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In this study, a deterministic SEQIR model with standard incidence and the corresponding stochastic epidemic model are
explored. In the deterministic model, the reproduction number is given, and the local asymptotic stability of the equilibria is
proved.When the reproduction number is less than unity, the disease-free equilibrium is locally asymptotically stable, whereas the
endemic equilibrium is locally asymptotically stable in the case of a reproduction number greater than unity. A stochastic
expansion based on a deterministic model is studied to explore the uncertainty of the spread of infectious diseases. Using the
Lyapunov function method, the existence and uniqueness of a global positive solution are considered. )en, the extinction
conditions of the epidemic and its asymptotic property around the endemic equilibrium are obtained. To demonstrate the
application of this model, a case study based on COVID-19 epidemic data from France, Italy, and the UK is presented, together
with numerical simulations using given parameters.

1. Introduction

At the end of 2019, COVID-19 was reported in Wuhan,
China [1], setting the beginning of a global epidemic. Now,
there are more than 200 countries trapped in the epidemic
disaster, which has seriously affected the development of the
society. It was found that COVID-19 was caused by the
SARS-CoV-2 coronavirus [2, 3]. )is coronavirus mainly
spreads in three ways: (i) direct transmission, which refers to
the infection caused by patient’s sneezing, coughing, and
talking droplets, and the direct inhalation of exhaled gas at a
short distance; (ii) aerosol transmission, which refers to
droplet mixing in the air to form an aerosol that can lead to
infection after inhalation; (iii) contact transmission, which
refers to the droplet deposited on the surface of an object,
contact with contaminated hands, and then contact with the
oral cavity, nasal cavity, eyes, and other mucous membranes,
resulting in infection.

In the absence of a specific therapeutic method, gov-
ernments can only do their best to hinder the spread of the
epidemic through measures such as population lockdown,

reasonable allocation of medical resources, and calls for
public health (mask wearing, avoidance of places with many
people, meetings with reduced attendance, etc.) [4, 5]. )ese
measures can effectively prevent epidemics and delay the
arrival of epidemic peaks [6]. For now, through the afore-
mentioned measures and vaccine production, the epidemic
situation has been controlled in many countries; however,
there are still some countries with severe epidemic
situations.

Mathematical modeling is a suitable approach to de-
scribe the spread of diseases and predict their epidemic trend
[7]. Based on the spread characteristics of diseases, many
epidemic models, e.g., SIR, SEIR, and SIQR [8–12], were
proposed. Using mathematical models to describe infectious
diseases can help to better understand the spread trends of
diseases and propose reasonable control methods and
suggestions. Novel coronavirus pneumonia models were
reported by scholars who have been involved in this task
since the outbreak of the epidemic. Tang et al. constructed an
SEIR model in [13]; their results indicate that the number of
infected people and the propagation of infectious diseases
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can be reduced when governments take certain measures. In
[14], the author predicted that the spread of infectious
disease would be costly. After that, the governments of the
UK and USA established strict movement restrictions. Many
models, related suggestions, and opinions on COVID-19
have been provided [15–21].

Although there are many mathematical models, few
considered the inherent uncertainties in these models.
Manski and Molinari [22] showed that there is an uncer-
tainty in the epidemic transmission process. )erefore, as-
suming that stochastic disturbance applied to a model is
suitable, some stochastic epidemic models were proposed
[18, 23–26]. In [18], the authors studied an SLIRD with the
deterministic and stochastic models to analyze actual
COVID-19-infected cases in Spain. In the numerical sim-
ulations, they fitted data from Spain and obtained the daily
basic reproduction number. )us, they predicted the epi-
demic situation for the next few months. In [23], by
extending the SIR epidemiological model, the authors
established a random propagation model for additional
modeling of whether an individual is far from a crowded
area. )e results showed that the propagation of the epi-
demic in Japan would gradually slow down by reducing the
time spent in crowded zones. Anwarud et al. analyzed a
stochastic SIQ model and obtained sufficient conditions for
disease extinction, disease existence, and stationary distri-
bution in [24]. )e numerical simulations were divided into
two parts: fitting data from Khyber Pakhtunkhwa, Pakistan,
and verification of the theoretical results for the given pa-
rameters. In [25], the authors studied an SEQIR model with
Markovian switching, established a random threshold of
disease extinction and persistence, and used the data from
Indian states to confirm their conclusions. In [26], an epi-
demic system was considered through an additive fractional
white noise. It was indicated that the epidemic under
fractional random settings may be more suitable for mod-
eling than deterministic modeling. Based on the above
studies, an SEQIRmodel with standard incidence is analyzed
in this study, together with deterministic and stochastic
models. A case study of COVID-19 epidemic data from
France, Italy, and the UK is presented, and numerical
simulations using given parameters are reported.

)e remainder of this paper is organized as follows. In
the next section, deterministic and stochastic SEQIR models
with standard incidence are described. )e dynamic analysis
of the deterministic model is presented in Section 3, and an
analysis of the stochastic system is presented in Section 4.
Numerical simulations and application to the COVID-19
epidemic are described in Section 5. )e paper ends with a
discussion in Section 6.

2. Model Formulation

)e entire population is divided into five classes according to
its states, namely, susceptible S(t), exposed E(t), quaran-
tined Q(t), hospitalized infected I(t), and recovered R(t).
)en, N(t) � S(t) + E(t) + Q(t) + I(t) + R(t). In [19],

Mandal et al. constructed an SEQIR model with optimized
control and provided advice to Indian cities. Based on their
work, Brahim et al. considered a model with Markovian
switching and generalized incidence in [25]. Interestingly,
they considered that people who are exposed and asymp-
tomatic are infectious. )e standard incidence rate is more
suitable for infectious disease models with a large pop-
ulation. Based on these results, we consider an SEQIR model
with standard incidence as follows:

dS(t)

dt
� A −

βS(t)E(t)

N(t)
+ b1Q(t) − dS(t),

dE(t)

dt
�
βS(t)E(t)

N(t)
− b2 + α + d( 􏼁E(t),

dQ(t)

dt
� b2E(t) − b1 + c + d( 􏼁Q(t),

dI(t)

dt
� αE(t) + cQ(t) − (η + d + δ)I(t),

dR(t)

dt
� ηI(t) − dR(t).

(1)

)e constant input of the susceptible population is A; β
represents the transmission rate of the disease; α is the rate of
the exposed class removed from the infected class; b2 is the
portion of the exposed class moving to the quarantined class;
b1 and c indicate the rate at which the quarantined people
become susceptible and infected types, respectively; the
recovery rate of hospitalized infected people is η; d is the
natural mortality rate; and δ is the diseased death rate.

A popular technique to incorporate stochasticity into a
deterministic model is parametric perturbation. Following
this method, the transmission rate, β, is replaced by
β⟶ β + σdB(t). )erefore, we have a stochastic model
defined as follows:

dS(t) � A −
βS(t)E(t)

N(t)
+ b1Q(t) − dS(t)􏼠 􏼡dt −

σS(t)E(t)

N(t)
dB(t),

dE(t) �
βS(t)E(t)

N(t)
− b2 + α + d( 􏼁E(t)􏼠 􏼡dt +

σS(t)E(t)

N(t)
dB(t),

dQ(t) � b2E(t) − b1 + c + d( 􏼁Q(t)( 􏼁dt,

dI(t) � (αE(t) + cQ(t) − (η + d + δ)I(t))dt,

dR(t) � (ηI(t) − dR(t))dt.

(2)

Note that B(t) is a standard independent Brownian
motion, and the intensity of the white noise is σ. An initial
condition should be satisfied when analyzing systems (1) and
(2):

S(0)≥ 0, E(0)≥ 0, Q(0)≥ 0, I(0)≥ 0, R(0)≥ 0. (3)
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In the following analysis, we declare that the standard
Brownian motion in the system is defined on a complete
probability space (Ω,F, P) with a filtration Ft􏼈 􏼉t∈R+

satis-
fying the usual conditions (i.e., it is right continuous and
increasing while F0 contains all P-null sets).

3. Analysis of the Deterministic Model

In this section, we analyze system (1) without stochastic
perturbation. In this part, some of the basic dynamics are
analyzed, including the basic reproduction number and
stability of the equilibria.

3.1. &e Basic Reproduction Number. An important pa-
rameter in infectious diseases is the basic reproduction
number which can determine the outbreak or extinction of
the disease. )erefore, we give it by the next-generation
matrix method [27]. Because the infection classes involve E,
Q, and I classes, we consider the three classes:

dE(t)

dt
�
βS(t)E(t)

N(t)
− b2 + α + d( 􏼁E(t),

dQ(t)

dt
� b2E(t) − b1 + c + d( 􏼁Q(t),

dI(t)

dt
� αE(t) + cQ(t) − (η + d + δ)I(t).

(4)

Infection subsystem (4) has transmission matrix F and
transition matrix V, where

F �

β 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V �

b2 + α + d 0 0

− b2 b1 + c + d 0

− α − c η + d + δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5)

So, according to this method, we can get that the spectral
radius of FV− 1 is R0 � β/(b2 + α + d).

3.2. &e Equilibria. System (1) has two equilibria, the dis-
ease-free equilibrium E0 � (A/d, 0, 0, 0, 0) and the endemic
equilibrium E∗ � (S∗, E∗, Q∗, I∗, R∗), respectively, where

S
∗

�
b2 + α + d( 􏼁N

∗

β
,

E
∗

�
− N
∗
d α + b2 + d( 􏼁 + Aβ( 􏼁 b1 + c + d( 􏼁

β (α + d) b1 + c + d( 􏼁 + b2(c + d)( 􏼁
,

Q
∗

�
Aβ − N

∗
d b2 + α + d( 􏼁􏼂 􏼃b2

b1 + b2 + α + c + d( 􏼁d + b1 + c( 􏼁α + b2c( 􏼁β
,

I
∗

�
α b1 + c + d( 􏼁 + b2c

b2(η + d + δ)
Q
∗
,

R
∗

�
η
d

I
∗
.

(6)

Here, N∗ � S∗ + E∗ + Q∗ + I∗ + R∗. It is worth noting
that the endemic equilibrium E∗ exists when R0 > 1.

3.3.&e Stability of Two Equilibria. In this part, we study the
local asymptotic stability of two equilibria.

Theorem 1. &e disease-free equilibrium E0 is locally as-
ymptotically stable if R0 < 1.

Proof. )e Jacobian matrix at the disease-free equilibrium
of system (1) is given by

J|E0
�

− d − β b1 0 0

0 β − b2 + α + d( 􏼁 0 0 0

0 b2 − b1 + c + d( 􏼁 0 0

0 α c − (η + d + δ) 0

0 0 0 η − d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

)e characteristic equation of system (1) at its disease-
free equilibrium is given by

(λ + d) λ + b2 + α + d( 􏼁 1 − R0( 􏼁( 􏼁 λ + b1 + c + d( 􏼁

(λ + η + d + δ)(λ + d) � 0.
(8)

It is easy to see that the characteristic values of the Ja-
cobian matrix are negative if and only if R0 < 1. Hence, the
disease-free equilibrium of system (1) is locally asymptoti-
cally stable if R0 < 1. □

Theorem 2. &e endemic equilibrium E∗ is locally asymp-
totically stable for R0 > 1.

Proof. )e Jacobian matrix at the endemic equilibrium of
system (1) is given by
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J|E∗ �

−
βE
∗

N
∗ − d −

βS
∗

N
∗ b1 0 0

βE
∗

N
∗

βS
∗

N
∗ − b2 + α + d( 􏼁 0 0 0

0 b2 − b1 + c + d( 􏼁 0 0

0 α c − (η + d + δ) 0

0 0 0 η − d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

)e characteristic equation of system (1) at its endemic
equilibrium is given by

(λ + d)(λ + η + d + δ) λ3 + a1λ
2

+ a2λ + a3􏼐 􏼑 � 0, (10)

where a1 � b1 + c + 2 d + (βE∗/N∗), a2 � ((βE∗/N∗) + d)

(b1 + c + d) + (β2E∗S∗/(N∗)2), and a3 � (βE∗/N∗)[b1(α+

d) + (c + d)(b2 + α + d)]. It is clear that the characteristic
polynomial has two negative eigenvalues, and we study the
last cubic polynomial. By calculation, we can verify
a1, a2, a3 > 0 and a1a2 − a3 > 0. Hence, according to the
Routh–Hurwitz criterion, we can know that the endemic
equilibrium of system (1) is locally asymptotically stable for
R0 > 1. □

4. Analysis of the Stochastic Model

Theorem 3. For any initial values
(S(0), E(0), Q(0), I(0), R(0)) ∈ R5

+, there exists a unique
global solution (S(t), E(t), Q(t), I(t), R(t)) ∈ R5

+ of system
(2) for all t≥ 0, and the solution will remain in R5

+ with
probability 1, i.e., (S(t), E(t), Q(t), I(t), R(t)) ∈ R5

+ for all
t≥ 0 almost surely.

Proof. Since the coefficients of system (2) are locally Lip-
schitz continuous on R+, for any initial value

(S(0), E(0), Q(0), I(0), R(0)) ∈ R5
+, there exists a unique

local solution (S(t), E(t), Q(t), I(t), R(t)) on [0, τe), where
τe represents the explosion time [28]. If we can prove τe �∞
a.s, then the solution is global. To this end, let k0 ≥ 1 be
sufficiently large such that S(0), E(0), Q(0), I(0), and R(0)

all lie in the interval [1/k0, k0]. For each integer k≥ k0, we
can define the stopping time [28] through
τk � inf t ∈ [0, τe): S􏼈 (t) ∉ (1/k, k) orE(t) ∉ (1/k, k) or
Q(t) ∉ (1/k, k) or I (t) ∉ (1/k, k) orR(t) ∉ (1/k, k)}, where,
throughout this paper, we set inf∅ �∞ (as usual ∅ rep-
resents the empty set). Obviously, τk is increasing as
k⟶∞. Let τ∞ � limk⟶∞τk, whence τ∞ ≤ τe a.s. If we can
show τ∞ � +∞, then τe � +∞ and
(S(t), E(t), Q(t), I(t), R(t)) ∈ R5

+ a.s for all t≥ 0. )at is to
say, to complete the proof, all we need is to show that τ∞ �

+∞ a.s. If this assertion is false, then there exists a pair of
constants T> 0 and ε1 ∈ (0, 1) such that P τ∞ ≤T􏼈 􏼉> ε1.
)ere is an integer k1 ≥ k0 such that P τk ≤T􏼈 􏼉≥ ε1 for all k≥
k1. Define a Lyapunov function V: R+⟶ R+ by V(S, E, Q,

I, R) � (S − 1 − ln S) + (E − 1 − ln E) + (Q − 1 − ln Q) + (I

− 1 − ln I) + (R − 1 − ln R).
Since u − 1 − ln u≥ 0 for any u> 0, the function V is

nonnegative. Making use of It􏽢o’s formula (see [28]) to V, we
get

LV � 1 −
1
S

􏼒 􏼓 A −
βSE

N
+ b1Q − dS􏼠 􏼡 +

σ2E2

2N
2 + 1 −

1
E

􏼒 􏼓
βSE

N
− b2 + α + d( 􏼁E􏼠 􏼡 +

σ2S2

2N
2

+ 1 −
1
Q

􏼠 􏼡 b2E − b1 + c + d( 􏼁Q( 􏼁 + 1 −
1
I

􏼒 􏼓(αE + cQ − (η + d + δ)I) + 1 −
1
R

􏼒 􏼓(ηI − dR)

� A −
βSE

N
+ b1Q − dS −

A

S
+
βE

N
−

b1Q

S
+ d +

σ2E2

2N
2 +

βSE

N
− b2 + α + d( 􏼁E −

βS

N

+ b2 + α + d( 􏼁 +
σ2S2

2N
2 + b2E − b1 + c + d( 􏼁Q −

b2E

Q
+ b1 + c + d( 􏼁 + αE + cQ

− (η + d + δ)I −
αE

I
−

cQ

I
+(η + d + δ) + ηI − dR −

ηI

R
+ d

≤A + β + α + b1 + b2 + η + δ + c + 5 d + σ2 ≜K,

dV � LVdt +
σ(E − S)

N
dB(t)≤Kdt +

σ(E − S)

N
dB(t),

(11)
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where K is a positive constant. Integrating from 0 to τk∧T �

min τk, T􏼈 􏼉 and then taking the expectation on both sides, we
obtain

EV S τk∧T( 􏼁, E τk∧T( 􏼁, Q τk∧T( 􏼁, I τk∧T( 􏼁, R τk∧T( 􏼁( 􏼁≤V(S(0), E(0), Q(0), I(0), R(0)) + KE τk∧T( 􏼁. (12)

)us, we have

EV S τk∧T( 􏼁, E τk∧T( 􏼁, Q τk∧T( 􏼁, I τk∧T( 􏼁, R τk∧T( 􏼁( 􏼁≤V(S(0), E(0), Q(0), I(0), R(0)) + KT. (13)

Set Ωk � τk ≤T􏼈 􏼉 for k≥ k1, and we get P(Ωk)≥ ε1. Note
that, for every ω ∈ Ωk, there exists that S(τk,ω),

E(τk,ω), Q(τk,ω), I(τk,ω), R(τk,ω) equals either k or (1/k).

)erefore, V(S(τk,ω), E(τk,ω), Q(τk,ω), I(τk,ω), R(τk,ω))

is no less than either k − 1 − ln k or (1/k) − 1 − ln
(1/k) � (1/k) − 1 + ln k. )erefore, we can see

V S τk,ω( 􏼁, E τk,ω( 􏼁, Q τk,ω( 􏼁, I τk,ω( 􏼁, R τk,ω( 􏼁( 􏼁≥ (k − 1 − ln k)∧
1
k

− 1 + ln k􏼒 􏼓. (14)

)en, we get

V(S(0), E(0), Q(0), I(0), R(0)) + KT≥E 1Ωk(ω)V S τk,ω( 􏼁, E τk,ω( 􏼁, Q τk,ω( 􏼁, I τk,ω( 􏼁, R τk,ω( 􏼁( 􏼁􏽨 􏽩

≥ ε1(k − 1 − ln k)∧
1
k

− 1 + ln k􏼒 􏼓,

(15)

where 1Ωk(ω) is the indicator function of Ωk. Letting
k⟶∞,

+∞>V(S(0), E(0), Q(0), I(0), R(0)) + KT � +∞. (16)

is a contradiction, and thus, we can get τ∞ � +∞ a.s., which
implies that (S(t), E(t), Q(t), I (t), R(t)) ∈ R5

+ for all t ∈ R+.
)is completes the proof. □

Remark 1. Define Γ � (S(t), E(t), Q(t), I(t), R(t)) ∈ R5
+:􏼈

A/(d + δ)≤ S(t) + E(t) + Q(t) + I(t) + R (t)≤ (A/d)}. By
system (2), we can get (d/dt)(S + E + Q + I + R) �

A − d(S + E + Q + I + R) − δI. Next, we have A − (d + δ)

(S + E + Q + I + R)≤A − d(S + E + Q + I + R) − δI≤A − d

(S + E + Q + I + R). )erefore, we can obtain the solution of
system (2) in the region Γ. )en, we can give some general
conclusions and results.

Theorem 4. Let (S(t), E(t), Q(t), I(t), R(t)) be the positive
solution of system (2) with the initial value
(S(0), E(0), Q(0), I(0), R(0)) ∈ R5

+. If the assumption
(β2/2σ2)< b2 + α + d holds, then the disease will go to ex-
tinction exponentially with probability one, i.e.,

lim
t⟶∞

E(t) � lim
t⟶∞

Q(t) � lim
t⟶∞

I(t) � lim
t⟶∞

R(t) � 0, a.s.

(17)

Proof. Applying It􏽢o’s formula, we have

d ln E(t) �
βS

N
− b2 + α + d( 􏼁 −

σ2S2

2N
2􏼢 􏼣dt +

σS

N
dB(t).

(18)

Integrating (18) from 0 to t, we get
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ln E(t) − ln E(0) � 􏽚
t

0

βS(u)

N(u)
− b2 + α + d( 􏼁 −

σ2S2(u)

2N
2
(u)

􏼢 􏼣du + 􏽚
t

0

σS(u)

N(u)
dB(u)

� 􏽚
t

0
−
σ2S2(u)

2N
2
(u)

+
βS(u)

N(u)
􏼠 􏼡du − b2 + α + d( 􏼁t + M(t),

(19)

where M(t) � 􏽒
t

0(σS(u)/N(u))dB(u) is a continuous local
martingale [28] whose quadratic variation is

〈M, M〉(t) � σ2 􏽚
t

0

S
2
(u)

N
2
(u)

du. (20)

Applying )eorem 7.4 in [28], p44, we can get

P sup
0≤t≤k

M(t) −
c

2
〈M, M〉(t)􏼔 􏼕>

2
c
ln k􏼨 􏼩≤

1
k
2, (21)

where 0< c< 1 and k> 1 is a random integer. Using the
Borel–Cantelli lemma [28], we obtain that, for almost all

ω ∈ Ω, there exists a random integer k0(ω) such that, for all
k> k0,

sup
0≤t≤k

M(t) −
c

2
〈M, M〉(t)􏼔 􏼕≤

2
c
ln k. (22)

)at is to say,

M(t)≤
c

2
σ2 􏽚

t

0

S
2
(u)

N
2
(u)

du +
2
c
ln k, for any 0≤ t≤ k.

(23)

Taking it to (19), we obtain

ln E(t) − ln E(0)≤ 􏽚
t

0
−
1
2

(1 − c)
σ2S2(u)

N
2
(u)

+
βS(u)

N(u)
􏼠 􏼡du − b2 + α + d( 􏼁t +

2
c
ln k. (24)

Observing the integrand function, we can do the
following:

−
1
2

(1 − c)
σ2S2(u)

N
2
(u)

+
βS(u)

N(u)
≤

β2

2(1 − c)σ2
. (25)

Consequently, we get

ln E(t) − ln E(0)≤
β2

2(1 − c)σ2
t − b2 + α + d( 􏼁t +

2
c
ln k.

(26)

)erefore, for k − 1≤ t≤ k, one can see that

ln E(t)

t
≤
ln E(0)

t
+

β2

2(1 − c)σ2
− b2 + α + d( 􏼁 +

2
c

ln k

k − 1
.

(27)

Letting k⟶ +∞, t⟶ +∞, (ln E(0)/t)⟶ 0, and
(ln k/(k − 1))⟶ 0. We can obtain

limsup
t⟶+∞

ln E(t)

t
≤

β2

2(1 − c)σ2
− b2 + α + d( 􏼁 a.s. (28)

Letting c⟶ 0 gives

limsup
t⟶+∞

ln E(t)

t
≤

β2

2σ2
− b2 + α + d( 􏼁 a.s, (29)

which shows that limt⟶+∞E(t) � 0 a.s.

On the other hand, there exists a constant T such that
E(w)≤ ε, t>T. Applying the third equation of system (2), we
get

dQ(t) � b2E − b1 + c + d( 􏼁Q􏼂 􏼃dt≤ b2ε − b1 + c + d( 􏼁Q􏼂 􏼃dt.

(30)

Using the comparison theorem, we have

limsup
t⟶+∞

Q(t)≤
b2ε

b1 + c + d
a.s. (31)

Letting ε⟶ 0, we get limt⟶+∞Q(t) � 0 a.s. Similarly,
in the case that limt⟶+∞E(t) � 0 a.s. and
limt⟶+∞Q(t) � 0 a.s., we can get

lim
t⟶+∞

I(t) � 0 a.s.,

lim
t⟶+∞

R(t) � 0 a.s.
(32)

)is completes the proof. □

Theorem 5. Assume that R0 > 1, m1 � d − (b1/2) − (σ2
(d + δ)(b2 + α + 2 d)E∗/βA), m2 � (b2/2) + (α/2) + d −

(b1/2), m3 � (c/2) + d − (b2/2), m4 � (η/2) + d + δ−

(α/2) − (c/2), m5 � d − (η/2), M � min m1, m2, m3,􏼈

m4, m5}, and Λ � (σ2(d + δ)(b2 + α + 2 d)E∗/βA)(S∗)2+

(AS∗δ(b2 + α + 2 d)/d(d + δ)) are all positive constants.
&en, for any initial value (S(0), E(0), Q(0),

I(0), R(0)) ∈ R5
+, the solution of system (2) has the property
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limsup
t⟶∞

1
t

E 􏽚
t

0
S − S
∗

( 􏼁
2

+ E − E
∗

( 􏼁
2

+ Q − Q
∗

( 􏼁
2

+ I − I
∗

( 􏼁
2

+ R − R
∗

( 􏼁
2

􏽨 􏽩du≤
Λ
M

. (33)

Proof. System (1) has the endemic equilibrium, and we can
get

A �
βS
∗
E
∗

N
∗ − b1Q

∗
+ dS
∗
,

βS
∗
E
∗

N
∗ � b2 + α + d( 􏼁E

∗
,

b2E
∗

� b1 + c + d( 􏼁Q
∗
,

αE
∗

+ cQ
∗

� (η + d + δ)I
∗
,

ηI
∗

� dR
∗
.

(34)

We construct a function

V �
1
2

S − S
∗

+ E − E
∗

( 􏼁
2

+ χ E − E
∗

− E
∗ ln

E

E
∗􏼒 􏼓 +

1
2

Q − Q
∗

( 􏼁
2

+
1
2

I − I
∗

( 􏼁
2

+
1
2

R − R
∗

( 􏼁
2

� V1 + χV2 + V3 + V4 + V5,

(35)

where χ is a constant. By It􏽢o’s formula, we obtain

LV � LV1 + χLV2 + LV3 + LV4 + LV5. (36)

And we get

LV1 � S − S
∗

+ E − E
∗

( 􏼁 A − dS + b1Q − b2 + α + d( 􏼁E( 􏼁

� − d S − S
∗

( 􏼁
2

− b2 + α + d( 􏼁 E − E
∗

( 􏼁
2

− b2 + α + 2 d( 􏼁 S − S
∗

( 􏼁 E − E
∗

( 􏼁

+ b1 S − S
∗

( 􏼁 Q − Q
∗

( 􏼁 + b1 E − E
∗

( 􏼁 Q − Q
∗

( 􏼁

≤ − d −
b1

2
􏼠 􏼡 S − S

∗
( 􏼁

2
− b2 + α + d −

b1

2
􏼠 􏼡 E − E

∗
( 􏼁

2
+ b1 Q − Q

∗
( 􏼁

2

− b2 + α + 2 d( 􏼁 S − S
∗

( 􏼁 E − E
∗

( 􏼁,

(37)

LV2 � 1 −
E
∗

E
􏼠 􏼡

βSE

N
− b2 + α + d( 􏼁E􏼠 􏼡 +

σ2S2

2N
2E
∗

≤ E − E
∗

( 􏼁
βS(d + δ)

A
−
βS
∗
(d + δ)

A
+
βS
∗δ

A
􏼠 􏼡 +

σ2S2(d + δ)
2

2A
2 E

∗

≤
β(d + δ)

A
S − S
∗

( 􏼁 E − E
∗

( 􏼁 +
σ2(d + δ)

2
S − S
∗

+ S
∗

( 􏼁
2

2A
2 E

∗
+
βS
∗δ

d

≤
β(d + δ)

A
S − S
∗

( 􏼁 E − E
∗

( 􏼁 +
σ2(d + δ)

2
S − S
∗

( 􏼁
2

A
2 E

∗

+
σ2(d + δ)

2
S
∗

( 􏼁
2

A
2 E

∗
+
βS
∗δ

d
,

(38)
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LV3 � Q − Q
∗

( 􏼁 b2E − b1 + c + d( 􏼁Q( 􏼁

� b2 E − E
∗

( 􏼁 Q − Q
∗

( 􏼁 − b1 + c + d( 􏼁 Q − Q
∗

( 􏼁
2

≤ − b1 + c + d −
b2

2
􏼠 􏼡 Q − Q

∗
( 􏼁

2
+

b2

2
E − E

∗
( 􏼁

2
,

(39)

LV4 � I − I
∗

( 􏼁(αE + cQ − (η + d + δ)I)

� α E − E
∗

( 􏼁 I − I
∗

( 􏼁 + c Q − Q
∗

( 􏼁 I − I
∗

( 􏼁 − (η + d + δ) I − I
∗

( 􏼁
2

≤ − η + d + δ −
α
2

−
c

2
􏼒 􏼓 I − I

∗
( 􏼁

2
+
α
2

E − E
∗

( 􏼁
2

+
c

2
Q − Q

∗
( 􏼁

2
,

(40)

LV5 � R − R
∗

( 􏼁(ηI − dR)

� η I − I
∗

( 􏼁 R − R
∗

( 􏼁 − d R − R
∗

( 􏼁
2 ≤ − d −

η
2

􏼒 􏼓 R − R
∗

( 􏼁
2

+
η
2

I − I
∗

( 􏼁
2
.

(41)

Taking (37)–(41) into (36), one can obtain that

LV≤ − d −
b1
2

􏼠 􏼡 S − S
∗

( 􏼁
2

− b2 + α + d −
b1
2

􏼠 􏼡 E − E
∗

( 􏼁
2

+ b1 Q − Q
∗

( 􏼁
2

− b2 + α + 2d( 􏼁 S − S
∗

( 􏼁 E − E
∗

( 􏼁 + χ
β(d + δ)

A
S − S
∗

( 􏼁 E − E
∗

( 􏼁􏼢

+
σ2(d + δ)

2
S − S
∗

( 􏼁
2

A
2 E

∗
+
σ2(d + δ)

2
S
∗

( 􏼁
2

A
2 E

∗
+
βS
∗δ

d
􏼣 +

b2

2
E − E

∗
( 􏼁

2

− b1 + c + d −
b2

2
􏼠 􏼡 Q − Q

∗
( 􏼁

2
− η + d + δ −

α
2

−
c

2
􏼒 􏼓 I − I

∗
( 􏼁

2

+
α
2

E − E
∗

( 􏼁
2

+
c

2
Q − Q

∗
( 􏼁

2
− d −

η
2

􏼒 􏼓 R − R
∗

( 􏼁
2

+
η
2

I − I
∗

( 􏼁
2

≤ − d −
b1
2

−
σ2(d + δ) b2 + α + 2d( 􏼁E

∗

βA
􏼠 􏼡 S − S

∗
( 􏼁

2
−

b2
2

+
α
2

+ d −
b1
2

􏼠 􏼡 E − E
∗

( 􏼁
2

−
c

2
+ d −

b2

2
􏼠 􏼡 Q − Q

∗
( 􏼁

2
−

η
2

+ d + δ −
α
2

−
c

2
􏼒 􏼓 I − I

∗
( 􏼁

2

− d −
η
2

􏼒 􏼓 R − R
∗

( 􏼁
2

+
σ2(d + δ) b2 + α + 2d( 􏼁E

∗

βA
S
∗

( 􏼁
2

+
AS
∗δ b2 + α + 2d( 􏼁

d(d + δ)

≜ − m1 S − S
∗

( 􏼁
2

− m2 E − E
∗

( 􏼁
2

− m3 Q − Q
∗

( 􏼁
2

− m4 R − R
∗

( 􏼁
2

− m5 R − R
∗

( 􏼁
2

+ Λ,

(42)

where χ � (A/β(d + δ))(b2 + α + 2 d), mi(i � 1, 2, 3, 4, 5),
and Λ are defined in )eorem 5.

dV � LVdt +
σS E − E

∗
( 􏼁

N
dB(t). (43)
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Integrating (39) from 0 to t and taking the expectation
on both sides we have

0≤EV≤EV(S(0), E(0), Q(0), I(0), R(0))

+ E 􏽚
t

0
− m1 S − S

∗
( 􏼁

2
− m2 E − E

∗
( 􏼁

2
− m3 Q − Q

∗
( 􏼁

2
− m4 I − I

∗
( 􏼁

2
− m5 R − R

∗
( 􏼁

2
+ Λ􏽨 􏽩du.

(44)

)en, letting M � min m1, m2, m3, m4, m5􏼈 􏼉, dividing t

on both sides of (44), and taking the superior limit, we get

limsup
t⟶∞

1
t

E 􏽚
t

0
S − S
∗

( 􏼁
2

+ E − E
∗

( 􏼁
2

+ Q − Q
∗

( 􏼁
2

+ I − I
∗

( 􏼁
2

+ R − R
∗

( 􏼁
2

􏽨 􏽩du≤
Λ
M

. (45)
□

5. Application of the Model

5.1. Numerical Simulations. )e numerical simulations are
divided into two aspects.We first set values of the parameters to
verify the theorem results obtained in this study. Specifically,
we set A � 50, β � 0.8, b1 � 0.3, b2 � 0.5, α � 0.3, c � 0.2,
η � 0.18, d � 0.2, and δ � 0.25. Using different initial values
for (S(t), E(t), Q(t), I(t), R(t)) such as (1500, 100, 50, 10, 0),
(1000, 200, 60, 20, 0), and (500, 10, 5, 1, 0), we numerically
solve system (1). Figure 1 shows that whenR0 < 1, the epidemic
will go to extinction, and the solutions with different initial
values will converge to the disease-free equilibrium expressed
asE0 � (250, 0, 0, 0, 0), which coincides with the conclusion of
)eorem 1. For β � 1.2 and the other parameters set as before,
it is verified that when R0 > 1, the epidemic will continue to
spread, and the solutions will converge to the endemic equi-
librium expressed as E∗ � (199.1, 12.95, 9.248, 8.82, 8.2) in
Figure 1.

If we set β � 1.1 and σ � 0.8, the other parameters re-
main unchanged, and the initial value is given by
(500, 10, 5, 1, 0), while these parameters satisfy
β2/2σ2 � 0.945< b2 + α + d � 1, the condition of )eorem 4
is satisfied as shown in Figure 2, and in this case, the epi-
demic will die out. When β � 1.1, σ � 0.01, and σ � 0.04, the
other parameters and initial value are the same as before, and
we obtain the asymptotic property of system (2) and the
solutions with stochastic oscillation near the endemic
equilibrium of system (1), as shown in Figure 3.

5.2. Case Study. In this section, we present some cases in
which the proposed research model can be applied. After the
WHO reported the first case on December 31, 2019, the
COVID-19 pandemic has spread rapidly worldwide. To date,
220 countries have suffered from this pandemic. By May 30,
2021, there were 171,474,925 cases of global confirmed cases,

and the cumulative mortality reached 3,565,330 cases. )e
infectious, noxious, and transmission speeds of the epidemic
are shocking. Some countries are still trapped in the epi-
demic; here, we analyze data from France, Italy, and the UK.
)e data used in our study were extracted from World-
ometers [29], an online freely available repository. In this
study, we consider 95 days of time-series data of currently
infected patients from three countries from February 24 to
May 30, 2021.)e source of the parameters is as follows.)e
population of Italy [30] is approximately 60,500,000, which
we set it as the initial value of the total population. )e value
of A can be set on the basis of the number of births in Italy,
1427. )e average life expectancy in Italy is 84.01 [31]. Given
that 1/d is the average life expectancy, the value of d can be
calculated as d � 1/(84.01 × 365) ≈ 3.2612 × 10− 5. )rough
the same calculations, we derive some parameters for France
and the UK. We also set the range of α, which represents the
rate of exposure to infection according to [32]. Because the
average recovery period in France is approximately 13.6 days
[33], the parameter η is set to 1/13.6 ≈ 0.0735. According to
[34], we take the average recovery period in Italy as 13.15
days; thus, in this case, we set the parameter
η � 1/13.15 ≈ 0.076. )e recovery rate of the UK, β, b1, b2,
and c are estimated by the least square method.

We fit the parameters of the system by using the daily active
COVID-19 cases in France, Italy, and the UK. )e parameters
resulting fromfitting the actual active cases are shown in Table 1;
the results are shown in Figure 4. We consider hospitalized
infected patients as active cases in this part. Note from Figure 4
that the simulations are correct, and the epidemic development
of these three countries shows a decreasing trend. It is evident
that the people infection will not stop shortly. )e government
should take measures to reduce the number of newly infected
people and maintain a decreasing trend.

According to the previous analysis, stochastic pertur-
bation can change the solution of the system and the stage of

Discrete Dynamics in Nature and Society 9



0

20

40

60

80

100

120

140

160

180

200
Ex

po
se

d

0 10 20 30 40 50 60
Time

0 10 20 30 40 50 60
Time

0

20

40

60

80

100

120

Q
ua

ra
nt

in
ed

0

10

20

30

40

50

60

70

80

90

In
fe

ct
ed

0 10 20 30 40 50 60
Time

0 10 20 30 40 50 60
Time

0

5

10

15

20

25

30

35

40

45

50

Re
co

ve
rd

Figure 1: )e local asymptotic stability of the equilibria of system (1). )e blue line is the case of R0 > 1, and the red dash line is the case of
R0 < 1.
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Figure 2: )e epidemic extinction with stochastic perturbation.
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disease development. )e epidemic becomes extinct when
the noise intensity is sufficiently large. However, if the noise
intensity is small, the overall trend of disease development
will not change.)is situation can be seen in Figure 5, which

shows the solutions of the deterministic and stochastic
models with σ � 0.02, illustrating that the stochastic solution
fluctuates around the deterministic solution. )is leads to
conclude that the government should take some measures to
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Figure 3:)e asymptotic solutions of the deterministic and stochastic system.)e first row is the case of σ � 0.01, and the second row is the
case of σ � 0.04.

Table 1: Description and values of parameters.

Parameter Definition France Italy )e UK Source
A Total input 2218 1427 2356 [30]
β Disease transmission rate 0.926 0.571 0.999 Estimated
d Natural death rate 3.3616 × 10− 5 3.2612 × 10− 5 3.2929 × 10− 5 [31]
η )e recovery rate of I 0.073 5 0.076 0.071 4 [33, 34],estimated
b1 )e rate that Q becomes S 0.1 0.012 0.1 Estimated
b2 )e rate that E becomes Q 0.718 0.335 4 0.773 4 Estimated
α )e rate that E becomes I 0.1923 0.192 4 0.199 [32]
c )e rate that Q becomes I 0.630 8 0.8 0.1 Estimated
δ )e mortality rate of I 0.024 9 0.033 8 0.029 4 [31]
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Discrete Dynamics in Nature and Society 11



0
1
2
3
4
5
6
7
8
9

10
Ex

po
se

d 
ca

se
s

without noise
with noise

20 40 60 80 100 1200
Days

0

2

4

6

8

10

12

14

Ex
po

se
d 

ca
se

s

without noise
with noise

20 40 60 80 100 1200
Days

0

2

4

6

8

10

12

14

Ex
po

se
d 

ca
se

s

without noise
with noise

20 40 60 80 100 1200
Days

×104

×104

×104

0
1
2
3
4
5
6
7
8
9

10

Q
ua

ra
nt

in
ed

 ca
se

s

without noise
with noise

20 40 60 80 100 1200
Days

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

Q
ua

ra
nt

in
ed

 ca
se

s

without noise
with noise

20 40 60 80 100 1200
Days

0

0.5

1

1.5

2

2.5

3

3.5

4

Q
ua

ra
nt

in
ed

 ca
se

s

without noise
with noise

20 40 60 80 100 1200
Days

×104

×104

×105

0

1

2

3

4

5

6

7

8

A
ct

iv
e c

as
es

without noise
with noise

20 40 60 80 100 1200
Days

0

1

2

3

4

5

6

A
ct

iv
e c

as
es

without noise
with noise

20 40 60 80 100 1200
Days

0

2

4

6

8

10

12

14

A
ct

iv
e c

as
es

without noise
with noise

20 40 60 80 100 1200
Days

×105

×105

×105

Figure 5: )e solutions of system (2) with σ � 0.02. )e first row is the case of France, the middle row is the case of Italy, and the last row is
the case of the UK. All parameters are listed in Table 1.

5

4

3
R0

b2 β

2

1

0
1

0.8
0.6

0.4
0.2

1.8
1.61.4

1.2
1

0.8

(a)

2.5

2

1.5

1

0.5
0.3

0.25
0.2

0.15 β
α

R0

0.8
0.6

1
1.2

1.4
1.6

(b)

Figure 6: )e relationship between parameters and R0. (a) β, b2, and R0. (b) β, α, and R0.

12 Discrete Dynamics in Nature and Society



prevent new infections. Figure 6 shows the increase in b2,
which represents the strengthening isolation, and α, which
means that raising nucleic acid detection will effectively
reduce the risk of disease transmission.

6. Conclusions

In 2020, new coronavirus pneumonia seriously affected
people’s daily life and hindered social development. More
than 200 countries worldwide suffered from this epidemic.
Prevention of this coronavirus pneumonia has become the
most important issue worldwide. Infectious disease models
constitute an effective tool for analyzing and understanding
the trend of disease spread; therefore, we built a mathe-
matical model with standard incidence based on the spread
of COVID-19. We obtained the basic reproduction number,
which affects the spread of the disease, and proved that when
R0 < 1, the disease-free equilibrium is locally asymptotically
stable, and when R0 > 1, the endemic equilibrium is locally
asymptotically stable. )en, we incorporated stochastic
perturbation in the deterministic model because there exists
stochastic influence in the process of disease spread. Spe-
cifically, we obtained the conditions under which the epi-
demic goes to extinction and the asymptotic property near
the endemic equilibrium of the deterministic model.

Finally, we verified the results in two aspects. First, we set
some parameters to verify the proposed theorem. Second, we
fitted the active data cases using the least square method. In
Figure 4, we effectively fitted the active cases in France, Italy,
and the UK. )e active cases of these three countries all
decreased. In the first part of the numerical simulations, we
took into account that adding a stochastic disturbance will
prevent the spread of the disease. )erefore, we considered
stochastic disturbance in the model for comparison with the
deterministic model.)e parameters in Table 1 do not satisfy
the condition of disease extinction, so the epidemic will not
go to extinction. It is well known that white noise with
sufficiently large intensity can lead to the extinction of the
disease. Hence, we can control the development of the
disease by increasing the noise intensity.

Random perturbance can be considered as a human-
issue disturbance. )erefore, governments must take mea-
sures to decrease the number of infections, e.g., population
lockdown, increase of media publicity, rational allocation of
medical resources, and appeal to the public to pay attention
to personal hygiene. Some suggestions, such as increasing
the isolation and raising nucleic acid detection, should be
made. With these suggestions, the number of infections will
be reduced. Currently, novel coronavirus pneumonia vac-
cines have been developed. It is believed that a reasonable
combination of government control and vaccination strat-
egies will eliminate the epidemic. Next, we will also consider
the model with immunity to analyze the impact of immune
intensity on the spread of infectious diseases.
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