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-is work studies the nonlinear differential equation that models the Blasius problem (BP) which is of great importance in fluid
dynamics. -e aim is to obtain an approximate analytical expression that adequately describes the phenomenon considered. To
find such approximation, we propose a new method denominated powered homotopy perturbation (PHPM). Unlike HPM
algorithm, the successive integration process generated by PHPM will consider zero the constants of integration in each ap-
proximation, except the last one. In the same way, PHPM will propose an adequate initial trial function provided of some
unknown parameters in such a way that it will not evaluate the initial conditions in the iterations of the process; therefore, this set
of parameters will be employed with the purpose of adjusting in the best accurate way the proposed approximation at the final part
of the process. As a matter of fact, we will note from this analysis that the proposed solution is compact and easy to evaluate and
involves a sum of five exponential functions plus a linear part of two terms, which is ideal for practical applications. With the
purpose to get a better approximation, we find useful to combine PHPM with the power series extender method (PSEM) which
implies to add to the PHPM solution one rational function with parameters to adjust. From this proposal, we find an approximate
solution competitive with others from the literature.

1. Introduction

As it is well known, the fluid motion is divided into two
clearly defined regions; the first one concerns the region near
the object where the friction effect is appreciable and is
known as boundary layer. On the other hand, the second
region is that where these effects can be neglected [1,2]. -e
boundary layer is characterized for being the region where
the fluid velocity parallel to the surface is less 99% of the free
stream velocity. Nevertheless, even in the case of a laminar

flow, the solution of the equations describing the laminar
boundary layer is complicated [1,2].-is work will search for
a solution for the BP, which describes the two-dimensional
steady state viscous flow over a semi-infinite flat plate.
Specifically, the aim is to get an analytical approximate
solution that adequately describes this relevant fluid me-
chanics problem. -e difficulties of these scientific problems
give rise to the proposal of new methods with the end to
obtain solutions to the differential equations that govern
nonlinear problems such as the one proposed here; however,
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the search for such solutions is not an easy task and justifies
all the research efforts carried out on this topic. In effect, an
exact solution to the proposed nonlinear problem can rarely
be obtained [3], and for the same reason, several methods
have been added to the best known classical methods. Next,
we provide a list with some of most employed analytical
methods in accordance with the literature: variational ap-
proaches [4–6], the tanh method [7], exp-function [8,9],
Adomian’s decomposition method [10–15], parameter ex-
pansion [16], the homotopy perturbation method (HPM)
[1, 6, 17–33], the perturbation method [34–36], the modified
Taylor series method [37], the Picardmethod [38], the PSEM
[39–42], the homotopy analysis method [25, 43], the vari-
ational iteration method [44], and the differential transform
method [45], among others. Numerical methods play an
important role with the purpose to provide algorithms to get
approximations of differential equations [46–49]. -is work
introduces two novelties; on one side, it presents an effective
modification of the standard HPM, the power homotopy
perturbation method (PHPM), with the purpose of finding
an analytical approximate solution for the BP. As it is well
known, the HPM has been one of the most efficient methods
proposed to get analytical approximate solutions for non-
linear problems. -e HPM was first proposed by a Chinese
mathematician Ji-Huan He to investigate a wide variety of
nonlinear problems which arise in science and engineering.
-eHPM successfully couples the homotopy theory with the
perturbation theory (but it is not restricted to small pa-
rameters as with traditional perturbation methods). -e
main idea is that a complicated problem is continuously
deformed into a simple problem which is easy to solve in
order to get an analytic exact or approximate solution [20].
On the other hand, we will solve the same problem, but now,
the PHPM will provide a solution just for a part of the whole
interval of the BP. Instead of looking for a solution for the
other part of the interval and introducing a piece-wise kind
solution [41] for the whole interval and even proposing, for
instance, to express the final result in a compact expression
by using the unit step functionU(x − a) [50], we will employ
the PSEM to obtain an approximate solution valid for all the
definition domains of the proposed problem. As a matter of
fact, after comparing the approximate solution obtained for
this work with other approximations from the literature, we
will see that the combination of the PHPM and PSEM offers,
indeed, potential for the approximate solution of nonlinear

problems. -e rest of this work is as follows: Section 2
introduces the basic idea of the standard HPM. Section 3
explains thePHPM. Additionally, Section 4 explains the
basic concept of the PSEM. On the other hand, Section 5
presents, with some details, the necessary elements for the
nonlinear problem to solve. Besides, Section 6 presents the
application of the proposed methods, in the search for an
approximate solution for the third-order nonlinear ordinary
differential equation which describes the BP. Section 7 offers
a whole discussion about the proposed solutions and their
comparison with other approximations found in the liter-
ature. Finally, a brief conclusion of the relevant aspects of
this work is given in Section 8.

2. Standard HPM

-e standard HPM was conceived with the end to approach
various kinds of nonlinear problems [19,20]. -e HPM is a
combination of the classical perturbation technique and the
homotopy (whose origin lies in the branch of mathematics
denominated topology), but it is not restricted to small
parameters as with traditional perturbation methods (to say
PM). For example, the HPM requires neither small pa-
rameter nor linearization and usually requires few iterations
to obtain solutions with good precision [19,20].

To conceive how the HPM works, we consider a general
nonlinear differential equation, which can be expressed as
follows:

A(u) − f(r) � 0, r ∈ Ω, (1)

with the following boundary conditions:

B u,
zu

zn
  � 0, r ∈ Γ, (2)

where A(u) is a general differential operator, B is a boundary
operator, f(r) is a given analytical function, and Γ is the
domain boundary for Ω. Next, assuming that A can be
divided into two operators L and N, where L is linear and N

nonlinear; (1) can be expressed as

L(u) + N(u) − f(r) � 0. (3)

An homotopy can be constructed in accordance with
[19,20].

H(U, p) � (1 − p) L(U) − L u0(   + p[L(U) + N(U) − f(r)] � 0, p ∈ [0, 1], r ∈ Ω (4)

or

H(U, p) � L(U) − L u0(  + p L u0(  + N(U) − f(r)  � 0, p ∈ [0, 1], r ∈ Ω, (5)
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where p is a homotopy parameter, whose values belong to
the range of [0, 1]; u0 is the first approximation for the
solution of (3) that satisfies the boundary conditions.

Next, we will assume that the solution for (4) or (5) can
be written as a power series of p in the form

U � v0 + v1p + v2p
2

+ · · · , (6)

and after substituting (6) into (5) and equating identical
powers of p terms, there can be found values for the se-
quence ]o, ]1, ]2, . . . after solving a coupled system of
differential equations.

L(U) � L ]0( ,

]0(A) � a,

]0′(A) � b,

]0″(A) � c, . . . ,

(7)

L ]1(  + L ]0(  + N ]0(  − f(r) � 0,

]1(A) � 0,

]1′(A) � 0,

]1″(A) � 0, . . . ,

(8)

L ]2(  + N ]0, ]1(  � 0,

]2(A) � 0,

]2′(A) � 0,

]2″(A) � 0, . . .

. . . ,

(9)

L ]j  + N ]0, ]1, ]2, . . . , ]j−2, ]j−1  � 0,

]j(A) � 0,

]j
′(A) � 0,

]′j′(A) � 0, . . .

. . . .

(10)

Taking the limit p⟶ 1, an approximate solution for (1)
is obtained as follows:

U(x) � v0(x) + v1(x) + v2(x) + v3(x), . . . , (11)

where A denotes the starting point for the initial conditions
and a, b, c, . . . are the initial conditions of the problem.

3. The Proposed Method: Powered Homotopy
Perturbation Method (PHPM)

From the above, we note that the standard HPM establishes
that the values of higher-order approximations v1, v2, v3 . . .

have to be zero if they are evaluated in the initial condition
value x � A. -e proposed method PHPM essentially fol-
lows the same steps of the HPM, but unlike it, the successive
integration process of the coupled system (7)–(10) is per-
formed without evaluating the initial conditions mentioned
by the HPM. In a sequence, the process of successive

approximations (7)–(10) will be affected considering zero
the constants of integration in each approximation, ex-
cepting the last one, which will keep all their integration
constants that are originated from the process of solution. In
this stage, one approximate solution for the problem to solve
is obtained again considering the limit (11). Nevertheless, we
note that this solution possesses some integration constants
to evaluate, even other parameters that could rise of the
freedom of the homotopy technique [22,23]. -ese pa-
rameters are evaluated from the initial conditions applied to
(11) and the knowledge of other mathematical and physical
properties of the nonlinear problem. -erefore, the solution
for a problem is expressed in terms of solving an algebraic
system of equations.

-e scheme for the PHPM, analogous to (7)–(10), is

L(U) � L ]0( , (12)

L ]1(  + L ]0(  + N ]0(  − f(r) � 0, (13)

L ]2(  + N ]0, ]1(  � 0,

. . . ,
(14)

L ]j  + N ]0, ]1, ]2, . . . , ]j−2, ]j−1  � 0, (15)

assuming that j is the last iteration considered in order to
provide an approximate solution for (1), and then, it is
possible to rewrite (15) symbolically as

]j � L
−1

−N ]0, ]1, ]2, . . . , ]j−2, ]j−1   + c1 + c2x + c3
x
2

2
  + · · · ,

(16)

where L and L− 1 are inverse operators and c1, c2, c3, . . . are
constants to determine.

Taking the limit p⟶ 1, it is possible to obtain an
approximate solution for (1) as follows:

U(x) � v0(x) + v1(x) + v2(x) + v3(x) · · · + vj(x). (17)

-e constants c1, c2, c3, . . . are found from the
conditions

U(A) � a,

U′(A) � b,

U″(A) � c, . . . .

(18)

We will see that the Blasius problem is a good candidate
to apply this scheme.

4. Basic Concept of the PSEM

In accordance with [39], we begin assuming a nonlinear
differential equation which is expressed as follows:

L(u) + N(u) − f(x) � 0, x ∈ Ω. (19)

-e boundary conditions of (19) can be expressed as
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B u,
zu

zn
  � 0, r ∈ Γ, (20)

where B is a boundary operator; f(x) is a given analytical
function; Γ is the boundary for domain Ω; and L and N

represent linear and nonlinear operators, respectively. Fi-
nally, zu/zn expresses differentiation along the normal
drawn outwards from Ω. -e following step consists in
assuming that the solution of (19) can be expressed as a
power series:

u � 
∞

k�0
ckx

k
, (21)

where ck
′s represents the coefficients of the power series.

In accordance with PSEM flexibility, series (21) can be
obtained by some approximate methods from the literature:
the Taylor series method [37], power series method [39],
homotopy perturbation method [1,17–23], perturbation
method [34–36], homotopy analysis method [43], variational
iteration method [44], differential transform method [45],
and Adomian decomposition method [10–15], among others.

Next, we assume that the solution for differential
equation (19) can be expressed as a finite sum of certain
functions in accordance with [39].

u � u0 + 
n

i�0
fi x, ui(  (22)

or

u �
u0 + 

n
i�0 fi x, ui( 

1 + 
2n
j�n+1fj x, uj 

, (23)

where u � ui are, in principle, unknown constants to be
determined by the PSEM, fi(x, ui) are arbitrary trial
functions, and n and 2n represent the orders of approxi-
mation of (22) and (23), respectively. As a matter of fact,
from now on, we will designate (22) and (23) as the PSEM
trial function (TF).

-e next step consists in obtaining the Taylor series of
(22) or (23) so that we get the power series of the form

u � u0 + 
n

i�0
Pi,0 + 

n

i�0


∞

k�0
Pi,kx

k
, (24)

u � u0 + 

n

i�0
Pi,0 + 

2n

i�0


∞

k�0
Pi,kx

k
, (25)

where Taylor coefficients PK are expressed in terms of pa-
rameters ui. In particular, Pi,0 are the coefficients of the order
zero Taylor expansion applied to the finite sumof functions (22)
and rational function (23), respectively. Finally, we equate the
coefficients of the corresponding power series (24) or (25) with
(21) in order to get the values ui. After substituting them into
(22) or (23), we finally obtain the PSEM approximation.

5. Problem Formulation

-is section will provide the sufficient elements required for
the rest of this work. As an application of the PHPM, we will
get an analytical approximate solution for the nonlinear
third-order Blasius ordinary differential equation (BODE)
which can be written in the following terms:

y
‴

(x) +
1
2

y(x)y″(x) � 0, x≥ 0, (26)

y(0) � 0,

y′(0) � 0,

y′(∞) � 1,

(27)

where y(x) denotes the dimensionless stream function and
x is a dimensionless coordinate proportional to the per-
pendicular distance from the front of the plate, inversely
proportional to the thickness of the boundary layer. As it is
well known, the boundary layer is defined as the adjacent
region to a solid surface where viscous forces are relevant
and its thickness is defined where the derivative is
y′ � 0.99. From [51], it results that the values of x and y

defining the boundary layer are related by y(5) � 3.28329
(see Section 6).

On the other hand, Blasius found a series solution for
system (26) and (27) [52] which is given by

y(x) � 
∞

k�0

−1
2

 
kAk y″(0)( 

k+1

(3k + 2)!
x
3k+2

, (28)

A0 � A1 � 1,

Ak � 
k−1

s�0

3k − 1
3r

 AsAk−r−1, k≥ 2,
(29)

and y″(0) was numerically determined with the value
0.332057336 [53,54].

Such as it occurs for every mathematical series, (28)
converges only for a finite interval [0,ϕ] (see [51]), where ϕ
is a number such that ϕ ≈ 1.8894/y″(0) or ϕ ≈ 5.69;
therefore, this series does not totally describe the Blasius
problem, given that it requires a solution for the whole
interval x≥ 0.

Since the aim of this work is to provide an analytical
approximate solution valid for the entire domain [0,∞) and
not only for small x, it will result useful to express condition
(27) y′(∞) � 1 in the asymptotic form:

y(x) � x + c, x⟶∞, (30)

for some constant value of c. As a matter of fact, we will see
that the geometric determination of this parameter will be
relevant for the solution of the asymptotic part of this
problem.
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6. Application of the PHPM with the End to
Obtain Two Approximate Solutions for the
Nonlinear Blasius Problem

In accordance with the previous section, we have to find an
approximate solution for BODE.

y
‴

(x) +
1
2

y(x)y″(x) � 0, x≥ 0. (31)

From Section 3, we establish the following homotopy, by
using the flexibility of PHPM:

(1 − p) y
‴

(x)  + p y
‴

(x) +
1
2

y(x)y″(x)  � 0, (32)

or

y
‴

(x) +
p

2
y(x)y″(x) � 0. (33)

Following PHPM algorithm, we will assume that (33)
admits a series solution of the form

y(x) � y0(x) + y1(x)p + y2(x)p
2

+ y3(x)p
3
, . . . , (34)

in such a way that, after substituting (34) into (33), we get the
following system of linear differential equations:

y
″′
1(x) � −

1
2
y0(x)y0″(x), (35)

y
″′
2(x) � −

1
2
y1(x)y0″(x) −

1
2
y0(x)y1″(x), (36)

y
″′
3(x) � −

1
2
y2(x)y0″(x) −

1
2
y0(x)y2″(x) −

1
2
y1(x)y1′(x),

. . . ,

(37)

and so on.
Next, we propose a solution depending of two param-

eters, from the asymptotic characteristics of the Blasius
problem, and let it be

y0(x) � Ae
− Bx

, A, B> 0, (38)

where positive quantities A and B will be determined from
the properties of the problem.

Assuming that we keep until the third iteration of (34),
we will solve (35)–(38).

-us, by substituting (38) into (35), we get

y
″′
1(x) � −

1
2
A
2
B
2
e

− 2Bx
, (39)

and after integrating three times, without keeping the in-
tegration constants, we obtain

y1(x) �
A
2
e

− 2Bx

16B
. (40)

In the same way, substituting (38) and (40) into (36), we
get

y
″′
2(x) �

−5A
3
Be

− 3Bx

32
. (41)

Integrating three times, without keeping the integration
constants, we obtain

y2(x) �
5A

3
e

− 3Bx

864B
2 . (42)

-e third iteration results from replacing (38), (40), and
(42) into (37) so that we get

y
″′
3(x) �

−50A
4
e

− 4Bx

1728
+

A
4
e

− 4Bx

256B
. (43)

It is possible to integrate (43) in the same way three
times; assuming that it is the last iteration, we have to add
tree integration constants produced by tree integrations in
such a way that we write

y3(x) �
50A

4
e

− 4Bx

110592B
3 −

A
4
e

− 4Bx

16384B
4 + k1 + k2x +

k3

2
x
2
. (44)

We note that, from asymptotic condition (30), it is re-
quired that the last term of (44) has to be zero; besides, from
the same condition, it is clear that k2 � 1.-erefore, (44) has
to adopt the form

y3(x) �
50A

4
e

− 4Bx

110592B
3 −

A
4
e

− 4Bx

16384B
4 + k1 + x. (45)

After taking the limit p⟶ 1, we obtain an approximate
solution for (26) with boundary conditions (27) as follows:

y(x) � 
3

k�0
yk(x), (46)

see (38), (40), (42), and (45).
From the above, it is clear that (46) is an analytical

approximate solution for (31) which satisfies the correct
asymptotic condition (30).

In accordance with (46), we have obtained an approx-
imate solution with the schematic form

y(x) � Y(x) + x + k1, (47)

where Y(x) represents all the terms of (46) which contain
only negative exponentials.

As it was already mentioned, the boundary layer is
defined as the adjacent region to a solid surface where
viscous forces are relevant and its thickness is defined where
the derivative is y′ � 0.99.

Also, it was mentioned that this point corresponds to the
coordinates y(5) � 3.28329, so that, for x � 5, it is expected
that (47) adopts the asymptotic form (30) with good pre-
cision. -us, Y(x) ≈ 0 and

y(x) � x + k1. (48)

Geometrically, (48) is the equation of the tangent line to
the point (5, 3.28329) and k1 can be determined by
substituting the coordinates into (48) to obtain the equation

Discrete Dynamics in Nature and Society 5



y(x) � x − 1.7168. (49)

-us, (47) can be written as

y(x) � Y(x) + x − 1.7168, (50)

which ensures the asymptotic form of the solution, even
from the point for which y′ � 0.99.

With the purpose of ensuring that (50) satisfies the initial
conditions of the problem, it is necessary to adequately
evaluate the values of the constants A and B. For it, we will
substitute the first condition and the second condition of
(27) into (50) in order to get an algebraic system for the
unknown quantities.

Y(0) − 1.7168 � 0,

Y′(0) + 1 � 0.
(51)

-e solution for nonlinear system (51) is given by the
values

A � 1.3797,

B � 0.46578.
(52)

-us, substituting these values into (50), we get an
approximate solution for (26) with boundary conditions
(27).

From Table 1, we observe that the proposed approximate
solution has, in general terms, an acceptable precision. -e
comparison between our approximate solution and the exact
solution shows a bad performance at the beginning of the
interval and a gradual improvement; as a matter of fact, from
x � 4 onwards, the absolute error committed is less than 0.2
(e.g., for x � 4.2, the committed relative error is about 7.5%).
Better results are obtained for values relatively big of the
dimensionless coordinate. Although our approximation
provides a good idea of the problem under study, next we
propose other approximate solutions starting from the
following idea.

From iterations (38), (40), (42), and (45), we note that as
higher-order iterations are considered, a bigger denomi-
nator appears in the successive iterations. Given that we have
considered until the third-order approximation, to con-
siderably improve, more iterations have to be included, and
for the same reason, we would have to consider a long
cumbersome final approximation. In order to avoid that
mentioned above, we will introduce two approximations, the
first one for the interval (0, 3) and the second for the infinite
interval [3,∞).

-e solution for [3,∞) will consist in recalculating the
parameters (52) to obtain an analytical approximate solution
for (31) in the mentioned interval. From series solution (21),
it is possible to get the following four terms:

y(x) � 0.1660285x
2

− 0.0004594243x
5

+ 2.4971813x10− 6
x
8

− 1.4276972x10− 8
x
11

+ · · · . (53)

As we commented in Section 4, series (28) converges for
x values in the following interval [0, ϕ], where ϕ is a number
such that ϕ ≈ 1.8894/y″(0) or ϕ ≈ 5.69. In a sequence, the
four terms from (28) provide the main contribution in this
interval; thus, with the purpose of recalculating the values of
the parameters from (42), we propose substituting the fol-
lowing points of the solution curve into (50) in order to
obtain an algebraic system for the unknown quantities A and
B, (3, 1.39682) and (4, 2.30576), which are obtained from
(45).

After solving the resulting 2× 2 nonlinear system, we get

A � 14.29862177,

B � 1.613153514.
(54)

-erefore, by substituting (54) into (50), we get an
analytical approximate solution for the Blasius problem
valid for [3,∞).

On the other hand, in order to get a solution for (0, 3],
we will employ the PSEM. As explained in Section 4, next we
assume the following rational function valid for the
abovementioned interval:

y2(x) �
a2x

2
+ a1x + a0 e

−2x

a9x
9

+ a8x
8

+ a7x
7

+ a6x
6

+ a5x
5

+ a4x
4

+ a3x
3

+ a2x
2

+ a1x + 1 
. (55)

-e coefficients of (55) a′s and b′s are determined by
using PSEM algorithm, and the presence of exp(−2x) is with
the end to contribute that (55) vanishes adequately.

In accordance with the PSEM, we propose the sum of
(55) and (50) (with coefficients (54)) as a solution valid for
the whole interval.

y(x) �
a2x

2
+ a1x + a0 e

−2x

b9x
9

+ b8x
8

+ b7x
7

+ b6x
6

+ b5x
5

+ b4x
4

+ b3x
3

+ b2x
2

+ b1x + 1 
+ Y(x) + x − 1.7168. (56)

6 Discrete Dynamics in Nature and Society



Next, we obtain a Taylor expansion around x � 0 for
(56), and this result is matched with series (53) (that is, we
equate the coefficients of both power series) with the purpose
to get an algebraic equation system with the end to deter-
mine the coefficients of (55).

As a consequence, we determine the following values:

a0 � −31.1293,

a1 � −14.2776,

a2 � −30.87080,

b1 � 1.85423,

b2 � 1.24959,

b3 � 0.264101,

b4 � −0.032011,

b5 � 0.0395264,

b6 � 0.0395466,

b7 � −0.0010344,

b8 � −0.003506,

b9 � 0.0024592.

(57)

-us, substituting (57) into (56), we obtain an analytical
approximate solution for the BP. From Table 1, we note that
the accuracy of (56) with coefficients (54) and (57) is clearly
better than the one obtained for the PHPM (comparing the
first two columns with the exact solution).

7. Discussion

Next, we will present the main results obtained for this work.
In particular, we will emphasize the advantages of the
proposed PHPM for the case where there exists additional
information about the problem to solve.

-is article presented a modification of the HPM, the
modified HPM (PHPM), with the purpose of obtaining an
analytical approximate solution for the relevant BP. Es-
sentially, the procedure follows the standard HPM, but
avoiding the integration constants in each iteration. Once
one decides what is the last iteration to conclude the iterative
procedure, the constants are added in this step, and the final
approximate solution contains these parameters. We also
mentioned that this scheme could result useful in the cases
where, for example, the knowledge of certain mathematics
and physical information could aid in knowing the value of
some of these parameters (of course, some constants are

Table 1: Comparison of the results obtained for this work with other approximations.

x Exact PHPM with
parameters (52)

PHPM with
parameters (54)

and PSEM

LTNHPM
[33] HPM [1]

Iteration
perturbation method

(IPM) [55]

Modified
Padé [51]

Weighted residual
method (WRM)

[56]
0.2 0.00664 0.0751339 0.00664 0.00664 0.008389 0.006441 ——– 0.007170
0.4 0.026600 0.0718948 .0265590 0.02656 0.033359 0.025186 0.026600 0.027729
0.6 0.05974 0.1412990 0.059732 0.05973 0.074368 0.055411 ——– 0.060957
0.8 0.10611 0.2072926 0.106088 0.10611 0.130645 0.096350 0.106100 0.107292
1.0 0.16557 0.2898499 0.165467 0.16557 0.201275 0.147296 ——– 0.167581
1.4 0.32298 0.4951863 0.322103 0.32298 0.381558 0.276618 0.32290 0.331867
1.6 0.42032 0.6142525 0.418515 0.42032 0.489145 0.353812 0.420300 0.435454
1.8 0.52952 0.7422946 0.526322 0.52952 0.607009 0.438643 ——– 0.552286
2.2 0.78120 1.0208130 0.774110 0.78119 0.869751 0.629277 ——– 0.820910
2.6 1.07252 1.3233962 1.062068 1.07250 1.162724 0.844966 ——– 1.127496
2.8 1.23099 1.4819850 1.220049 1.23098 1.318610 0.961224 1.231100 1.291934
3.2 1.56911 1.8111840 1.560172 1.56909 1.645862 1.208832 1.569300 1.637813
3.6 1.92954 2.1533835 1.924973 1.92951 1.990023 1.474506 1.929700 2.000738
3.8 2.11305 2.3286100 2.113736 2.11596 2.167250 1.613421 ——– 2.186909
4.0 2.30576 2.5061893 2.305453 2.30550 2.347369 1.756054 2.305800 2.375521
4.2 2.49806 2.6858832 2.499383 2.49720 2.530031 1.902174 ——– 2.566153
4.4 2.69238 2.8674868 2.694953 2.68965 2.714924 2.051563 2.692200 2.758453
4.6 2.88826 3.0507910 2.891728 2.88002 2.901774 2.204020 2.887900 2.952128
4.8 3.08534 3.2356491 3.089384 3.06157 3.090337 2.359356 3.084800 3.146934
5.0 3.28329 3.4219049 3.287682 3.21785 3.280397 2.517394 3.282700 3.342676
5.4 3.68094 3.7980836 3.685553 ——– 3.664274 2.840918 3.680500 3.736318
5.8 4.07990 4.1784119 4.084435 ——– 4.052148 3.173388 4.079600 4.132045
6.2 4.47948 4.5621475 4.483847 ——– 4.443052 3.513744 ——– 4.529177
6.6 4.87931 4.9486879 4.883539 ——– 4.836243 3.861055 4.927252
7.0 5.27926 5.3375409 5.283378 ——– 5.231158 4.214503 5.279200 5.325961
7.4 5.67924 5.7283035 5.683293 ——– 5.627366 4.573365 5.679200 5.725095
7.8 6.07923 6.1206439 6.083249 ——– 6.024545 4.937007 ——– 6.124514
8.2. 6.47923 6.5142919 6.483225 ——– 6.422449 5.304871 ——– 6.524125
8.6 6.87923 6.9090209 6.883213 ——– 6.820894 5.676462 ——– 6.922386
8.8 7.07923 7.1067317 7.083209 ——– 7.020275 5.863518 ——– 7.123767
10.0 8.2792 8.2832000 8.283201 ——– 8.218009 7.000557 8.279200 8.323464
-e symbol “——–” means data are not available in the corresponding article.
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determined from the initial and boundary conditions pro-
posed by the problem). To begin, we were able to express the
solution of this problem as the sum of an asymptotic part
and other valid for relatively small values of x. Along this
work, we showed the manner to introduce some conditions
with the end to determine the values of some constants. For
example, the boundary condition y′(∞) � 1 implies that
asymptotically, the derivative function tends to the constant
value one and for the same reason, the dimensionless stream
function has to assume, in this same regime, the rather
simple form y(x) � x + c, x⟶∞.

Comparing this asymptotic form with (44), we noted
that it is required that the last term of (44) has to be zero;
besides, from the same condition, it is clear that k2 � 1.
-erefore, the particular form of expressing the PHPM
solution easily allows calculating these values. In the same
way, we saw that the Blasius asymptotic solution admits a
geometry interpretation which allowed knowing the value of
k1.-erefore, we note the convenience of using the PHPM in
order to determinate the asymptotic part of the proposed
solution, taking advantage of the mathematics and physical
information that concerns with the problem.

On the other hand, the PHPM easily allowed calculating
the other unknown parameters A and B. -is procedure was
implemented in order to ensure that (50) satisfied the initial
conditions of the problem. In accordance with PHPM al-
gorithm, we substituted (50) into the first condition and the
second condition of (27) with the end to obtain an algebraic
system for the unknown quantities.

-e analysis from Table 1 shows a moderate precision; as
a matter of fact, we got the best performance for values next
to x � 5 and higher than this value. -is result finds an
explanation in the fact that the PHPM solution ensured,
from the beginning, the correct behaviour of the asymptotic
part (50). Besides, from the same table, we note that the
absolute error for values between x � 2.8 and x � 4.8 is in
the order of two to three hundredths, which represent an
acceptable precision. It is expected that, for improving the
precision of (50), higher-order iterations be required and/or
an initial trial function that looks like (38) be provided but
with more adjusting parameters (other trial functions could
be tried with the correct asymptotic behaviour of the
problem, for example, a sum of two terms like (38), and we
will provide fourth adjusting parameters) in order to get a
better result.

It is important to note the power and flexibility of the
homotopy scheme proposed in this work. However, in fu-
ture research, we propose exploring alternative ways to
construct other homotopy schemes. For example, the
homotopy perturbation method with two expanding pa-
rameters [28], homotopy perturbation method with three
expansions [29], Li–He homotopy perturbation method
[30], homotopy perturbation with an auxiliary parameter
[31], and He Laplace method [32, 33].

7.1. Combination of the PHPM and PSEM. Next, in order to
obtain a better approximation, it was proposed to recalculate
the parameters A and B mentioned above, but changing the

strategy. We conceived to divide the solution of the problem
into two parts, the first one valid for the interval [0, 3) and
the second for the infinite interval [3,∞).

With respect to the solution in the infinite interval, the
procedure consisted in recalculating the parameters (54)
with the purpose of obtaining a new analytical approximate
solution for (26)–(27) in the mentioned interval.

-at is, we repeated the same steps that yield in (50) with
parameters (52) but shortening the interval as it was indi-
cated. We expected to improve the above approximation
because the solution of the problem at the beginning of the
interval is strongly affected, not only from the asymptotic
term x − 1.7168, but for Y(x), while as we consider bigger
values of x, the asymptotic part becomes the predominant,
for which the solution for both regions is indeed different.
-erefore, if we ask the PHPM to describe only partially the
interval, it is expected to get a better approximation, which,
in fact, was what occurred.

-e manner to recalculate the values of the A and B of
(50) was substituting some points of the solution curve into
(50) in order to obtain an algebraic system for the mentioned
unknown quantities. -e points used for this purpose are
(3, 1.39682), and (4, 2.30576), which were obtained from
(53) (see also (28)). After solving the resulting 2× 2 non-
linear system, we got the values (54). It is important to clarify
why we did not employ the points correspondent, for in-
stance, to x � 5 and x � 6, instead of the points mentioned
above which correspond to x � 3 and x � 4. By using x � 5
and x � 6, the PHPM would have obtained a solution only
for the asymptotic part of the problem with a very good
expectation to describe it with precision. We emphasize that
two points are required for this purpose, which are obtained
from the Blasius series. As explained in Section 5, the
convergence of this series lies in the interval [0,ϕ], where ϕ is
a number such that ϕ ≈ 5.69.

-us, to avoid calculating points from the Blasius series
too close to its convergence upper end point, we preferred
using values of x, totally within the convergence interval.

In order to get a good approximation for the interval
[0, 3), a simple choice would have been to use (28). After all,
we have seen that, for x within its convergence interval, even
four terms from (28) provide good results (53). In this way,
we could provide a piece-wise kind of solution, and
employing unit step functions U(x − a)[3, 4], we may get a
final result by using a compact expression. In a sequence, in
theory, it would have been even possible to get a differen-
tiable approximate expression by using differentiable and
continuous analytical approximate functions for the step
function. However, in general, many times, that mentioned
earlier is not possible but only approximated because to
match two approximate solutions in the join points is not an
easy task.

With the purpose of getting a real continuous and
differentiable solution for the whole interval of this problem,
we proposed using the PSEM in order to get an accurate
solution that includes the interval [0, 3).

With this end, the PSEM proposed the rational function
(55) and, therefore, the sum of (50) and (55) (with coeffi-
cients (54) for (50)) as a solution for the entire interval. Next,
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a Taylor expansion is obtained around x � 0 for (56), and
what results is matched, term by term, with series (53) up to
the eleventh power in order to propose an algebraic system
of equations to determine the coefficients of (55). -is
procedure is successful because it not only ensures the
correctness of continuity and the differentiability for all the
points of the whole interval but also takes advantage of both
the accuracy of (53) in the initial part of the interval and the
accuracy of the PHPM solution for infinite interval [3,∞).

Finally, from Table 1, we compared the results obtained
for this work with other approximations reported in the
literature. In columns two and three appear the approxi-
mations discussed for this work.

As commented, in general, the PHPM with parameters
(52) had an acceptable precision. Our approximation
showed a bad approximation in the beginning of the in-
terval, and after a gradual improvement, we note that, from
x � 4 onwards, the absolute error committed is less than 0.2;
in particular, for relatively large values of x, better results are
obtained. Compared with the PHPM (54) and PSEM, the
PHPM (52) obtained a lower performance, and the reasons
were, in part, the subject of Section 6. Nevertheless, it is
important to note that the performance of the PHPM is
essentially the same for big values of x.

On the other hand, the LTNHPM [57] showed a better
performance than the PHPM (52), but it only provides
results from x � 0 to x � 5, whereby the proposed solution
from the PHPM offered a better performance in general. In
this work [57], a series with good results was found, but in
general, the power series requires many terms in order to get
an accurate approximate solution when it is applied to
differential equations. As a matter of fact, the series that gave
rise to values in Table 1 required 13 terms, and as we
consider bigger values of x, more and more terms of the
series are needed, which is not convenient for practical
applications. From the results of Table 1, it is clear that [1]
presents a better precision than the PHPM (52) for x values
comprised between x � 0 and x � 7, while from x � 7 on-
wards, the PHPM (52) is better. It ratifies the correctness of
the implemented strategy for the PHPM with the purpose of
calculating the asymptotic part of the BP. Another point to
consider is unlike the proposed method, the method in [1]
calculated its unknown coefficients by using an optimization
method, the least square method, which represents an ad-
vantage for the method in [1].

With respect to the comparison between the PHPM (52)
and IPM [55], Table 1 shows that the PHPM provides a
better accuracy, except for values comprised from x � 0 to
x � 2.6, which is very early in the interval. In general, the
IPM offered the lower performance of the compared
methods. On the contrary, Ahmad et al. [51] showed the best
precision, which is deduced from Table 1. Nevertheless,
Ahmad et al. [51] employed a Padé [4/3] approximant of the
derivative of (53) as the starting point and added corrective
terms both in the numerator and denominator of the
mentioned Padé to propose a new expression which yielded
good precision. -is proposal even successful for the BP is
not a general procedure for finding solutions to nonlinear
differential equations. Finally, the comparison of the

proposed solution PHPM (52) with [56] shows that the
proposal from the WRM is better for interval [0, 6.8] al-
though the PHPM was competitive in that interval except at
the early small values close to zero. Again, the PHPM (52)
was better for the asymptotic part of the solution.

As explained, in order to improve the PHPM (52) ap-
proximate solution, we introduced the combination of the
PHPM and PSEM. From Table 1, we noted that the obtained
result was remarkably better. -e combination of the PHPM
(54) and PSEM is more precise than the PHPM (52), and it is
better than the LTNHPM [57] although in interval [0, 5], the
performance of both was very similar. In the same way, the
proposed solution was better than that in [1] although this
employed an optimization procedure to calculate its coef-
ficients. Likewise, we note that the PHPM (54) and PSEM
were clearly better than the IPM and also overcome the
WRM despite that this last is a method widely recognized. In
this case, both methods achieved a good performance. Fi-
nally, as already said, the method in [51] obtained the best
accuracy, but the difference of accuracy between the solu-
tions obtained by the PHPM (54) and PSEM [51] was, most
of the times, of only thousandths. An important point is that
unlike the one proposed by this work, Ahmad et al. [51] just
provided a particular procedure valid in principle for the
Blasius problem. Finally, even we could present other HPM
approximations for the Blasius equation [21], but this article
only presented results for the short interval [0, 4]. Figure 1
shows the absolute error committed for the method solu-
tions exposed earlier.

In brief, the results obtained for the PSEM combined
with the PHPM showed that it is possible to couple two
methods, which, in principle, are very different, but com-
bining them can provide a total solution with a wider do-
main; as a matter of fact, the PHPM delivered the asymptotic
part of the problem and the PSEM focused on solving the
part closer to x � 0, in such a way that the coupling of both
methods yielded a new function defined for the whole
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Figure 1: Absolute errors committed by using the PHPM (50) with
coefficients (52), PHPM-PSEM (56) with coefficients ((54) and
(57)), and other approximations from the literature for the pro-
posed problem.
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interval with good precision, as discussed, in relation with
Table 1. -e matter of improving the convergence of the
PHPM and PHPM and PSEM combination could be con-
sidered in a future theme of investigation. As a matter of fact,
methodologies such as those considered in [24, 30] could be
useful with this purpose.

8. Conclusions

-is work introduced a modification of the standard HPM,
the PHPM, which is particularly useful when it is possible to
dispose additional information, both mathematical and
physical, for a proposed nonlinear problem. Unlike the HPM
which establishes that the values of higher-order approxi-
mations have to be zero if they are evaluated for the initial
condition, the PHPM proposed that the successive inte-
grations process of the coupled system (7)–(10) is performed
without evaluating the initial conditions mentioned by the
HPM, considering zero the constants of integration in each
iteration, except for the last one, which will keep all its
integration constants that are originated by the process. -e
whole solution (11) will possess some integration constants
to evaluate even other parameters that could rise from the
freedom of the homotopy technique, and the PHPM eval-
uates these quantities from the initial conditions applied to
(11) and the knowledge of other mathematical and physical
properties of the nonlinear problem. -e proposed PHPM
expresses in a natural way the solution as a sum of an as-
ymptotic part and other part that describes the solution for x

values closer to the origin. From the evidence presented for
this article, it is expected that

PHPM contributes to change the idea that an effective
method has to be necessarily long and cumbersome as
occurs with the HAM and Adomian decomposition
method, among others
the proposal of PHPM is that of a method that is both
precise and easy to implement
the proposed method allows incorporating the
knowledge of the mathematical and physical properties
that emanate from the problem to solve and not only
the initial conditions

On the other hand, as occurred in this work, sometimes,
it is expected that, for improving the precision of the pro-
posed solutions for the PHPM it is required both to obtain
higher order iterations and to introduce an initial trial
function provided with several adjusting parameters, which
could lead to a cumbersome procedure. To avoid that
inconvenience, this work improved the results obtained by
the PHPM by using a combination of the PHPM and PSEM
which showed to have high potential for practical prob-
lems. -e success of the combination is that the PSEM took
advantage of the good performance of a known series
solution for the initial part of the interval and the PHPM
provided the asymptotic part of the solution with good
accuracy. In summary, the PHPM and the union of the
PSEM with PHPM demonstrated potential for future
applications.

Nomenclature

BP: Blasius problem
HPM: Homotopy perturbation method
PHPM: Powered homotopy perturbation method
PSEM: Power series extender method
PM: Perturbation method
BODE: Blasius ordinary differential equation
LTNHPM: Laplace transform coupled with the new

homotopy perturbation method
IPM: Iteration perturbation method
WRM: Weighted residual method.
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Enstitüsü Dergisi, vol. 20, pp. 129–142, 2018.

[57] H. Aminikhah, “Analytical approximation to the solution of
nonlinear blasius’ viscous flow equation by ltnhpm,” ISRN
Mathematical Analysis, vol. 2012, Article ID 957473, 9 pages,
2012.

12 Discrete Dynamics in Nature and Society


