor-
responding to the zero eigenvalue for the transpose of matrix

(30) is w �
1

w2
 , where

w2 � −
r1 − m1 − q1y2( / a + cy2( ( 

q2y2( / a + cy2( ( 
. (49)

Suppose r1 − m1 − ((q1y2)/(a + cy2))< 0, then the fol-
lowing transversality conditions hold:

w
T
Fm2

E2, m
[SN]
2  � − w2y2 ≠ 0,

w
T

D
2
F E2, m

[SN]
2 (v, v)  �

2r2w2

K2

������
e

K2 + e



− 1 ≠ 0.

(50)

+us, we have following theorem by using Sotomayor’s
theorem [22, 23].

Theorem 5 (saddle-node bifurcation). Suppose that the
point E2 exists; if r1 − m1 − ((q1y2)/(a + cy2))< 0, then
system (47) undergoes a saddle-node bifurcation around point
E2 with respect to the bifurcation parameter m2.

5.2. Transcritical and Pitchfork Bifurcation. +e equilibrium
E

(1)
2 changes its stability when r1 crosses the threshold

r
[TC]
1 ≔ m1 + ((q1y1)/(a + cy1)); in other words, E

(1)
2 is a

higher-order equilibrium when r1 � r
[TC]
1 . Let J22(E

(1)
2 )< 0.

+us, we choose the parameter r1 as a bifurcation parameter

and an eigenvector v �
1
v2

  corresponding to the zero

eigenvalue for the Jacobian matrix J( E
(1)
2 ) when r1 � r

[TC]
1 ,

where v2 � − ((q2y1)/(J22(E
(1)
2 )(a + cy1)))> 0. +e eigen-

vector corresponding to the zero eigenvalue for the trans-

pose of matrix J( E
(1)
2 ) is w �

1
0 ; then, the transversality

conditions are

w
T
Fr1

( E
(1)
2 , r

[TC]
1 ) � 0,

w
T
DFr1

( E
(1)
2 , r

[TC]
1 )v � 1,

w
T

D
2
F( E

(1)
2 , r

[TC]
1 )( v, v ) �

− 2r
[TC]
1

K1
+

2q1by1

a + cy1( 
2 − 2 d

+
2q1q2ay1

a + cy1( 
3
J22( E

(1)
2 )

.

(51)

+us, we have the following theorem by using Sotomayor’s
theorem [22, 23].

Theorem 6 (transcritical bifurcation). Suppose that the two
axial equilibria (E(k)

2 (k � 1, 2)) coexist and J22(E
(1)
2 )< 0; if

a + cy1 ≥ bK1 or J22(E
(1)
2 )≥ − ((q2a)/(b(a + cy1))), then

system (47) undergoes a transcritical bifurcation around the
point E

(1)
2 with respect to the bifurcation parameter r1.

For the special case

w
T
D

2
F E

(1)
2 , r

[TC]
1 (v, v) � 0, (52)

there is a chance the system (47) undergoes a pitchfork
bifurcation. We still use the bifurcation parameter r1 and
eigenvectors v and w; then, the fourth transversality con-
dition is

0
2

3

4

5

θ = θ1

θ = θ2

6

7

0.2 0.4 0.6 0.8
x

y

1 1.2 1.4 1.6

Figure 1: Phase diagrams around an unique stable node E∗ with
characteristic direction θ � θ2 (in blue).
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w
T
D

3
F E

(1)
2 , r

[PF]
1 (v, v, v) � −

6q1 bcJ22y1 + a J22b + q2(   c J22b − q2( y1 + abJ22 y1

cy1 + a( 
5
J
2
22

≠ 0, (53)

where J22 � J22( E
(1)
2 ), r

[PF]
1 ≔ m1 + ((q1y1)/(a + cy1)).

+us, we have another theorem by using Sotomayor’s
theorem [22, 23].

Theorem 7 (pitchfork bifurcation). Suppose that the two
axial equilibria (E(k)

2 (k � 1, 2)) coexist and J22(E
(1)
2 )< 0; if

condition (52) and J22(E
(1)
2 )≠ − ((aq2)/(b(cy1 + a))) hold,

then system (47) undergoes a pitchfork bifurcation around the
point E

(1)
2 with respect to the bifurcation parameter r1.

5.3. Hopf Bifurcation. In this section, we consider the Hopf
bifurcation of system (2a) and system (2b). Here the point
E∗ exists and we choose d as bifurcation parameter. Suppose
that λ(d) � α(d) ± iω(d) are a pair of conjugate eigenvalues
of matrix J(E∗), where α(d) � (1/2)A1(d).+e critical value
d[H] satisfies

α d
[H]

  � 0,

α′ d
[H]

 ≠ 0,

A2 d
[H]

 > 0.

(54)

+en, system (47) undergoes a Hopf bifurcation around
the point E∗ with respect to the bifurcation parameter d.

We will calculate the first Lyapunov number σ at the
point E∗, which is used to determine the stability of limit
cycles and Hopf bifurcation direction. +e method and
calculations of the first and second Lyapunov coefficients can
be found in [22, 24, 25]. +erefore, translating the point E∗
to the origin O � (0, 0) by a linear transformation (I):
X � x − x∗, Y � y − y∗, system (47) in power series around
the origin is

_X � f1(X, Y) � 
1≤ i+j≤ 3

aijX
i
Y

j
+ O |X, Y|

4
 ,

_Y � g1(X, Y) � 
1≤ i+j≤ 3

bijX
i
Y

j
+ O |X, Y|

4
 ,

(55)

where coefficients are

a10 � −
r1s1

K1
− ds1 +

q1bs1s2

bs1 + cs2 + a( 
2,

a01 � −
q1s1 bs1 + a( 

bs1 + cs2 + a( 
2,

a20 � −
r1

K1
+

q1s2b cs2 + a( 

bs1 + cs2 + a( 
3 − d,

a02 �
q1s1c bs1 + a( 

bs1 + cs2 + a( 
3,

a11 � −
a
2

+ bs1 + cs2( a + 2s1s2bc q1

bs1 + cs2 + a( 
3 ,

a30 � −
q1s2b

2
cs2 + a( 

bs1 + cs2 + a( 
4,

a03 � −
q1s1c

2
bs1 + a( 

bs1 + cs2 + a( 
4,

a21 �
b s1 2cs2 + a( b − c

2
s
2
2 + a

2
 q1

bs1 + cs2 + a( 
4 ,

a12 �
c s2 2bs1 + a( c − b

2
s
2
1 + a

2
 q1

bs1 + cs2 + a( 
4 ;

b10 �
q2s2 cs2 + a( 

bs1 + cs2 + a( 
2,

b01 � −
r2s2 − K2e + 2es2 + s

2
2 

K2 s2 + e( 
2 −

q2cs1s2

bs1 + cs2 + a( 
2,

b20 � −
q2s2b cs2 + a( 

bs1 + cs2 + a( 
3,

b02 �
r2 K2 − 3s2( e

2
− 3s

2
2e − s

3
2 

K2 s2 + e( 
3 −

q2s1c bs1 + a( 

bs1 + cs2 + a( 
3,

b11 �
a
2

+ bs1 + cs2( a + 2s1s2bc q2

bs1 + cs2 + a( 
3 ,
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b30 �
q2s2b

2
cs2 + a( 

bs1 + cs2 + a( 
4,

b03 � −
r2e

2
K2 + e( 

K2 s2 + e( 
4 +

q2s1c
2

bs1 + a( 

bs1 + cs2 + a( 
4,

b21 � −
b s1 2cs2 + a( b − c

2
s
2
2 + a

2
 q2

bs1 + cs2 + a( 
4 ,

b12 � −
c s2 2bs1 + a( c − b

2
s
2
1 + a

2
 q2

bs1 + cs2 + a( 
4 ,

(56)

andO(|X, Y|4) stands for some smooth functions. After that,
by using a transformation (II): u � Y, v � (− Xb10 + Ya10)/β
with β �

�������
A2(E∗)


> 0, the above system becomes a standard

form:

_u � f2(u, v) � − βv + 
2≤ i+j≤ 3

Aiju
i
v

j
+ O |u, v|

4
 ,

_v � g2(u, v) � βu + 
2≤ i+j≤ 3

Biju
i
v

j
+ O |u, v|

4
 ,

(57)

where

A20 �
a
2
10b20 + a10b10b11 + b02b

2
10 

b
2
10

,

A11 �
− 2a10b20 + b10b11( β

b
2
10

,

A02 �
− b20 a01b10 + a

2
10 

b
2
10

,

A30 �
a
3
10b30 + a

2
10b10b21 + a10b

2
10b12 + b03b

3
10

b
3
10

,

A21 �
− 3a

2
10b30 + 2a10b10b21 + b

2
10b12 β

b
3
10

,

A12 �
− 3a10b30 + b10b21(  a01b10 + a

2
10 

b
3
10

,

A03 �
− b30β

3

b
3
10

;

B20 � −
a02b

3
10 − a

3
10b20 + a

2
10a20b10 − a

2
10b10b11 + a10a11b

2
10 − a10b02b

2
10

βb
2
10

,

B11 � −
2a

2
10b20 − 2a10a20b10 + a10b10b11 − a11b

2
10

b
2
10

,

B02 �
a10b20 − a20b10( β

b
2
10

,

B30 � −
a03b

4
10 − a

4
10b30 + a

3
10a30b10 − a

3
10b10b21 + a

2
10a21b

2
10 − a

2
10b

2
10b12 + a10a12b

3
10 − a10b03b

3
10

βb
3
10

,

B21 � −
3a

3
10b30 − 3a

2
10a30b10 + 2a

2
10b10b21 − 2a10a21b

2
10 + a10b

2
10b12 − a12b

3
10

b
3
10

,

B12 �
β 3a

2
10b30 − 3a10a30b10 + a10b10b21 − a21b

2
10 

b
3
10

,

B03 �
a10b30 − a30b10(  a01b10 + a

2
10 

b
3
10

.

(58)
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Let p � q � (1/
�
2

√
)

i

1  be two corresponding eigen-

vectors of a matrix A such that Aq � iβq, A⊤p � − iβp and
<p, q> � 1; the operation <x, y> � x†y (x, y ∈ C) with the
Hermitian transpose (upper symbol) † represents the usual
inner product, and the Jacobian matrix is

A �
0 − β

β 0
 . (59)

We should rewrite the functions in the right hand side of
system (57) in the form of power series

F2(x) �

f2(x)

g2(x)

⎛⎝ ⎞⎠ � Ax +
1
2!

B(x, x) +
1
3!

C(x, x, x) + O ‖x‖
4

 ,

(60)

where the components of linear functions B and C are

Bi(x, y) � 
2

j,k�1

z
2

F2( i(0)

zξjzξk

xjyk,

Ci(x, y, z) � 
2

j,k,l�1

z
3

F2( i(0)

zξjzξkzξl

xjykzl, i � 1, 2,

(61)

while ‖x‖ is the two-dimensional Euclidean norm of x.
Define Tc be the largest subspace invariant by the matrix A

and the generalized eigen subspace corresponding to the pair
of purely imaginary eigenvalues ±iβ, i.e., Tc � span q, q .
+at is to say, for any element z ∈ Tc, there must exist a
linear expansion z � wq + wq. Now we can construct a two-
dimensional parameterized center manifold

H � H(w, w) � wq + wq + 
∞

j+k≥ 2

1
j! · k!

hjkw
j
w

k
, (62)

in which hjk ∈ C2 and its complex conjugate is hjk � hkj.
Combining equations (57) and H(w, w), we arrive at a
complex equation without consideration:

zH

zw
_w +

zH

zw
_w � F2(H). (63)

+e “chart” w for the central manifold H should be
extracted from following differential equation:

_w � iβw +
1
2
G21w|w|

2
+ · · · . (64)

So, substituting it into equation (63) and comparing
coefficients of these wjwk, we recursively derive

h11 � − A
− 1

B(q, q), h20 � (2iβI − A)
− 1

B(q, q), (65)

and an equality from coefficient of the cubic term w|w|2:

(iβI − A)h21 + G21q � B q, h20(  + 2B q, h11(  + C(q, q, q).

(66)

Here letter I represents the unit matrix with rank 2. It is
quite apparent that equality (66) admits a solution:

G21 � <p, B q, h20(  + 2B q, h11(  + C(q, q, q)> . (67)

At last, the first Lyapunov coefficient is calculated as

l1 �
1
2
Re G21( 

�
1
4β

B21 + A12 + 3A30 + 3B03( β + A11 + 2B02( A02

+ A11A20 − 2A20B20 − B11 B02 + B20( .

(68)

+us, the first Lyapunov number σ for the focus of planar
system (57) is given by the formula σ � (6π/β)l1. Since above
expression is much too complicated, we need to present
some numerical simulations and figures around the point E∗
with computer simulations.

Theorem 8 (nondegenerate Hopf bifurcation). Assume that
the equilibrium E∗ exists and parameters satisfy condition
(54) and σ ≠ 0; then, system (47) undergoes a nondegenerate
Hopf bifurcation around this equilibrium as parameter δ � d

passes through the critical value d[H]. He Hopf bifurcation is
supercritical (subcritical), the interior equilibrium E∗ is a
multiple stable (unstable) focus with multiplicity one, and
limit cycles are stable (unstable) if σ < 0 (σ > 0).

Remark 2. +e first Lyapunov coefficient l1 can be defined
by (1/2β)Re(G21) at times. On occasion, there are times
when our system (55) exists some values of parameters such
that σ � 0 or the system may undergoes a degenerate Hopf
bifurcation. Accompanied by a proper transformation, for
planar system (55), the first Lyapunov number is given by
the following formula [22]:

σ1 � −
3π

2a01A
3/2
2

[ a10b10 a
2
11 + a11b02 + a02b11  + a10a01 b

2
11 + a20b11 + a11b20 

+ b
2
10 a11a02 + 2a02b02(  − 2a10b10 b

2
02 − a20a02  − 2a10a01 a

2
20 − b20b02 

− a
2
01 2a20b20 + b11b20(  + a01b10 − 2a

2
10  b11b02 − a11a20(  ] − a

2
10 + a01b10  3 b10b03 − a01a30( 

+ 2a10 a21 + b12(  + b10a12 − a01b21(  ,

(69)
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which is an advanced version of σ or l1.
Finally, for the Hopf bifurcation, we numerically give

following examples to simulate how the parameter d con-
trols dynamical behavior of system (2a) and system (2b).

Example 1. Consider Case 6 in Section 3.1 and +eorem 4
again. Figure 2(a) reveals the existence of this interior equi-
librium E8 in Case 6 by using the cobweb method. To in-
vestigate how the control parameter d affects dynamical
behavior of our system (2a) and system (2b), Figures 2(c) and 3
depict phase diagrams corresponding to values d � 0.0595 and
d � 0.053, respectively. When d � 0.0595, this interior

equilibrium is an asymptotically stable focus since
A1 ≈ − 0.00111352489, A2 ≈ 0.07340334276, and Δ∗ ≈
− 0.2936121311.When d � 0.053, it gets A1 ≈ 0.00017832135,
A2 ≈ 0.07359407961, and Δ∗ ≈ − 0.2943762866, and there
exists a limit cycle (by using the Poincare–Bendixson theorem)
around this unstable focus. Here we notice that

α d1(  − α d2(  ≈ α′ d
[H]
12  d1 − d2(  + o 10− 6

 . (70)

+is implies that the Hopf bifurcation occurs in system
(2a) and system (2b) when d � d

[H]
8 . +e first Lyapunov

coefficient l1 ≈ − 0.122574, and thus the Hopf bifurcation is
supercritical and a limit cycle generated by the critical point
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Figure 2: Figures in Example 1. (a) Existence of interior equilibrium E8 in Case 6: red isocline (10a) and blue isocline (10b). (b) Hopf
bifurcation curve Hp (in red). (c) A stable focus with d � 0.0595.
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is stable. +is interior equilibrium is a multiple stable focus
with multiplicity one.

Besides, for a perturbed system with sufficiently small
parameter vector δ � (δ1, δ2) in a neighbourhood of the
origin O in the parameter plane

_x � r1x 1 −
x

K1
  −

q1xy

a + bx + cy
− m1x − d + δ1( x

2
, (71a)

_y � r2y 1 −
y

K2
 

y

y + e
+

q2xy

a + bx + cy
− m2 + δ2( y, (71b)

and Hopf bifurcation analysis with two bifurcation pa-
rameters d and m2, we let δ ≠ 0 and suppose that
E∗ � (x∗, y∗) is an interior equilibrium of above perturbed
system, where y∗ � y8 + w, |w| is sufficiently small, and

x∗ � −
cy∗ + a(  δ2 + m2 − r2( y∗ + e m2 + δ2(  K2 + r2y

2
∗ 

δ2 + m2 − r2( b − q2 y∗ + e m2 + δ2( b − q2  K2 + br2y
2
∗
.

(72)

Substituting it into A1 and A2, the solutions δ1 � δ1(w)

and δ2 � δ2(w) can be directly solved, which are written as
the form up to third order:

δ1 ≈ − 1.503836w + 24.893383w
2

+ O w
3

 ,

δ2 ≈ 3.309615w − 56.757836w
2

+ O w
3

 ,
(73)

and hence the slope k � limw⟶0((δ2(w))/( δ1(w) )) of
approximation straight line of the Hopf bifurcation curve
Hp (see Figure 2(b)) in a small neighbourhood of the origin
in parameter plane is approximately about − 2.200781. +e
supercritical Hopf bifurcation curve Hp of system (71a) and
system (71b) at the point E8 is numerically defined by

solution (73), i.e., Hp � δ|δt nsatisfiesq(73) , while the
variables δ and w both ensure the existence of E∗ and

A2(w) ≈ 0.073568 + 2.087448w − 47.606989w
2

+ O w
3

 > 0.

(74)

As a matter of fact, we perceive the phenomenon that
+eorem 8 describes the special case once δ lies on the
horizontal line δ2 � 0.

Example 2. Here we set parameters as well as Case 3 in
Section 3.2. Figures 4 and 5 depict phase diagrams
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Figure 3: Figures in Example 1 with d � 0.053. (a) Phase diagrams around an unstable focus. (b) Enlarged phase diagrams: limit cycle.
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Figure 4: A stable focus in Example 2 with d � 2.109.
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corresponding to values d1 � 2.109 and d2 � 2.09, respec-
tively. One should notice that

α d1(  − α d2(  ≈ α′ d
[H]
12  d1 − d2(  + o 10− 6

 . (75)

Similar to above example, system (2a) and system (2b)
undergo a Hopf bifurcation when d passes through d[H]

12 .+e
first Lyapunov coefficient l1 ≈ − 0.002729 is also found to be
negative. +us, the Hopf bifurcation is supercritical and a
limit cycle generated by the critical point is stable. +e
interior equilibrium is also a multiple stable focus with
multiplicity one. Figure 6 is the Hopf bifurcation curve
corresponding to system (69) with slope k ≈ − 0.094044 and

Hp � δ|δ1 ≈ − 40.550983w + 639.229323w
2



+ O w
3

 , δ2 ≈ 3.813575w − 4.617377w
2

+ O w
3

 .

(76)

6. Conclusions

In summary, we firstly considered stability analysis and
bifurcations of system (2a) and system (2b) with B-D
functional response and Allee-like effect, which is a
modified version of a predator-prey system in [1]. +e
polynomial’s method, derived from eliminants Ry(f, g)

and Rx(f, g), can be extended to more complicated
polynomial systems. Some conclusions are the same as
reference [1], such as the uniform boundedness (+eorem
1), the existence of equilibria E∗, the nonexistence
(+eorem 4) of limit cycles, and so on. It is supposed that
some methods and conclusions can be available in original
system (1a) and system (1b), such as pitchfork bifurcation.
Lemmas 1 and 2 are available in more complicated
predator-prey systems. Some critical cases, such as r1 −

m1 � ((q1y1)/(a + cy1)) and A2 � 0, need to be researched
further with the help of topologically equivalent systems
or the “blow-up” method (horizontal and vertical blow-
ups). Other parameters can also be considered as a bi-
furcation parameter δ in Hopf bifurcation, although it is
described by Hopf bifurcation curve Hp, for instance
δ � x∗. Notice that +eorem 2 (permanence) can be ex-
tended to its reaction-diffusive version [26, 27]. Under the
conditions or the discussion of +eorem 3, the Turing
instability of its corresponding reaction-diffusion system
subject to the homogeneous Neumann boundary condi-
tions [28]:

ut − D1uxx � r1u 1 −
u

K1
  −

q1uv

a + bu + cv
− m1u − du

2
,

(77a)

vt − D2vxx � r2v 1 −
v

K2
 

v

v + e
+

q2uv

a + bu + cv
− m2v,

(77b)

z]u � z]v � 0, t≥ 0, x ∈z(Ω), (77c)
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Figure 5: Figures in Example 2 with d � 2.09. (a) Phase diagrams around an unstable focus. (b) Enlarged phase diagrams: limit cycle.
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Figure 6: Hopf bifurcation curve Hp (in red) in Example 2.
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u(0, x) � u0(x)≥ 0 ≢0( ),

v(0, x) � v0(x)≥ 0 ≢0( ),

x ∈ Ω,

(77d)

will not occur, and thus it is available to find potential Hopf
bifurcation points and consider transversality conditions if
we choose u∗ as Hopf bifurcation parameter. Here D1 and
D2 are two positive diffusive constants; Δ is the Laplacian
operator; u � u(t, x) and v � v(t, x) are the densities of prey
and predator, respectively; Ω is an one-dimensional
bounded domain with smooth boundary z(Ω); the symbol
z] is the outer flux, and no flux boundary condition is
imposed; thus, the system is closed [29]; the admissible
initial functions u0(x) and v0(x) are all continuous func-
tions on Ω; to describe an environment surrounded by
dispersal barriers, we take zero flux at z(Ω) [28].+emethod

of calculating the first Lyapunov coefficient l1 in Section 5.3
is a reference for deducing of Hopf bifurcation direction in
reaction-diffusion systems [29, 30].

+ough the dynamical behavior of predator-prey sys-
tems in single species or multispecies has been researched by
many previous literatures, we still need further study in
biomathematics, especially the phytoplankton and zoo-
plankton systems. Meanwhile, how to keep ecosystems in
balance or coexistence states and avoid harmful effect is our
next direction in this area.

Appendix

A. Polynomials p(x) and q(y)

+e polynomial p(x) in Section 3.2 is p(x) � 
5
k�0 akxk,

where coefficients are

a5 � bd
2

K2c
2
dq2 + b

2
q1r2 K

3
1 − 2 − q1r2b

3
d −

3
2
q2bc

2
d
2
K2 r1K

2
1 + b 3K2c

2
dq2 + b

2
q1r2 r

2
1K1 + q2r

3
1c

2
K2b,

a4 � 3
1
3

c − m2 − r2( b − 2q2( bq1 + q2c − cde + a d + 3bm1 − 3br1( ( dK2 + q1r2b
2

a d −
2
3
r1b +

2
3

bm1  

· dK
3
1 − 2 −

3
2

( −
2
3

m2 − r2( b − 2q2( bq1 + q2c − cde + a d + 2bm1 − 2br1(  cdK2 − 3 a d −
1
3
r1b +

1
3

bm1 r2b
2
q1 r1K

2
1

+ 3 −
1
3

m2 − r2( b − 2q2( bq1 + q2c − cde + a d + bm1 − br1(  cK2 + 3aq1r2b
2

 r
2
1K1 + q2r

3
1c

2
K2(− ce + a),

a3 � ( − 2(
1
2

m2 − r2( b − q2( bq
2
1 + c( −

1
2

de bm2 − 3q2( c − m2 − r2( b − 2q2( br1

+ m2 − r2( b − q2( da + m2 − r2( b − 2q2( m1b )q1 +
3
2
q2c

2
r1 − m1(  − cde + a d + bm1 − br1(  )dK2

+ 3
1
3
r
2
1b

2
+ − 2ab d −

2
3
b
2
m1 r1 + a

2
d
2

+ 2ab dm1 +
1
3
b
2
m

2
1 r2bq1 )K

3
1

− 2( (
1
2

m2 − r2( b − q2( bq
2
1 + 2c( −

1
2

de bm2 − 3q2( c −
1
2

m2 − r2( b − 2q2( br1

+ m2 − r2( b − q2( da +
1
2

m2 − r2( b − 2q2( m1b )q1 + 3c
2
q2 r1 − m1( ( − cde + a d −

1
2
r1b

+
1
2

bm1 ) )K2 − 3aq1r2b a d + bm1 − br1(  )r1K
2
1 +( − 2( ( −

1
2

e bm2 − 3q2( c

+ m2 − r2( b − q2( a )q1 +
3
2
q2c r1 − m1( (− ce + a) )cK2 + 3a

2
q1r2b )r

2
1K1,

· a2 � ( ( ( 2 m2b −
3
2
q2 edc + m2 − r2( b − q2( br1 − 2 m2 − r2( b −

1
2
q2 da

− m2 − r2( b − q2( m1b )q
2
1 − c( − e − 2bm2 + 6q2( r1 + am2d + 2m1 bm2 − 3q2( ( dc

+ m2 − r2( b − 2q2( br
2
1 +( − 4 m2 − r2( b − q2( da − 2 m2 − r2( b − 2q2( m1b( r1
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+ d
2

m2 − r2( a
2

+ 4 m2 − r2( b − q2( m1da + m2 − r2( b − 2q2( m
2
1b )q1

+ 3 − de c + a d −
1
3
r1b +

1
3

bm1 c
2
q2 r1 − m1( 

2
)K2 + ar2q1( 3r

2
1b

2
+ − 6ab d − 6b

2
m1 r1

+ a
2
d
2

+ 6ab dm1 + 3b
2
m

2
1 ) )K

3
1 − 2( ( ( − m2b −

3
2
q2 ec + a( m2 − r2( b

−
1
2
q2 ) )q

2
1 + c( − e − bm2 + 3q2( r1 + am2d + m1 bm2 − 3q2( ( c + a( ( − 2m2 + 2r2( b

+ 2q2 )r1 + d m2 − r2( a + 2 m2 − r2( b − q2( m1 ) )q1 −
3
2
q2c

2
r1 − m1( 

2
(− ce + a) )K2

− a
2
q1r2 a d + 3bm1 − 3br1(  )r1K

2
1 + a − c − m2ec + a m2 − r2( ( K2 + a

2
r2 q1r

2
1K1,

a1 � ( ( e bm2 − q2( q
3
1 +( 2e − m2b +

3
2
q2 r1 + am2d + m1 m2b −

3
2
q2  c

− a − 2m2 + 2r2( b + q2( r1 + d m2 − r2( a + 2 m2 − r2( b −
1
2
q2 m1  )q

2
1

+ 2( − −
1
2
m2b +

3
2
q2 r1 + am2d +

1
2
m1 bm2 − 3q2(  ec

+ a − m2 + r2( b + q2( r1 + d m2 − r2( a + m2 − r2( b − q2( m1(  )c r1 − m1( q1

− q2c
2

r1 − m1( 
3
(− ce + a) )K2 − 2a

2
r2 r1 − m1(  a d −

3
2
r1b +

3
2

bm1 q1 )K
3
1

− 2a − m2ec +
1
2

a m2 − r2(  q1 − c − m2ec + a m2 − r2( (  r1 − m1(  K2 + a
2
r2 r1 − m1(  q1r1K

2
1,

a0 � a( ( q1 − c( r1 − m1 ) )( m2eq1 +( − m2ec + a( m2 − r2 ) )( r1 − m1 ) )K2 + a
2
r2 r1− tm1)

2
)q1K

3
1.

(A.1)

+e polynomial q(y) in Section 3.2 is q(y) � 
5
k�0 bkyk,

where coefficients are

b5 � q2c
2
( K1d + r1 )r2K2 + K1b

2
q1r

2
2,

b4 � q2c
2
( K1d + r1 )( m2 − r2 )K

2
2 +( ( c

2
de + 2acd − 2 −

1
2
r1 +

1
2
m1 c + q1 b K1

+ 2
1
2

ce + a cr1 )q2 + 2q1b
2
K1 m2 − r2(  )r2K2,

b3 � ( − r1 + m1( c + q1( K1q
2
2 +( ( 2 m2 −

1
2
r2 c

2
de + 2 m2 − r2( ( acd − ( ( −

1
2
r1

+
1
2
m1 )c + q1 )b ) )K1 + 2 c m2 −

1
2
r2 e + a m2 − r2(  cr1 )q2

+ q1b
2
K1 m2 − r2( 

2
)K

2
2 +( ( ( 2acd − 2 −

1
2
r1 +

1
2
m1 c + q1 b e

+ a d + b r1 − m1( ( a )K1 + ar1(2ce + a) )q2 + 2m2q1b
2
eK1 )r2K2,

b2 � ( − 2r1 − 2m1( c − 2q1( e + a r1 − m1( ( K1q
2
2 +( ( m2c

2
de

2
+ 4 m2 −

1
2
r2 ( acd − ( ( −

1
2
r1
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+
1
2
m1 )c + q1 )b )e + m2 − r2(  a d + b r1 − m1( ( a )K1 +( m2c

2
e
2

+ 4a m2 −
1
2
r2 ce

+ a
2

m2 − r2(  )r1 )q2 + 2m2q1b
2
eK1 m2 − r2(  )K

2
2 + aq2e a d + b r1 − m1( ( K1 + ar1( r2K2,

b1 � 2e( −
1
2
r1 −

1
2
m1 c −

1
2
q1 e + a r1 − m1(  K1q

2
2 +( ( m2( acd − ( ( −

1
2
r1

+
1
2
m1 )c + q1 )b )e + a d + b r1 − m1( ( a m2 −

1
2
r2  )K1 + a m2ec + a m2 −

1
2
r2  r1 )q2

+
1
2
m

2
2q1b

2
eK1 )K

2
2,

b0 � ( − K1( r1 − m1 )q2 + m2( ( a d + b( r1 − m1 ) )K1 + ar1 ) )aq2e
2
K

2
2.

(A.2)
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