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-e prediction of cutterhead torque of earth pressure balance (EPB) shield machine is mainly studied. First, the idea of shield
tunneling stage division is proposed. -e process of shield tunneling from start to stop (or pause) is divided into start-up and
stationary driving stages. Using the change point detectionmethod based on linear regression, the separation points between start-
up stage and stationary driving stage are identified from the original construction data, and the datasets of the two stages are
extracted, respectively.-en, for the start-up stage, the linear regression method is suggested for the cutterhead torque prediction,
since there is a strong linear correlation between the key parameters such as the cutterhead torque and the thrust force.
Meanwhile, for the stationary driving stage, considering the fact that the key parameters vary smoothly and show obvious inertia,
the long short-term memory (LSTM) network method can be used to establish the relationship model between cutterhead torque
and other key parameters, such as the thrust force.-rough the test experiments of construction data in Zhengzhou, Luoyang, and
Dalian shield projects, the results show that the proposed segmented modeling method possesses good adaptability and the
cutterhead torque prediction model has high prediction accuracy.

1. Introduction

Torque of the cutterhead is one of the key parameters for the
tunnel boring machine (TBM), which maintains the cut-
terhead to rotate and cut the soil continuously, and is also
the basic parameter for equipment energy efficiency control
and safety state monitoring. It is closely related to the size
and configuration of the equipment, geomechanical pa-
rameters, shield operation parameters, etc., so its influencing
factors are very complex [1, 2]. Estimation of cutterhead
torque is an important basis for the equipment parameter
design and construction control and is also the basic
guarantee for fast, safe, and efficient tunneling.

-e existing literature mainly focuses on the geometric
characteristics of the components of the cutterhead, loading
state, and soil constitution and establishes the model pre-
dicting the cutterhead torque based on mechanical analysis.
Usually, many assumptions and approximations are needed
to satisfy the ideal modeling conditions. However, the

physical and mechanical properties of soil are strongly
correlated to soil composition, water content, geological
structure, and other factors, so current soil strength theories
can only be applied to the physical and mechanical prop-
erties of some certain type of soil under specific loading
conditions, and there is no accurate constitutive relationship
to describe its mechanical properties in practice [3–5]. For
example, the friction coefficient between the cutterhead and
the surrounding soil must be assumed artificially when
calculating the torque of the cutterhead. All these as-
sumptions would lead to inaccurate estimation of cutterhead
torque [6–10].

In recent years, with the rapid development of computer
and artificial intelligence technology, various data-driven
methods have provided much support for the analysis of
huge engineering data [11–13]. In [14], Wang et al. studied
the prediction of cutterhead torque based on the real data of
Pine diversion and water supply project in Jilin Province of
China, where nonlinear support vector regression (NSVR) is
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employed, and cutterhead torque is taken as the output and
some operation parameters as inputs. However, all of these
algorithm models, such as artificial neural network (ANN),
support vector machine (SVM), and random forest models
(RFM), are difficult to explain because of their complex
nonlinear structure and are misleading to understand the
relationship between the response and the predictors
[15–18].

In this paper, based on the periodic characteristics of the
shield tunneling process, the data of the starting and steady
tunneling stages of the TBM are separated and two different
regression models about the cutterhead torque and other
operation parameters are proposed, according to the dif-
ferent distributions of the data in both the stages. -e
analysis of actual TBM operation data shows that the
proposed data-driven piecewise modeling method for pre-
dicting the cutterhead torque has better accuracy and ap-
plicability. Specifically, the main contributions of this paper
are listed as follows:

(1) A clear data collection method is proposed, that is,
data are collected according to similar geological
conditions and the same type of shield machine

(2) -e change point between the start-up stage and the
stationary driving stage in an excavation cycle can be
identified by the change point detection method
based on linear regression, and the data are separated
into two parts as start-up dataset and the stationary
driving dataset

(3) After denoising and normalization, linear regression
models are used on the starting dataset and the long
short-term memory (LSTM) recurrent neural net-
work [19] model is employed on the stationary
driving dataset

(4) Compared with the existing methods, the segmented
regression models are established, and the proposed
method takes into account not only the influence of
geological conditions and type of TBM on the mod-
eling but also the influence of different states of TBM

-e rest of this paper is organized as follows. In Section
2, the necessity of data segmentation for shield construction
is clarified and amethod of data segmentation is provided. In
Section 3, the modeling methods of start-up stage and steady
driving stage are presented, respectively. In Section 4, a real
data analysis is given to illustrate the effectiveness of the
proposed modeling methods. Finally, Section 5 concludes
the paper pointing towards future research directions.

2. Data Extraction and Preprocessing

In the process of shield construction, the TBM successively
experiences the stages of starting, driving, suspension,
driving, suspension, · · ·, driving, shutdown, etc. It is easy to
see that the operation parameters have different distribu-
tions at the stages of starting and driving.-erefore, in order
to accurately predict the cutterhead torque, it is necessary to
separate the data into two sets, corresponding to the start-up
stage and the driving stage, respectively.

2.1. Necessity for the Separation of Data according to Stages.
-e operation parameters present different trends when
TBM works in different stages such as start-up and sta-
tionary driving. Figure 1 shows the local curves of the
cutterhead rotation speed (CRS), the advance velocity (AV),
the total thrust force (TTF), and the cutterhead torque (CT)
(observed once per second), where the dataset is sampled
from Ring 550 of Hui-Shang section of the subway tunnel
project Line 4 in Zhengzhou of China. One can see that the
operation parameters such as CRS, CT, and TTF grow up
quickly at the start-up stage, and then the operating pa-
rameters oscillate slightly. -e TBM operation data lasting
no less than 120 s from the start-up to the suspension (or
shutdown) stage are regarded as normal operation data,
while those lasting less than 120 s from the starting to the
suspension (or shutdown) stage are regarded as abnormal
operation data, and the data in the suspension or shutdown
stage are defined as shutdown data. -e normal operation
data, abnormal operation data, and shutdown data are
continuous segmentally and appear alternately. As shown in
Figure 1, when the shield machine is working, the total
thrust force and the advance velocity will not be zero at the
same time; otherwise, the shield machine will be suspended
or shutdown. According to this feature, the starting and
ending points of each normal operation data segment can be
detected, and the normal operation data segments that meet
the requirements can be extracted.

Figure 2 shows the curves of typical segments of the
normal operation data in Ring 550. When the shield tunnel
machine starts, the key parameters (including CT, TTF, AV,
and CRS) increase rapidly; then, the parameters become
stationary after a period (about 100 s), which is called the
stationary driving stage, and now the shield tunnel machine
is in a relatively steady working state. Because of the sig-
nificant difference of the operation parameters between the
start-up stage and the stationary driving stage, it is necessary
to establish the regression model segmentally. All the data
are divided into three parts according to the start-up stage,
the stationary driving stage, and other stages, where the
datasets with respect to other stages contain some data that
do not share the characteristics of the start-up stage and the
stationary driving stage. In this way, the segmented models
based on the datasets of different stages can better char-
acterize the operation parameters in different stages and will
have good performance in terms of prediction accuracy.

2.2. Change Point Detection between the Start-Up Stage and
Stationary Driving Stage. Because of the different charac-
teristics of the operation parameters shown in different
stages, it is possible to identify the change point between
the start-up stage and stationary driving stage. All the data
are divided into three parts according to the start-up stage,
the stationary driving stage, and other stages, and the
segmented regression model based on the start-up dataset
and stationary driving dataset would be established,
respectively.

From Figure 2, one can see that the thrust force shows
obviously different trends between the start-up stage and
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stationary stage, and advance velocity and the cutterhead
torque display the similar phenomenon to the thrust force.
-erefore, the change point detection method based on the
linear regression model will be applied to the three pa-
rameters mentioned above, so as to comprehensively de-
termine the true change point.

Change point detection based on the linear regression
model can be described as follows. Let (ti, yi)(1≤ i≤N) be
the observations, where yi is observed at instant ti, and there
exist m(1<m<N) and ai and bi(i � 1, 2) which attain the
minimum of Sm:

Sm � 
m

i�1
a1ti + b1 − yi( 

2
+ 

N

i�m+1
a2ti + b2 − yi( 

2
. (1)

If a1 � a2 and b1 � b2 do not hold simultaneously, a
mutation occurs at m in the regression model, and m is
called the change point.

In essence, two linear regression models with different
slopes are employed to represent the relationship between
the operation parameter and time t, and the start-up stage
and stationary driving stage are separated by the change
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Figure 1: Local curves of some key TBM operation parameters in Ring 550.
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Figure 2: A section of normal tunneling data in Ring 550.
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point m. Figure 3 depicts the change points of AV, TTF, and
CT in Ring 550. -e vertical dashed line represents the time
of change point, and the vertical solid line identifies the starts
and ends of the normal tunneling data. It could also be
observed that the change points identified from AV, TTF,
and CT differ slightly. So, the mean of the three change
points is taken as the estimated change point. Figure 4 shows
the estimated segmented regression lines of the three op-
eration parameters on time, where the vertical dashed line
indicates the change point.

2.3. Denoising and Normalization. To reduce the interfer-
ence of the outliers, principal “3σ” is employed to remove the
data out of the interval [x − 3σ, x + 3σ], where x and σ
represent the sample mean and standard deviation of op-
eration parameter x, respectively. All the operation pa-
rameters are also scaled valued in the interval [0, 1], i.e.,

x′ �
x − xmin

xmax − xmin
, (2)

where xmin and xmax are the minimum and maximum of the
sample of x. -en, the Pearson correlation coefficients are
calculated and sorted to select the important parameters,
which are strongly related to cutterhead torque.

3. Regression Model for Cutterhead Torque on
Other Operation Parameters

In this section, we will establish different regression models
to capture the relationship between cutterhead torque and
other operation parameters based on the start-up dataset
and the stationary driving dataset.

3.1. Regression Model for Start-Up Stage. -e data collected
by the State Key Laboratory of Shield Tunneling Technology
of China on the intelligent big data platform of shield

tunneling construction contain more than 500 attributes.
-e key attributes (or parameters) include CT, propelling
pressure of group A of cylinders (PPA), propelling pressure
of group B of cylinders (PPB), propelling pressure of group
C of cylinders (PPC), propelling pressure of group D of
cylinders (PPD), AV, CRS, and rotation speed of screw
conveyor (RSSC). To reduce the influence of the geological
conditions and type of TBM, the construction data with the
same type of TBM and similar geological conditions are
sampled. For example, we sampled the dataset from the
subway tunnel project Line 4 in Zhengzhou of China, Hui-
Shang section, Rings 550–556, where themain geology is fine
sand. -e standard penetration value is 23.1, and the di-
ameter of the TBM is 6.8m. After normalizing of the start-up
dataset, we compute the correlation coefficient matrix of the
selected operation parameters, and the results are listed as
follows.

-e correlation coefficient between the variables (pa-
rameters) xi and xj is defined as

Cor xi, xj  �
Cov xi, xj 

�������
Var xi( 

 �������
Var xj 

 . (3)

Larger |Cor(xi, xj)| means stronger linear relationship
between parameters xi and xj. It could be observed from
Table 1 that the cutterhead torque has strong linear rela-
tionship with the advance velocity, the rotation speed of
screw conveyor, and the propelling pressure of four groups
of cylinders. -us, the following linear regression model is
employed to predict cutterhead torque:

y � β0 + 
7

i�1
βixi + ε, (4)

where the response variable y is the value of cutterhead
torque, the operation variables xi (i � 1, 2, . . . , 7) are the
values of CRS, AV, PPA, PPB, PPC, PPD, and RSSC,
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Figure 3: -e regression change points of the normal tunneling data segments in Ring 550.
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respectively. Without loss of generality, all the variables are
normalized. -e unknown coefficients βi(i � 0, 1, 2, . . . , 7)

can easily be estimated via the least square method, and the
estimators are denoted by βi. Consequently, given the op-
eration parameters xi (i � 1, 2, . . . , 7), the cutterhead torque
can be predicted as y � β0 + 

7
i�1

βixi.
Although some machine learning algorithms such as

random forest model (RFM), support vector regression
(SVR), artificial neural network (RNN), and long short-term
memory neural network (LSTM) could be used to predict
cutterhead torque, here we prefer to apply the linear re-
gression model (LM) for its good interpretability, less
computational complexity, and especially for the strong
linear correlation between cutterhead torque and other
operation parameters shown in Table 1. -e analysis of
actual data in the next section demonstrates that the LM
performs well compared with SVR and RFM.

3.2. Regression Model for Stationary Driving Stage.
Different from the start-up stage, the cutterhead torque and
other parameters in the stationary driving stage are in a
relatively steady state. Observations of each parameter can
be regarded as a stationary time series, which can be verified
by the augmented Dickey–Fuller (ADF) stationarity test. Let

Xt|t � 0, 1, 2, . . .  be a time series with expectation
μt � E(Xt), variance σ2t � Var(Xt), and covariance
c(s, t) � Cov(Xs, Xt), and if μt � μ, σ2t � σ2, and
c(s, t) � c(t − s), Xt|t � 0, 1, 2, . . .  are called a stationary
time series. If the p value of the ADF test for the time series is
close to zero, we can conclude the time series are stationary.

For stationary time series, the lagged order p can be
determined by autocorrelation function (ACF) and partial
autocorrelation function (PACF). As shown in Figure 2, the
cutterhead torque in the stationary driving stage could be
demonstrated as a stationary time series. In addition, there is
a strong correlation between cutterhead torque and other
operating parameters during the stationary driving stage.
Specifically, we take the dataset which is sampled from Rings
550–556 of Hui-Shang section of the subway tunnel project
Line 4 in Zhengzhou of China as an example. After ex-
traction and normalization for the stationary driving dataset,
we obtain the correlation matrix among cutterhead torque
and other key operation parameters shown in following
table.

In Table 2, RA (rolling angle) and PA (pitch angle) are
other two parameters. It can be observed that the correlation
coefficients are all above 0.6 between cutterhead torque and
other seven parameters, CRS, AV, PPA, PPB, PPC, PPD, and
RSSC.

Table 1: Correlation coefficient matrix of some key operation parameters based on the start-up dataset.

CRS AV PPA PPB PPC PPD RSSC CT
CRS 1 −0.13643 −0.02136 −0.00857 −0.04812 −0.09561 −0.09722 0.12934
AV −0.13643 1 0.73151 0.70609 0.80865 0.25975 0.95053 0.75640
PPA −0.02136 0.73151 1 0.99760 0.95197 0.34319 0.73406 0.83770
PPB −0.00857 0.70609 0.99760 1 0.94163 0.34318 0.71289 0.83657
PPC −0.04812 0.80865 0.95197 0.94163 1 0.36540 0.79748 0.80595
PPD −0.09561 0.25975 0.34319 0.34318 0.36540 1 0.28389 0.15211
RSSC −0.09722 0.95053 0.73406 0.71289 0.79748 0.28389 1 0.79534
CT 0.12934 0.75640 0.83770 0.83657 0.80595 0.15211 0.79534 1
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Figure 4: -e regression model fitting of the first two normal tunneling data sections in Ring 550.
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Because of the autocorrelation of cutterhead torque and
strong linear correlation with other parameters, the LSTM
neural network is employed to predict cutterhead torque for
stationary driving stage. It is a special recursive neural
network (RNN) with the hidden nodes (also called cells)
incorporating three kinds of gate operations, including the
input gate, the forget gate, and the output gate. By tuning the
status of these gates, the information flowing among LSTM’s
hidden layers could be controlled and the drawback of
training the traditional RNNs could be overcome, where
vanishing gradients or exploding gradients usually occur
when the network is used to process a long input sequence
[20, 21].

In the prediction of cutterhead torque in the shield
tunneling stage, the use of LSTM neural network model can
not only take the influence of the previous moment of
cutterhead torque into consideration but also cover the
correlation between cutterhead torque and other key
equipment parameters. In this way, while ensuring the ac-
curacy of prediction, it can also enhance the adaptive ability
of the model and expand the applicable scope of the model.

-e LSTM network for prediction of cutterhead is set as
follows:

Input: CRS, RSSC, PPA, PPB, PPC, PPD, and CT, with
the training window width p

Output: CT at next time instant

3.3. Evaluation Statistic for Regression Model. R2 is usually
employed to assess the performance of the regression model,
which is defined as follows:

R
2

� 1 −


N
j�1 yj − yj 

2


N
j�1 yj − y 

2 , (5)

where yj is the jth observation of the response, yj is its
predicted value, y is the sample mean of response, N is
sample size. Closer to 1 as R2 is, the performance of the
regression model would be better.

4. Analysis of Actual Data

In this section, some actual data sets including subway
tunnel projects in Zhengzhou, Luoyang and Dalian of China
are analyzed to illustrate the effectiveness of the proposed
methods and models. Firstly, the data are denoised and
normalized. Secondly, start-up data set and stationary
driving data set are extracted by the change point detection
method based on linear regression models. -irdly, the
segmented regression models for the start-up stage and
stationary driving stage are established, some other machine
learning models as SVR and RFM are also compared.

4.1. Separation between Start-Up and Stationary Driving
Stages. All the phenomenon of the separations between
start-up and stationary driving stages are similar, so we only
present Figure 5 as an example, where PDA denotes the
propelling displacement of group A of cylinders. Figure 5
shows the change points by dotted vertical lines, where the
data are from Ring 552 of Hui-Shang section of the subway
tunnel project Line 4 in Zhengzhou of China.

4.2. Linear Regression Model for Cutterhead in the Start-Up
Stage. Take the data from Rings 550–556 of Hui-Shang
section of the tunnel project Line 4 in Zhengzhou as an
example, and the data from the first six rings are used as
training data and the last ring as testing data. -e estimated
linear regression model for cutterhead torque is obtained as
follows:

y � −0.13 + 0.09x1 + 0.06x2 − 0.74x3 + 1.79x4 − 0.48x5 − 0.16x6 + 0.54x7, (6)

where all the variables are normalized, and xi(i � 1, 2, . . . , 7)

represent CRS, AV, PPA, PPB, PPC, PPD, and RSSC, re-
spectively. Figures 6–8 show the predictive curves and true

curves on testing data by the proposed linear regression
model, SVR, and RFM, respectively. -e predictive curves
on the nonsegmented data by the linear regressionmodel are

Table 2: Correlation coefficients among cutterhead torque and other key parameters on the stationary driving dataset.

CRS AV PPA PPB PPC PPD RSSC RA PA CT
CRS 1 0.83 0.65 0.81 0.78 0.55 0.84 0.25 0.21 0.91
AV 0.83 1 0.74 0.85 0.88 0.61 1.00 0.29 0.25 0.95
PPA 0.65 0.74 1 0.78 0.76 0.72 0.75 0.68 −0.02 0.76
PPB 0.81 0.85 0.78 1 0.84 0.58 0.85 0.52 −0.02 0.89
PPC 0.78 0.88 0.76 0.84 1 0.63 0.88 0.42 0.13 0.88
PPD 0.55 0.61 0.72 0.58 0.63 1 0.62 0.23 0.28 0.60
RSSC 0.84 1.00 0.75 0.85 0.88 0.62 1 0.29 0.26 0.95
RA 0.25 0.29 0.68 0.52 0.42 0.23 0.29 1 −0.53 0.34
PA 0.21 0.25 −0.02 −0.02 0.13 0.28 0.26 −0.53 1 0.19
CT 0.91 0.95 0.76 0.89 0.88 0.60 0.95 0.34 0.19 1

6 Discrete Dynamics in Nature and Society



depicted in Figure 9. It is easy to see that the linear regression
model performs well compared with SVR and RFM for start-
up datasets, while the linear regression model performs
poorly for nonsegmented data. -is fact also reveals that the
segmented modeling is necessary for better prediction of
cutterhead torque.

In addition, the comparison results for these models on
different datasets are presented in Table 3. -e data are
processed by using Python 3.7 in a computer with Core i5-

6200U at 2.4 GHz, 8 GB RAM, Windows 10 Operation
System. For the SVR, the Gaussian radial basis function
kernel is employed, where c � 0.1, the penalty parameter
C � 1000, and ∈ � 0.1. For RFM, the number of regression
trees is selected as 13 and the maximal depth of the trees
is 9.

-e estimated linear regression model on the dataset
sampled from the subway tunnel project Line 1 in Luoyang
of China, some section, Rings 104–106, is as follows:
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Figure 5: Segmentation results of construction data in ring 552 of hui-shang section, line 4 of zhengzhou.
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Figure 6: Effect of predicting cutterhead torque by using the linear regression model on the testing dataset.
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y � −0.07 + 0.40x1 + 0.31x2 + 0.06x3 + 0.12x4 − 0.04x5 + 0.05x6 + 0.08x7. (7)

Also, the estimated linear regression model on the
dataset sampled from the subway tunnel project Line 5 in
Dalian of China, Rings 8047-8048, is as follows:

y � −0.10 − 0.14x1 + 0.31x2 + 0.743 + 0.48x4 − 0.56x5 + 0.04x6 + 0.13x7. (8)
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Figure 7: Effect of predicting cutterhead torque by using the SVR model on the testing dataset.
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Figure 9: Effect of predicting cutterhead torque by using the linear regression model on the nonsegmented dataset.

Table 3: Comparison of scores with different models.

Line Geology Model
Statistic

Training data
R2

Testing data
R2 RMSE Time (s)

Zhengzhou, Line 4, Rings
550–556

Fine sand, penetration value 23.1, surrounding
rock grade VI

LM 0.81 0.78 548.3 0.88
SVR 0.97 0.75 544.1 2.24
RFM 0.99 0.81 497.8 1.78

Luoyang, Line 1, Rings
104–106

Silty clay, penetration value 14.3, surrounding
rock grade V

LM 0.95 0.94 122.9 0.02
SVR 0.92 0.88 138.3 1.33
RFM 0.99 0.96 121.9 0.42

Dalian, Line 5, Rings 47-48 Moderately weathered limestone, surrounding
rock grade V

LM 0.78 0.77 259.3 0.03
SVR 0.94 0.81 272.7 2.77
RFM 0.99 0.79 245.2 1.36
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Figure 10: ACF and PACF charts for cutterhead series.
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As shown in Table 3, the linear regression model per-
forms better on testing data than SVR and RFM, and the
latter two models overfit the training data. In addition, the
time elapsed for LM is much less than that for SVR and
RFM. Because of the well interpretability, facility for com-
putation of the linear regression model, it is used to predict
the cutterhead torque in the start-up stage.

4.3. LSTM Prediction Model for Cutterhead in the Stationary
Driving Stage. Take the dataset from the subway tunnel
project Line 4 in Zhengzhou of China, Hui-Shang section,
Rings 520–641 as an example; after removing the outliers,
the sample size of the stationary driving dataset is 248400.
Among these data, sample observations of 100 rings are
selected as training data and the remaining 49680 obser-
vations are taken as testing ones. -e ADF test for sta-
tionary of cutterhead torque is conducted, and the p value
is 4.798 × 10− 24, which is near to zero, so we can conclude
that the cutterhead torque series are stationary. -e ACF
and PACF are shown in Figure 10; it can be seen that the
PACF is truncated after order of p � 1. -e predictive
curves by LSTM and true curves of cutterhead on testing
data are depicted in Figure 11, and R2 � 0.97. -e results
show that the LSTM model well simulates the relationship
between cutterhead torque and other operating parameters.
Considering both the dependence of the series and influ-
ences of other operation parameters, the LSTM performs
well in predicting cutterhead torque in the stationary
driving stage.

5. Conclusions

According to the characteristics of the key operation pa-
rameters, the idea of segmenting data is initiated and the
change point detection based on the linear regression model

is employed to separate the start-up and stationary driving
stages. -en, segmented regression models are established
for predicting cutterhead torque. -e main conclusions are
briefly presented as follows:

(1) -e proposed change point detection method based
on the linear regressionmodel separates the data into
start-up dataset and stationary driving dataset quite
well.

(2) In the start-up stage, CT, CRS, and TTF increase
quickly and cutterhead torque has strong linear
correlation with other key operation parameters.
Compared with machine learning models such as
SVR and RFM, the established linear model per-
forms better. Meanwhile, the linear model merits the
good interpretability and easy feasibility, which is a
perfect choice to predict the cutterhead torque in the
start-up stage.

(3) In the stationary driving stage, considering the de-
pendence of the parameter series and the influence of
other operation parameters, the LSTM model is
employed to predict cutterhead torque. -e analysis
of actual data demonstrates that the LSTM performs
quite well.

(4) -e proposed segmented cutterhead torque predic-
tive model can also be applied for early warning. In
brief, first, the cutterhead torque prediction model
based on the dataset from previous two rings is
established; then, the cutterhead torque is predicted
to judge whether the prediction error is bigger than a
preset threshold value, and a warning will be issued if
it is. -is application is currently being tested on the
intelligent big data platform of shield and TBM
construction in the State Key Laboratory of Shield
Machine and Boring Technology.
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Figure 11: -e prediction effect of LSTM model.
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Next, we will further optimize the modeling process
according to the test results, find effective geological con-
dition classification methods, and explore the establishment
of cutterhead torque automatic alarm system, so as to better
improve the safety of shield construction.
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