
Research Article
Robust Asymptotical Stability and Stabilization of
Fractional-Order Complex-Valued Neural Networks with Delay

Jingjing Zeng, Xujun Yang , Lu Wang, and Xiaofeng Chen

College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

Correspondence should be addressed to Xujun Yang; xujunyangcquc@163.com

Received 15 July 2021; Accepted 21 October 2021; Published 15 November 2021

Academic Editor: Ewa Pawluszewicz

Copyright © 2021 Jingjing Zeng et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.e robust asymptotical stability and stabilization for a class of fractional-order complex-valued neural networks (FCNNs) with
parametric uncertainties and time delay are considered in this paper. It is worth noting that our system combines complex
numbers, uncertain parameters, time delay, and fractional orders, which is universal in practical application. Using the theorem of
homeomorphism, the sufficient condition of the existence and uniqueness of the equilibrium point for the system is obtained.
.en, the sufficient criteria of robust asymptotical stability and stabilization for the addressed models are established, respectively.
Finally, we give two numerical examples to verify the feasibility and effectiveness of the theoretical results.

1. Introduction

In recent decades, fractional-order calculus, which can be
regarded as a generalization of traditional integer-order
calculus, has attracted the interest of a lot of researchers in
various fields of science and engineering. It mainly depends
on the fact that the properties of some actual processes
modeled by fractional differential equations will be more
accurate or more applicative, such as diffusion processes [1],
biological modeling [2], and image processing [3]. Fur-
thermore, when it comes to some actual dynamical systems,
it is much better to describe them by fractional-order models
rather than the integer-order counterpart, which mainly
benefits from the properties of memory and heredity of
fractional derivatives. Among the behaviors of dynamical
systems, stability is extremely vital, and numerous pieces of
literature concerning the stability of fractional-order dy-
namical systems have been widely reported (see [4–8]).

Artificial neural network, as the technical reproduction
of biological neural network in a simplified sense, was first
proposed by McCulloch and Pitts [9] in the 1940s, in which
an algorithm-based computational threshold logic model is
created for the neural network models. With the develop-
ment of electronic technology, the research on neural net-
works has aroused remarkable attention again after a period

of silence and subsequently widely applied in image com-
pression [10], speech [11], and natural language processing
[12]. Furthermore, the dynamical behaviors of neural net-
works have been discussed extensively, such as stability
[13–16], stabilization [17, 18], and synchronization [19, 20].

As known to all, the locality of the integer-order de-
rivative operator may lead to the limitation when describing
the fractional-order neural networks. On the contrary,
fractional-order derivative has the character of nonlocality
which is superior to the integer-order one. Hence, some
processes of dynamic systems involving the historical de-
pendence can be reflected better. In the past decade, some
scholars have incorporated the fractional order into neural
networks, thus opening up the research field of fractional
neural networks, and amounts of significant results about
real-valued fractional-order neural networks have been
investigated (see [21–27]). In [21], authors investigated a
class of neural networks with simplified connectivity
structures (ring or hub structure) which is important in
characterizing the dynamics of networks models and ana-
lyzed the nonlinear dynamics and chaos for the addressed
models. In [23], authors gave the expended second method
of Lyapunov in the fractional-order case and a vital Caputo
fractional-order inequality to construct more efficient
Lyapunov functions, and then the stability and
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synchronization of fractional Hopfield neural networks were
discussed. In [25], a stability theorem about fractional-order
Hopfield neural networks with time delay and a comparison
theorem for a class of fractional-order systems with time
delay were established, and on this basis, the condition for
global asymptotical stability was obtained. In [27], the global
Mittag-Leffler stability and the global synchronization in
finite time of a class of fractional-order neural networks with
discontinuous activation were analyzed.

From the perspective of the number domain, the
complex-valued fractional-order neural networks, as an
extension of the real-valued ones, can figure out more
practical problems, such as the complex signal in neural
networks [28]. In fact, when compared with real-valued
fractional-order neural networks, FCNNs are much more
complicated because of the state vectors, connection
weights, and activation functions of which are all complex
values. Recently, a lot of interesting study reports have been
done (see [29–36]). Actually, in [29–32], the studies of
complex-valued neural networks were carried out by di-
viding complex-valued parameters or variables into two real
values by the definition of complex numbers whereas in [33]
authors extended some lemmas to the complex field and
dealt with the quasi-projective synchronization of fractional-
order complex-valued recurrent neural networks directly in
the complex domain instead of separating complex number.
Ground on the above idea, in [34], authors considered the
finite-time synchronization of the FCNNs by the designed
sign function in the complex field. In [35], authors inves-
tigated not only the quasi-projective synchronization but
also the complete synchronization of the FCNNs added the
time delays. In [36], several sufficient conditions guaran-
teeing the finite-time synchronization of FCNNs were given
by employing the graph-theoretic method under a new
controller.

As a matter of fact, when modeling the actual dynamical
networks, it always fails in acquiring exact values of pa-
rameters of the addressed models. .is is mainly because
some perturbations, named as uncertain parameters, from
the models or the environment, are inevitable. It should be
pointed out that the influences of such uncertain parameters
which may derail the stability or some other properties
should not be overlooked in the investigation of the dy-
namics of nonlinear systems. For the reasons above, a lot of
research achievements on fractional neural networks with
parametric uncertainties have been obtained [37–39]. In
[37], a fractional memristive system with time-varying
feedback weights was established, and some criteria ensuring
the global asymptotical stability for the considered models
were investigated by using Lyapunov techniques. In [38], by
employing the method of the comparison principle, some
sufficient conditions were deduced to ensure the robust
globally asymptotical synchronization of a class of mem-
ristor-based fractional-order complex-valued neural net-
works with multiple time delays. In [39], authors discussed
the robust synchronization of the fractional-order complex-
valued neural networks with mixed time-varying delays and
impulses by applying the approach of adaptive error feed-
back control.

To the best of our knowledge, although there have been
some results on the stability and stabilization analysis of
fractional-order complex-valued neural networks with delay
and parameter uncertainties, most of them were disposed by
separating the complex-valued neural networks into two
real-valued ones, and only a few of which were explored
directly in complex field. Inspired by the aforementioned
discussion, in this paper, we will study the robust asymp-
totical stability and stabilization of fractional-order com-
plex-valued delayed neural networks (FCDNNs). Based on
several established lemmas, the existence, uniqueness, ro-
bust asymptotical stability, and robust asymptotical stabi-
lization of the equilibrium point of the addressed models will
be studied.

1.1. Notations. R and C are the domain of real-valued
number and the domain of complex-valued number, re-
spectively. Cn and Cm×n, respectively, represent spaces
composed of all n-dimensional complex vectors and the set
of all m × n-dimensional complex-valued matrices. For any
x � (x1, x2, . . . , xn)T ∈ C, the norm of x is
‖x‖ � (

n
j�1 xjxj)

(1/2). For any matrix A � (apq)n×n ∈ Cn×n,
AT and A∗ represent the transpose and the conjugate
transpose of matrix A, respectively. λmax(A)(λmin(A))

stands for the maximum (minimum) eigenvalue of A, A≥ 0
(A≤ 0) means the matrix A is Hermitian and positive
semidefinite (negative semidefinite), and A> 0 (A< 0)
means the matrix A is Hermitian and positive definite
(negative definite). In addition, I represents the appropriate
dimension identity matrix.

2. Preliminaries

Definition 1 (see [40]). .e Caputo fractional derivative of
order α for a function z(t) ∈ Cn[[t0, +∞),C] is defined as

C
t0

D
α
t
z(t) �

1
Γ(n − α)


t

t0

(t − s)
n− α− 1

z
(n)

(s)ds, (1)

where α> 0, Γ(α) � 
+∞
0 e− ttα− 1dt, and n is the first integer

greater than α, that is, n − 1< α< n, and in particular, when
0< α< 1, one has

C
t0

D
α

t
z(t) �

1
Γ(1 − α)


t

t0

(t − s)
− α

z′(s)ds. (2)

In this paper, we would use the following property and
lemmas.

Property 1 (see [40]). For any constants u1 and u2, the
linearity of Caputo fractional-order derivative is described
by

C
t0

D
α

t
u1x(t) + u2y(t)(  � u1

C
t0

D
α

t
x(t) + u2

C
t0

D
α

t
y(t). (3)

Lemma 1 (see [33]). Let x(t) ∈ C be a continuous and
analytic function, for any order 0< α< 1 and any time instant
t≥ t0.
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C
t0

D
α
t
x(t)x(t)≤x(t)

C
t0

D
α
t
x(t) + x(t)

C
t0

D
α
t
x(t). (4)

Lemma 2 (see [41]). Let X(t) ∈ Rn. *en, for any order
0< α< 1 and any time instant t≥ t0,

1
2

C
t0

D
α

t
X

T
(t)X(t)≤X

T
(t)

C
t0

D
α

t
X(t). (5)

Lemma 3. For a differentiable vector X(t) ∈ Cn and a
Hermitian positive matrix Q, the following inequality holds:

C
t0

D
α
t
X
∗
(t)QX(t) ≤X

T
(t)Q

TC
t0

D
α
t
X(t)

+ X
∗
(t)Q

C
t0

D
α
t
X(t), t≥ t0.

(6)

Proof. Because Q> 0, there exists an invertible matrix
P ∈ Cn×n, such that Q � P∗P. Let Z(t) � PX(t) �

ZR(t) + iZI(t) ∈ Cn, where ZR(t) and ZI(t) ∈ Rn; then, we
can easily obtain

X
∗
(t)QX(t) � X

∗
(t)P
∗
PX(t) � (PX(t))

∗
PX(t)

� Z
∗
(t)Z(t) � Z

T
R(t)ZR(t) + Z

T
I (t)ZI(t).

(7)

Using Lemma 2, the following inequality holds:
C
t0

D
α
t
X
∗
(t)QX(t) �

C
t0

D
α
t
Z

T
R(t)ZR(t) +

C
t0

D
α
t
Z

T
I (t)ZI(t)

≤ 2 Z
T
R(t)

C
t0

D
α

t
ZR(t) + Z

T
I (t)

C
t0

D
α

t
ZI(t) .

(8)

It is easily found that

Z
T
(t)

C
t0

D
α
t
Z(t) + Z

∗
(t)

C
t0

D
α
t
Z(t) � ZR(t) + iZI(t)( 

TC
t0

D
α
t

ZR(t) + iZI(t)(  + ZR(t) + iZI(t)( 
∗C

t0
D

α
t

ZR(t) + iZI(t)( 

� Z
T
R(t) + iZ

T
I (t) 

C
t0

D
α
t

ZR(t) − iZI(t)(  + Z
T
R(t) − iZ

T
I (t) 

C
t0

D
α
t

ZR(t) + iZI(t)( 

� 2 Z
T
R(t)

C
t0

D
α
t
ZR(t) + Z

T
I (t)

C
t0

D
α
t
ZI(t) .

(9)

Submitting (9) into (8), we obtain

C
t0

D
α

t
X
∗
(t)QX(t)≤ 2 Z

T
R(t)

C
t0

D
α

t
ZR(t) + Z

T
I (t)

C
t0

D
α

t
ZI(t) 

� Z
T
(t)

C
t0

D
α

t
Z(t) + Z

∗
(t)

C
t0

D
α

t
Z(t)

� (PX(t))
TC

t0
D

α

t
(PX(t)) +(PX(t))

∗C
t0

D
α

t
PX(t)

� X
T
(t)P

T
P

C
t0

D
α

t
X(t) + X

∗
(t)P
∗
P

C
t0

D
α

t
X(t)

� X
T
(t)Q

TC
t0

D
α

t
X(t) + X

∗
(t)Q

C
t0

D
α

t
X(t).

(10)

.us, inequality (6) holds. .is ends the proof.
Based on the results in [42], the following lemma can be

easily obtained. □

Lemma 4. Let H ∈ Cn×k andM ∈ Cl×n be constant matrices
and F(t) ∈ Ck×l be a time-varying matrix. If F∗(t)F(t) ≤ I,
then for η> 0, the following inequality holds:

± HF(t)M + M
∗
F
∗
(t)H
∗

( ≤ ηHH
∗

+ η− 1
M
∗
M. (11)

Proof. Note that F∗(t)F(t) ≤ I, and it holds that

(
��
η

√
HF(t))

∗∓
1
��η√ M 

∗

(
��
η

√
HF(t))

∗∓
1
��η√ M  �

��
η

√
HF(t)∓

1
��η√ M
∗

 
��
η

√
F
∗
(t)H
∗∓

1
��η√ M 

� ηHF(t)F
∗
(t)H
∗∓HF(t)M∓M∗F∗(t)H

∗
+
1
η

M
∗
M

≤ ηHH
∗

+
1
η

M
∗
M∓HF(t)M∓M∗F∗(t)H

∗
.

(12)
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Obviously,

(
��
η

√
HF(t))

∗∓
1
��η√ M 

∗

(
��
η

√
HF(t))

∗∓
1
��η√ M ≥ 0.

(13)

Consequently, (11) holds, and the proof is
completed. □

Lemma 5. Suppose that X(t) and Y(t) ∈ Cn are two con-
tinuous and differentiable vector functions, then for any
constant ϵ> 0, the following inequality holds:

± X
∗
(t)Y(t) + Y

∗
(t)X(t)( ≤ ϵX∗(t)X(t) + ϵ− 1

Y
∗
(t)Y(t).

(14)

Lemma 6 (see [43]). F(x) is a homeomorphism on Cn if
F(x) ∈ Cn satisfies the following condition:

(1) F(x) is injective on Cn

(2) ‖F(x)‖⟶∞ as ‖x‖⟶∞

Lemma 7 (see [44]). Let V(x(t)) ∈ C be a continuously
differentiable function of x(t) ∈ Cn and satisfies

C
t0

D
α
t
V(x(t))≤ − aV(x(t)) + 

n

j�1
bjV x t − τj  , 1≤ j≤ n,

V(x(t)) � h(t)≥ 0, t ∈ [− τ, 0],

⎧⎪⎪⎨

⎪⎪⎩
(15)

where 0< α< 1. If a>
�
2

√


n
j�1 bj and bj > 0(j � 1, 2, . . . , n),

then

lim
t⟶+∞

V(t) � 0, (16)

with h(t)≥ 0, τj > 0(j � 1, 2, . . . , n).

3. System Description

In this paper, we consider a class of fractional-order com-
plex-valued neural networks with the following vector form:

C
t0

D
α
t
x(t) � − (D + Δ D(t))x(t) +(A + ΔA(t))f(x(t))

+(B + ΔB(t))f(x(t − τ)) + U,

(17)

where α ∈ (0, 1), t≥ t0. x(t) � (x1(t), x2(t), . . . ,

xn(t))T ∈ Cn; xp(t) (p � 1, 2, . . . , n) is the state variable of
the p-th neuron at time t; D � diag(d1, d2, . . . , dn)

∈ Cn×n > 0 denotes the self-connection weight;
A � (apq)n×n ∈ Cn×n (p � 1, 2, . . . , n, q � 1, 2, . . . , n) and B �

(bpq)n×n ∈ Cn×n (p � 1, 2, . . . , n, q � 1, 2, . . . , n) are the in-
terconnection weight matrix and delayed connection weight
matrix, respectively; f(x(t)) � (f1(x1(t)), f2(x2(t)), . . . ,

fn(xn(t)))T ∈ Cn represents the neuron activation function;
τ > 0 corresponds to the time transimission delay at time t;
U � (u1, u2, . . . , un)T ∈ Cn is the external input vector. In
addition, the initial condition is of the following form:

x(s) � w(s), s ∈ [− τ, 0], (18)

where w(s) is continuous on [− τ, 0].
.e following assumptions hold throughout this paper.

(H1) .e activation function vector of neurons f(t) is
Lipschitz continuous with a Lipschitz constant l> 0 and
x, y ∈ Cn, that is,

‖f(x) − f(y)‖≤ l‖x − y‖. (19)

(H2) Suppose that Mi ∈ Cn×k, Ni ∈ Cl×n are known
constant matrices, Fi(t) ∈ Ck×l(i � 1, 2, 3) are un-
known time-varying matrices, and F∗i (t)Fi(t)

≤ I(i � 1, 2, 3). .en, the uncertain parameters Δ D(t),
ΔA(t), and ΔB(t) are of the following forms:

Δ D(t) � M1F1(t)N1,

ΔA(t) � M2F2(t)N2,

ΔB(t) � M3F3(t)N3.

(20)

4. Existence and Uniqueness of the
Equilibrium Point

Theorem 1. Assume that (H1) and (H2) hold, if there exist a
Hermitian positive matrix Q and positive constants l and ϵ
such that the following condition holds:

Ψ � − D
∗
Q
∗

− Q D + ϵQ(Ω + Θ)Q
∗

+ ϵ− 1
N
∗
1N1 + ϵ− 1

l
2 2 + λmax N

∗
2N2( (

+ λmax N
∗
3N3( I < 0,

(21)

in which Ω � M1M
∗
1 + M2M

∗
2 + M3M

∗
3 and

Θ � AA∗ + BB∗, then system (17) with parametric uncer-
tainties has a unique equilibrium point.

Proof. Suppose the equilibrium point of system (17) be
x � (x1, x2, . . . , xn)T, then

0 � − (D + Δ D(t))x +(A + ΔA(t))f(x)

+(B + ΔB(t))f(x) + U.
(22)
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Define a map F: Cn⟶ Cn in the form as follows:

F(ϑ) � − (D + Δ D(t))ϑ +(A + ΔA(t))f(ϑ)

+(B + ΔB(t))f(ϑ) + U.
(23)

In the following, we will prove that F(ϑ) is a homeo-
morphism which indicates that system (17) has a unique
equilibrium point. .e proving procedure is divided into
two steps. □

Step 1. We prove that F is an injective map on Cn.
Suppose that there exist two different complex-valued

vectors ϑ,φ ∈ Cn such that F(ϑ) � F(φ), then we have

− (D + Δ D(t))(ϑ − φ) +(A + ΔA(t))(f(ϑ) − f(φ))

+(B + ΔB(t))(f(ϑ) − f(φ)) � 0.

(24)

Multiplying both sides of the above equation by
2(ϑ − φ)∗Q, one has

− 2(ϑ − φ)
∗
Q(D + Δ D(t))(ϑ − φ)

+ 2(ϑ − φ)
∗
Q(A + ΔA(t))(f(ϑ) − f(φ))

+ 2(ϑ − φ)
∗
Q(B + ΔB(t))(f(ϑ) − f(φ)) � 0,

(25)

that is,

− 2(ϑ − φ)
∗
Q D(ϑ − φ) − 2(ϑ − φ)

∗
QM1F1(t)N1(ϑ − φ)

+ 2(ϑ − φ)
∗
Q(A + B)(f(ϑ) − f(φ))

+ 2(ϑ − φ)
∗
Q M2F2(t)N2 + M3F3(t)N3( (f(ϑ) − f(φ)) � 0.

(26)

Note that F∗i (t)Fi(t)≤ I, and then it follows from
Lemma 5 and assumption (H1) that

− 2(ϑ − φ)
∗
Q D(ϑ − φ) � − (ϑ − φ)

∗
D
∗
Q
∗

+ Q D( (ϑ − φ), (27)

− 2(ϑ − φ)
∗
QM1F1(t)N1(ϑ − φ)

≤ ϵ(ϑ − φ)
∗
QM1M

∗
1Q
∗
(ϑ − φ) + ϵ− 1

(ϑ − φ)
∗
N
∗
1F
∗
1(t)F1(t)N1(ϑ − φ)

≤ (ϑ − φ)
∗ ϵQM1M

∗
1Q
∗

+ ϵ− 1
N
∗
1N1 (ϑ − φ),

(28)

2(ϑ − φ)
∗
Q(A + B)(f(ϑ) − f(φ))

� 2(ϑ − φ)
∗
QA(f(ϑ) − f(φ)) + 2(ϑ − φ)

∗
QB(f(ϑ) − f(φ))

≤ ϵ(ϑ − φ)
∗
QAA
∗
Q
∗
(ϑ − φ) + ϵ− 1

(f(ϑ) − f(φ))
∗
(f(ϑ) − f(φ))

+ ϵ(ϑ − φ)
∗
QBB
∗
Q
∗
(ϑ − φ) + ϵ− 1

(f(ϑ) − f(φ))
∗
(f(ϑ) − f(φ))

≤ (ϑ − φ)
∗ ϵQAA

∗
Q
∗

+ ϵQBB
∗
Q
∗

( (ϑ − φ) + 2ϵ− 1
l
2
(ϑ − φ)

∗
(ϑ − φ)

� (ϑ − φ)
∗ ϵQAA

∗
Q
∗

+ ϵQBB
∗
Q
∗

+ 2ϵ− 1
l
2
I (ϑ − φ),

(29)

2(ϑ − φ)
∗
Q M2F2(t)N2 + M3F3(t)N3( (f(ϑ) − f(φ))

� 2(ϑ − φ)
∗
QM2F2(t)N2(f(ϑ) − f(φ)) + 2(ϑ − φ)

∗
QM3F3(t)N3(f(ϑ) − f(φ))

≤ ϵ(ϑ − φ)
∗
QM2M

∗
2Q
∗
(ϑ − φ) + ϵ− 1

(f(ϑ) − f(φ))
∗
N
∗
2F
∗
2(t)F2(t)N2(f(ϑ) − f(φ))

+ ϵ(ϑ − φ)
∗
QM3M

∗
3Q
∗
(ϑ − φ) + ϵ− 1

(f(ϑ) − f(φ))
∗
N
∗
3F
∗
3(t)F3(t)N3(f(ϑ) − f(φ))

≤ (ϑ − φ)
∗ ϵQM2M

∗
2Q
∗

+ ϵQM3M
∗
3Q
∗

( (ϑ − φ)

+ ϵ− 1
(f(ϑ) − f(φ))

∗
N
∗
2N2(f(ϑ) − f(φ)) + ϵ− 1

(f(ϑ) − f(φ))
∗
N
∗
3N3(f(ϑ) − f(φ))

≤ (ϑ − φ)
∗ ϵQM2M

∗
2Q
∗

+ ϵQM3M
∗
3Q
∗

( (ϑ − φ)

+ ϵ− 1λmax N
∗
2N2( (f(ϑ) − f(φ))

∗
(f(ϑ) − f(φ)) + ϵ− 1λmax N

∗
3N3( (f(ϑ) − f(φ))

∗
(f(ϑ) − f(φ))

≤ (ϑ − φ)
∗ ϵQM2M

∗
2Q
∗

+ ϵQM3M
∗
3Q
∗

+ ϵ− 1λmax N
∗
2N2( l

2
I + ϵ− 1λmax N

∗
3N3( l

2
I (ϑ − φ).

(30)

.ereupon, submitting (27)–(30) to (26), it yields that

0≤ (ϑ − φ)
∗

− D
∗
Q
∗

− Q D + ϵQ M1M
∗
1 + M2M

∗
2 + M3M

∗
3 + AA

∗
+ BB
∗

( Q
∗



+ ϵ− 1
N
∗
1N1 + ϵ− 1

l
2 2 + λmax N

∗
2N2(  + λmax N

∗
3N3( ( I ](ϑ − φ),

(31)
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that is,

(ϑ − φ)
∗Ψ(ϑ − φ)≥ 0. (32)

However, in consequence of ϑ and φ which are two
different complex-valued vectors and Ψ< 0, we have

(ϑ − φ)
∗Ψ(ϑ − φ)< 0, (33)

which is contradicted with (32). .erefore, ϑ � φ, which
implies that the map F is injective on Cn.

Step 2. . We prove that ‖F(ϑ)‖⟶∞ as ‖ϑ‖⟶∞.
Let
�F(ϑ) � − (D + Δ D(t))ϑ +(A + ΔA(t))(f(ϑ) − f(0))

+(B + ΔB(t))(f(ϑ) − f(0)).

(34)

Multiplying both sides of (34) by 2ϑ∗Q gives

2ϑ∗Q �F(ϑ) � − 2ϑ∗Q(D + Δ D(t))ϑ + 2ϑ∗Q(A + ΔA(t))(f(ϑ) − f(0))

+ 2ϑ∗Q(B + ΔB(t))(f(ϑ) − f(0))

� − 2(ϑ − 0)
∗
Q D(ϑ − 0) − 2(ϑ − 0)

∗
QM1F1(t)N1(ϑ − 0) + 2(ϑ − 0)

∗
Q(A + B)(f(ϑ) − f(0))

+ 2(ϑ − 0)
∗
Q M2F2(t)N2 + M3F3(t)N3( (f(ϑ) − f(0)).

(35)

Making φ � 0 in (27)–(30), respectively, we obtain

− 2(ϑ − 0)
∗
Q D(ϑ − 0) � − ϑ∗ D

∗
Q
∗

+ Q D( ϑ, (36)

− 2(ϑ − 0)
∗
QM1F1(t)N1(ϑ − 0)≤ ϑ∗ ϵQM1M

∗
1Q
∗

+ ϵ− 1
N
∗
1N1 ϑ, (37)

2(ϑ − 0)
∗
Q(A + B)(f(ϑ) − f(0))≤ ϑ∗ ϵQAA

∗
Q
∗

+ ϵQBB
∗
Q
∗

+ 2ϵ− 1
l
2
I ϑ, (38)

2(ϑ − 0)
∗
Q M2F2(t)N2 + M3F3(t)N3( (f(ϑ) − f(0))

≤ ϑ∗ ϵQM2M
∗
2Q
∗

+ ϵQM3M
∗
3Q
∗

+ ϵ− 1λmax N
∗
2N2( l

2
I + ϵ− 1λmax N

∗
3N3( l

2
I ϑ,

(39)

and then submitting (36)–(39) to (34), we get

2ϑ∗Q �F(ϑ)≤ ϑ∗Ψϑ≤ − λmin(− Ψ)ϑ∗ϑ. (40)

By applying the Schwartz inequality, it holds that

λmin(− Ψ)‖ϑ‖
2 ≤ 2‖ϑ‖ · ‖Q‖ · ‖ �F(ϑ)‖, (41)

and when ‖ϑ‖≠ 0, we get

λmin(− Ψ)

2‖Q‖
‖ϑ‖≤ ‖ �F(ϑ)‖. (42)

.us, ‖ �F(ϑ)‖⟶∞ as ‖ϑ‖⟶∞, which implies
‖F(ϑ)‖⟶∞ as ‖ϑ‖⟶∞. .is proof is completed.

5. Robust Asymptotical Stability

We first transform the equilibrium point of (17) to the origin
by the transformation z(t) � x(t) − x, and it yields that

C
t0

D
α
t
z(t) � − (D + Δ D(t))z(t) +(A + ΔA(t))g(z(t))

+(B + ΔB(t))g(z(t − τ)),
(43)

where g(z(t)) � f(z(t) + x) − f(x) and g(z(t − τ))

� f(z(t − τ) + x) − f(x), and the coefficients are the same

as ones of system (17). Next, we will analyze the robust
asymptotical stability of system (43).

Theorem 2. . Under the conditions of *eorem 1, if there
exist a Hermitian positive matrix Q and positive constants l,
η, and ϵ such that the following condition holds:

λmin(Π)

λmax(Q)
>

�
2

√
λmax(Ξ)

λmin(Q)
, (44)

where

Π � D
∗
Q + Q D − ϵl2I − ηQΩQ − ϵ− 1

QΘQ

− η− 1
N
∗
1N1 + λmax N

∗
2N2( l

2
I ,

Ξ � l
2 ϵ + η− 1λmax N

∗
3N3(  I,

(45)

in which Ω � M1M
∗
1 + M2M

∗
2 + M3M

∗
3 and

Θ � AA∗ + BB∗, then the unique equilibrium point of system
(17) is robust asymptotically stable.

Proof. Consider the following Lyapunov function candidate:

V(t) � z
∗
(t)Qz(t). (46)
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By calculating the α-order Caputo derivatives of V(t)

along the trajectories of system (43), we can obtain from
Lemma 3 that

C
t0

D
α
t
V(t)≤ z

T
(t)Q

TC
t0

D
α
t
z(t) + z

∗
(t)Q

C
t0

D
α
t
z(t)

� z
T

(t)Q
T

− D + M1F1(t)N1 z(t) + A + M2F2(t)N2 g(z(t)) + B + M3F3(t)N3 g(z(t − τ)) 

+ z
∗
(t)Q − D + M1F1(t)N1( z(t) + A + M2F2(t)N2( g(z(t)) + B + M3F3(t)N3( g(z(t − τ)) 

� − z
T
(t)Q

T
Dz(t) − z

∗
(t)Q Dz(t) + z

T
(t)Q

T
Ag(z(t)) + z

∗
(t)QAg(z(t))

+ z
T
(t)Q

T
Bg(z(t − τ)) + z

∗
(t)QBg(z(t − τ))

− z
T
(t)Q

T
M1F1(t)N1z(t) − z

∗
(t)QM1F1(t)N1z(t)

+ z
T
(t)Q

T
M2F2(t)N2g(z(t)) + z

∗
(t)QM2F2(t)N2g(z(t))

+ z
T
(t)Q

T
M3F3(t)N3g(z(t − τ)) + z

∗
(t)QM3F3(t)N3g(z(t − τ))

� − z
∗
(t)D
∗
Qz(t) − z

∗
(t)Q Dz(t) + g

∗
(z(t))A

∗
Qz(t) + z

∗
(t)QAg(z(t))

+ g
∗
(z(t − τ))B

∗
Qz(t) + z

∗
(t)QBg(z(t − τ))

− z
∗
(t)N
∗
1F
∗
1(t)M

∗
1Qz(t) − z

∗
(t)QM1F1(t)N1z(t)

+ g
∗
(z(t))N

∗
2F
∗
2(t)M

∗
2Qz(t) + z

∗
(t)QM2F(t)N2g(z(t))

+ g
∗
(z(t − τ))N

∗
3F
∗
3(t)M

∗
3Qz(t) + z

∗
(t)QM3F3(t)N3g(z(t − τ)).

(47)

Based on (H1), utilizing Lemma 4, we obtain that

− z
∗
(t)N
∗
1F
∗
1(t)M

∗
1Qz(t) − z

∗
(t)QM1F1(t)N1z(t)

≤ ηz
∗
(t)QM1M

∗
1Qz(t) + η− 1

z
∗
(t)N
∗
1N1z(t),

(48)

g
∗
(z(t))N

∗
2F
∗
2(t)M

∗
2Qz(t) + z

∗
(t)QM2F2(t)N2g(z(t))

≤ ηz
∗
(t)QM2M

∗
2Qz(t) + η− 1

g
∗
(z(t))N

∗
2N2g(z(t))

≤ ηz
∗
(t)QM2M

∗
2Qz(t) + η− 1λmax N

∗
2N2( g

∗
(z(t))g(z(t))

≤ ηz
∗
(t)QM2M

∗
2Qz(t) + η− 1λmax N

∗
2N2( l

2
z
∗
(t)z(t),

(49)

g
∗
(z(t − τ))N

∗
3F
∗
3(t)M

∗
3Qz(t) + z

∗
(t)QM3F3(t)N3g(z(t − τ))

≤ ηz
∗
(t)QM3M

∗
3Qz(t) + η− 1

g
∗
(z(t − τ))N

∗
3N3g(z(t − τ))

≤ ηz
∗
(t)QM3M

∗
3Qz(t) + η− 1λmax N

∗
3N3( g

∗
(z(t − τ))g(z(t − τ))

≤ ηz
∗
(t)QM3M

∗
3Qz(t) + η− 1λmax N

∗
3N3( l

2
z
∗
(t − τ)z(t − τ).

(50)

Meanwhile, based on Lemma 5 and (H1), we have

g
∗
(z(t))A

∗
Qz(t) + z

∗
(t)QAg(z(t))

≤ ϵg∗(z(t))g(z(t)) + ϵ− 1
z
∗
(t)QAA

∗
Qz(t)

≤ ϵl2z∗(t)z(t) + ϵ− 1
z
∗
(t)QAA

∗
Qz(t),

(51)

g
∗
(z(t − τ))B

∗
Qz(t) + z

∗
(t)QBg(z(t − τ))

≤ ϵg∗(z(t − τ))g(z(t − τ)) + ϵ− 1
z
∗
(t)QBB

∗
Qz(t)

≤ ϵl2z∗(t − τ)z(t − τ) + ϵ− 1
z
∗
(t)QBB

∗
Qz(t).

(52)
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.ereupon, together with (47)–(52), we can get

C
t0

D
α
t
V(t)≤ z

∗
(t) − D

∗
Q − Q D + ϵl2I + ηQ M1M

∗
1 + M2M

∗
2 + M3M

∗
3( Q

+ ϵ− 1
Q AA

∗
+ BB
∗

( Q + η− 1
N
∗
1N1 + λmax N

∗
2N2( l

2
I z(t)

+ z
∗
(t − τ)l

2 ϵ + η− 1λmax N
∗
3N3(  Iz(t − τ)

� − z
∗
(t)Πz(t) + z

∗
(t − τ)Ξz(t − τ).

(53)

Note that λmin(Q)z∗(t)z(t)≤ z∗(t)Qz(t) ≤
λmax(Q)z∗(t)z(t), we can get from (53) that

C
t0

D
α
t
V(t) ≤ − λmin(Π)z

∗
(t)z(t) + λmax(Ξ)z

∗
(t − τ)z(t − τ)

≤ −
λmin(Π)

λmax(Q)
z
∗
(t)Qz(t) +

λmax(Ξ)
λmin(Q)

z
∗
(t − τ)Qz(t − τ)

� −
λmin(Π)

λmax(Q)
V(t) +

λmax(Ξ)
λmin(Q)

V(t − τ).

(54)

.en, we can obtain from (54) and Lemma 7 that
limt⟶+∞V(t) � 0; besides, V(t) � z∗(t)Qz(t) ≥ λmin(Q)

‖z(t)‖, which indicates that z(t)⟶ 0 as t⟶∞. .at is
to say, the origin of system (43) is robust asymptotically
stable, which also implies that the equilibrium point of
system (17) is robust asymptotically stable. .is ends the
proof. □

6. Robust Asymptotical Stabilization

Now, we will stabilize the states of system (17) to the
equilibrium point x, which is equivalent to stabilize the
states of system (43) to the origin. For this purpose, we
design the following controller:

v(t) � − (J + ΔJ)z(t) − (K + ΔK)z(t − τ), (55)

where J and K are positive gain coefficient matrices to be
determined and ΔJ(t) and ΔK(t) are uncertain parameters.
.en, the controlled system can be described as follows:

C
t0

D α
t z(t) � − (D + Δ D(t))z(t) +(A + ΔA(t))g(z(t))

+(B + ΔB(t))(t)g(z(t − τ))

− (J + ΔJ)z(t) − (K + ΔK)z(t − τ).

(56)

In order to proceed further analysis, it is necessary to
give the following assumption:

(H3) Suppose that Mi ∈ Cn×k andNi ∈ Cl×n are known
constant matrices, Fi(t) ∈ Ck×l(i � 4, 5) are unknown

time-varying matrices, and F∗i (t)Fi(t)≤ I(i � 4, 5).
.en, the uncertain parameters ΔJ(t) and ΔK(t) are of
the following forms:

ΔJ(t) � M4F4(t)N4,

ΔK(t) � M5F(t)5N5.
(57)

Theorem 3. Under the conditions of *eorem 1 and (H3), if
there exist a Hermitian positive Q and positive constants l, η,
and ϵ such that the following condition holds:

λmin(Φ)

λmax(Q)
>

�
2

√
λmax(Υ)

λmin(Q)
, (58)

where

Φ � Π + J
∗
Q + QJ − ϵQQ − η− 1

N
∗
4N4

− ηQM4M
∗
4Q − ηQM5M

∗
5Q,

Υ � Ξ + ϵ− 1
K
∗
K + η− 1

N
∗
5N5,

(59)

then system (43) can achieve robust asymptotical stabilization
under the controller (55).

Proof. We still consider the Lyapunov function (46), cal-
culating the derivative of V(t) along the trajectories of
system (56), similar to .eorem 2, and we have
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C
t0

D
α
t
V(t)≤ − z

∗
(t)D
∗
Qz(t) − z

∗
(t)Q Dz(t) + g

∗
(z(t))A

∗
Qz(t) + z

∗
(t)QAg(z(t))

+ g
∗
(z(t − τ))B

∗
Qz(t) + z

∗
(t)QBg(z(t − τ))

− z
∗
(t)N
∗
1F
∗
1(t)M

∗
1Qz(t) − z

∗
(t)QM1F1(t)N1z(t)

+ g
∗
(z(t))N

∗
2F
∗
2(t)M

∗
2Qz(t) + z

∗
(t)QM2F2(t)N2g(z(t))

+ g
∗
(z(t − τ))N

∗
3F
∗
3(t)M

∗
3Qz(t) + z

∗
(t)QM3F3(t)N3g(z(t − τ))

− z
∗
(t)J
∗
Qz(t) − z

∗
(t)QJz(t) − z

∗
(t − τ)K

∗
Qz(t) − z

∗
(t)QKz(t − τ)

− z
∗
(t)N
∗
4F
∗
4(t)M

∗
4Qz(t) − z

∗
(t)QM4F4(t)N4z(t)

− z(t − τ)N
∗
5F
∗
5(t)M

∗
5Qz
∗
(t) − z

∗
(t)QM5F5(t)N5z(t − τ).

(60)

According to Lemmas 4 and 5, we can derive that

− z
∗
(t)N
∗
4F
∗
4(t)M

∗
4Qz(t) − z

∗
(t)QM4F4(t)N4z(t)

≤ ηz
∗
(t)QM4M

∗
4Qz(t) + η− 1

z
∗
(t)N
∗
4N4z(t),

(61)

− z(t − τ)N
∗
5F
∗
5(t)M

∗
5Qz
∗
(t) − z

∗
(t)QM5F5(t)N5z(t − τ)

≤ ηz
∗
(t)QM5M

∗
5Qz(t) + η− 1

z
∗
(t − τ)N

∗
5N5z(t − τ),

(62)

− z
∗
(t − τ)K

∗
Qz(t) − z

∗
(t)QKz(t − τ)

≤ ϵz∗(t)QQz(t) + ϵ− 1
z
∗
(t − τ)K

∗
Kz(t − τ).

(63)

Let Φ � Π + J∗Q + QJ − ϵQQ − η− 1N∗4N4 − ηQM4
M∗4Q − ηQM5M

∗
5Q and Υ � Ξ + ϵ− 1K∗K + η− 1N∗5N5.

.en, together with (48)–(52) and (60)–(63), one gets

C
t0

D
α

t
V(t)≤ − z

∗
(t) Π + J

∗
Q + QJ − ϵQQ − η− 1

N
∗
4N4 − ηQM4M

∗
4Q − ηQM5M

∗
5Q z(t)

+ z
∗
(t − τ) Ξ + ϵ− 1

K
∗
K + η− 1

N
∗
5N5 z(t − τ)

� − z
∗
(t)Φz(t) + z

∗
(t − τ)Υz(t − τ)

≤ −
λmin(Φ)

λmax(Q)
V(t) +

λmax(Υ)
λmin(Q)

V(t − τ).

(64)

In the same way, we can obtain from (58), (64), and
Lemma 7 that limt⟶+∞V(t) � 0; besides,
V(t) � z∗(t)Qz(t) ≥ λmin(Q)‖z(t)‖, which indicates that
z(t)⟶ 0 as t⟶∞. .at is to say, system (43) can
achieve robust asymptotical stabilization under the con-
troller (55). .e proof is completed. □

Remark 1. . In most articles on FCNNs, the method of
dealing with complex-valued systems is separating the real
and imaginary parts and then treating them separately in the
real field to achieve their objects; for instance, see
[19–32, 38, 39]. In [33, 34, 45], authors investigated the
various dynamical behaviors of the FCNNs in algebraic form
without decomposing the complex-valued networks whereas

in this paper we treat the concerned complex-valued models
as an entirety and use several related inequalities with
complex terms to obtain results; besides, our entire process is
in the form of vectors.

7. Numerical Simulations

In this section, two numerical simulation examples are
chosen to demonstrate the effectiveness of the theoretical
results in this paper.

Example 1. Consider the two-dimensional complex-valued
fractional neural networks with time delay and uncertain
parameters described by the following form:
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C
t0

D
α
t
x(t) � − (D + Δ D(t))x(t) +(A + ΔA(t))f(x(t))

+(B + ΔB(t))f(x(t − τ)) + U,

(65)

where α � 0.95, τ � 0.6, x(t) � (x1(t), x2(t))T ∈ C2,

f(x(t)) � (tanh(x1(t)), tanh(x2(t)))T, and

D �
6 + 6i 0

0 6 + 6i
 ,

A �
1.25 − 2i − 0.4 + 0.8i

1 − 0.6i 1.64 − 1.3i
 ,

B �
2 − 0.5i − 1.2 + 2.1i

− 1.8 − 0.2i 0.4i
 ,

U � 0 0 
T

,

(66)

and the uncertain parameters Δ D(t), ΔA(t), and ΔB(t) are
given as

M1 �
1 0

0 1
 ,

F1(t) �
0.06 − i0.05 sin t 0.08 + i0.04 cos t

0.04 + i0.06 cos t − 0.05 − i0.02 sin t
 ,

N1 �
1 0

0 1
 ,

M2 �
1 0

0 1
 ,

F2(t) �
0.04 − i0.08 sin t 0.03 − i0.05 cos t

− 0.02 + i0.05 cos t − 0.08 − i0.06 sin t
 ,

N2 �
1 0

0 1
 ,

M3 �
1 0

0 1
 ,

F3(t) �
0.05 − i0.07 sin t 0.02 − i0.09 cos t

− 0.04 + i0.08 cos t − 0.01 − i0.06 sin t
 ,

N3 �
1 0

0 1
 .

(67)

Apparently, the Lipschitz constants are satisfied with
lj � 1(i � 1, 2). By calculation, it is easy to find that the
conditions of .eorems 1 and 2 are hold. .en, it is deduced
from.eorems 1 and 2 that the unique equilibrium point of
system (65) is robust asymptotically stable. Figures 1 and 2
illustrate the time responses of the states of system (65) with
initial values as follows: x1 � − 4.5 − 3.5i and x2 � 1.5 − 6i.

Example 2. Consider the following two-dimensional com-
plex-valued fractional neural networks with time delay and
uncertain parameters described by the form as follows:

C
t0

D
α
t
x(t) � − (D + Δ D(t))x(t) +(A + ΔA(t))f(x(t))

+(B + ΔB(t))f(x(t − τ)) + U,

(68)

where α � 0.98, τ � 0.5, x(t) � (x1(t), x2(t))T ∈ C2,

f(x(t)) � (tanh(x1(t)), tanh(x2(t)))T, and

D �
6 + 6i 0

0 6 + 6i
 ,

A �
2 + 3i 3 − i

4 − 2i 1 + 2i
 ,

B �
− 1 + 2i 2 + i

3 − 4i − 3 + 2i
 ,

U � 0 0 
T
,

(69)

and uncertain parameters Δ D(t), ΔA(t), and ΔB(t) are
given as

M1 �
1 0

0 1
 ,

F1(t) �
0.02 cos t + i0.02 cos t 0

0 0.02 cos t + i0.02 cos t
 ,

N1 �
1 0

0 1
 ,

M2 �
1 0

0 1
 ,

F2(t) �
0.02 cos t + i0.01 sin t 0.05 cos t + i0.01 sin t

0.01 sin t + i0.02 cos t 0.02 cos t − i0.01 cos t
 ,

N2 �
1 0

0 1
 ,

M3 �
1 0

0 1
 ,

F3(t) �
0.01 sin t + i0.02 sin t 0.02 cos t − i0.05 sin t

0.03 cos t − i0.01 cos t 0.01 sin t + i0.03 sin t
 ,

N3 �
1 0

0 1
 .

(70)

.e controller for stabilization is described as

v(t) � − (J + ΔJ)x(t) − (K + ΔK)x(t − τ), (71)

where the control gain matrices are

J �
12 0

0 12
 ,

K �
9 0

0 9
 ,

(72)
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and the uncertain parameters ΔJ(t) and ΔK(t) are selected
as

M4 �
1 0

0 1
 ,

F4(t) �
0.02 cos t + i0.02 cos t 0

0 0.02 cos t + i0.02 cos t
 ,

N4 �
1 0

0 1
 ,

M5 �
1 0
0 1

 ,

F5(t) �
0.02 cos t + i0.02 cos t 0

0 0.02 cos t + i0.02 cos t
 ,

N5 �
1 0
0 1

 .

(73)
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Figure 1: Real parts of the transient states of system (65).
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Figure 2: Imaginary parts of the transient states of system (65).
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Figure 4: Imaginary parts of the transient states of system (68)
without control.
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Figure 3: Real parts of the transient states of system (68) without
control.
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Apparently, the Lipschitz constants are satisfied with
lj � 1(i � 1, 2). By calculation, it is easy to find that the
conditions of .eorems 1 and 3 hold. .en, it is deduced
from.eorems 1 and 3 that the unique equilibrium point of
system (68) can achieve robust asymptotical stabilization
under controller (71). Figures 3–6 illustrate the time re-
sponses of the states of system (68) with initial values as
follows: x1 � − 2.5 + 2.5i; x2 � − 1.5 − 4i.

8. Conclusions

In this paper, the robust asymptotical stability and stabili-
zation have been investigated for a class of fractional-order
complex-valued neural networks (FCNNs) with parametric

uncertainties and time delay. It should be noted that the
obtained results have been dealt with directly in the complex
domain. By applying the theory of homeomorphism and
some inequality techniques, several sufficient conditions
ensuring the existence and uniqueness, robust stability, and
robust stabilization of the equilibrium point for the con-
cerned network models have been derived. Furthermore,
two numerical examples have been designed to verify the
feasibility and effectiveness of theoretical results.

.e method to prove the stability of the FCNNs in this
paper can be generalized in parallel to complex networks or
other more complex systems. .e distributed delay and
time-varying delay, which are more realistic, can be con-
sidered in our model. In addition, with different control
requirements, various control strategies need to be estab-
lished to improve system performance. .ere have been
many types of stabilization criteria, such as finite-time
stabilization, exponential stabilization, and square stabili-
zation. Among them, finite-time stability has the beneficial
characteristics of fast convergence and robustness to un-
certainty. In future research, we will focus on the issues
above.
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