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In this work, the authors consider the effect of a service experience cost (SE cost) on customer behaviour in the M/M/1 queueing
system. Based on customer individual equilibrium strategy, social welfare is also analyzed in unobservable and observable cases.
/e SE cost decreases the equilibrium joining probability and social welfare in an unobservable case. However, there might exist
multiple individual equilibrium thresholds in an observable case. Furthermore, numerical results show that the SE cost can be used
as a feasible policy to make an incentive for customers and regulate the system for improved social welfare in some scenarios.

1. Introduction

Service experience is a term to describe the feeling of cus-
tomers. However, the sense of each customer may be dif-
ferent, which depends on the service environment. For
example, (1) depressed consumers may feel open in a spa-
cious fast-food restaurant, while lonely consumers may feel
at home in a little fast-food restaurant. On the contrary,
lonely consumers might be more frustrated in the spacious
environment, and unhappy consumers might be more ag-
itated in the narrow environment. (2) At the library box
office, a reader’s experience in the 15th position of the queue
among 20 readers is different from a reader’s experience in
the 15th position of a queue among 200 readers. /e former
reader thinks the library is relatively idle, and the latter feels
that his sojourn time is shorter. /ese two cases reflect their
positive mental attitude. In the same situation, the former
reader might think he is at the end of the queue, and the
latter thinks the library is relatively crowded. (3) A cable car
has eight seats in scenic spot, and the difference between the
8th position and 9th position in the queue is not just the
extra waiting time. /e customer in the 9th position might
feel unlucky because hemisses the last cable car or feels lucky
because he must be in the next cable car. Hence, service
experience should be considered in the study of customer
behaviour and social welfare.

Naor [1] investigated customer behaviour from the
viewpoint of game-theoretic in the M/M/1 queueing system
where an arriving customer can observe the queue length
and obtain the individual optimal threshold, the optimal
social threshold, and the maximal revenue threshold. Later,
Edelson and Hilderbrand [2] considered the case when the
queue length is unobservable and showed that the optimal
social toll is equal to the revenue-maximizing toll. Subse-
quently, many scholars published their works on the cus-
tomer behaviour in various queueing systems, such as
unreliable queueing systems [3, 4], retrial queueing systems
[5–9], queueing systems with catastrophe [10, 11], vacation
queueing systems [12–17], queueing system with egalitarian
processor-sharing [18], queueing systems with priority
customer [19, 20], and service inventory systems [21–24].
And the following excellent monographs: Hassin and Haviv
[25], Stidham [26], Hassin [27], summarized achievements
in recent years.

In the above works, the benefit function of individual
customers generally includes the reward (or the degree of
satisfaction) received after service and the sojourn cost in the
system as

I � R − cE[W], (1)

where R is customer reward, c is a waiting cost for one
customer per time unit, and W and E[W] are sojourn time
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and its expectation, respectively. Furthermore, all the cus-
tomers are assumed to be homogeneous, and the optimal
individual strategy follows the Nash symmetric equilibrium
strategy.

To reflect the effect of service experience on customer
behaviour, the authors first establish a simple net benefit
function as follows:

I � R − c1E[W] − c2, (2)

where c2(≥ 0) is some kind of cost corresponding to service
experience, simplified as a SE cost. /e smaller of c2, the
better of service experience and so the greater of the sat-
isfactory degree of customers, and the greater of c2 means an
arriving customer has less motivation to enter the queue. It is
worth mentioning that this cost is not connected with the
sojourn time of the customer, but it reflects the actual service
experience of the customer. Especially for the case of c2 � 0,
when the service experience reaches its optimum, the benefit
function degenerates into (1).

Moreover, it is more reasonable to use the variable cost
instead of the constant cost c2. From the point of the
queueing system, the traffic intensity is a measure to reflect a
service environment. /erefore, the authors use the product
of c2 and Prob to describe the variable SE cost, where Prob is
some kind of probability related the system state. So, the new
benefit function of an individual customer is established as

I � R − c1E[W] − c2Prob. (3)

Although many works focused on analyzing the equi-
librium behaviour of customers, to the best knowledge of the
authors, only a few papers have studied service experience.
/is work considers an individual equilibrium strategy in
unobservable and observable cases and then analyzes social
welfare. /e main contributions of this work are summa-
rized as follows: (1) this is the first work that utilizes SE cost
to investigate customer behaviour and social welfare; (2) the
joining probability and social welfare are all smaller than
those without SE cost in an unobservable case and so in-
troducing SE cost is not suitable for the system manager; (3)
there exist multiple individual thresholds in an observable
case which is different from the unique threshold in Naor
[1]; furthermore, the upper and lower bounds of thresholds
are also determined; (4) numerical results illustrate that
social welfare does not necessarily decrease in observable
cases after SE cost is added; (5) compared to without SE cost,
social welfare can be improved while maintaining the same
throughput.

/e rest of this work includes five sections. Section 2
presents the model description. Section 3 investigates the
individual equilibrium strategy and establishes a new social
welfare function in an unobservable case. Section 4 devotes
to an observable case. Section 5 carries out some numerical
experiments and analyzes the corresponding results. Finally,
Section 6 summarizes the main conclusions.

2. Model Description

/is work considers the M/M/1 queueing system where
customers arrive according to a Poisson process with rate λ,
and service times are independent and exponentially dis-
tributed with mean μ− 1. /e system state at time t is
characterized by N(t), which denotes the number of cus-
tomers in the system./e stochastic process N(t), t≥ 0{ } is a
continuous-time Markov chain with state space
Ω � n|n≥ 0{ }.

Assume every customer obtains a reward of R units for
completing service, and there exists a waiting cost of c1 units per
time unit that the customer remains in the system. To encourage
an arriving customer to enter the system, the condition

R −
c1
μ
> 0, (4)

is necessary.
/is work assumes that all customers are risk-neutral

and must make decisions based on the benefit function (3).
After decisions, retrials of balking customers and reneging of
entering customers are not allowed. Conditioning on the
number of customers in the system is observed or not, there
are two cases as follows:

(i) /e unobservable case where customers can not
observe N(t)

(ii) /e observable case where customers can observe
N(t)

3. The Unobservable Case

In this case, customers can not observe the number of
customers in the system and choose to join the system with a
specific probability. So, all the homogeneous customers in
the system follow a mixed strategy: “enter the system with
probability q and balk with probability 1 − q.” /e authors
first analyze the individual equilibrium joining probability,
which is a weakly dominant strategy. A detailed definition
can be seen in Section 1.1 of [25]. Secondly, social welfare is
considered after a customer makes his decision. /e tran-
sition rate diagram is shown in Figure 1.

/e following proposition, which has been presented in
Section 2.2.1 of [28], gives the stationary distribution pun(n),
the expected number of customers in system E[N], and the
expected sojourn time E[W]. /e system is stable if and only
if λq< μ. /e authors first consider the case λ< μ and then
present results for λ≥ μ.

Proposition 1. In the unobservable case of the M/M/1
queueing system, the stationary distribution pun(n): n≥ 0􏼈 􏼉,
the expected number of customers E[N], and the expected
sojourn time E[W] are summarized as follows:
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pun(0) � 1 −
λq

μ
,

pun(n) � 1 −
λq

μ
􏼠 􏼡

λq

μ
􏼠 􏼡

n

,

n≥ 0,

E[N] �
λq

μ − λq
,

E[W] �
1

μ − λq
.

(5)

3.1. Individual Equilibrium Strategy. When a customer has
no information on the system state and makes a decision
based on the mean value of performance measure, the
probability Prob defined in equation (3) is replaced with the
busy probability of the server in the steady-state, i.e.,
Prob � (λq/μ), to describe the influence of SE cost on cus-
tomer behaviour. /e larger the Prob probability is, the worst
service experience the customer gets, and so the lower
service satisfaction he obtains.

Theorem 1. In the unobservable case of the M/M/1 queueing
system, a mixed equilibrium strategy “enter the system with
probability qe” exists and qe is uniquely given by

qe �

q
∗
e �

R + c2( 􏼁μ −

�����������������

R − c2( 􏼁
2μ2 + 4c1c2μ

􏽱

2λc2
, if R<

c1

μ − λ
+

c2λ
μ

,

1, if R≥
c1

μ − λ
+

c2λ
μ

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Proof. From equation (3), when an arriving customer enters
the system, his expected net benefit is

I(q) � R − c1E[W] − c2Prob � R −
c1

μ − λq
−

c2λq

μ
, (7)

and it is readily shown that I(q) is a strictly decreasing
function in q ∈ [0, 1].

If I(1)≥ 0 or R≥ (c1/(μ − λ)) + (c2λ/μ), the minimal
of benefit function is nonnegative and so customer
would like to enter the system. /is proves the second
part of (6).

If I(1)< 0, combining I(0)> 0 yields
(c1/μ)<R< (c1/(μ − λ)) + (c2λ/μ); a unique q∗e � ((R + c2)

μ −

�����������������

(R − c2)
2μ2 + 4c1c2μ

􏽱

)/2λc2 ∈ (0, 1) can be determined
by I(q) � 0. If the customer chooses to enter the system with
probability q∗e or balk with probability 1 − q∗e , the benefit
always equals to zero. Hence, the customer does not feel a
difference between entering and balking.

/e proof of /eorem 1 is completed.
If λ≥ μ, the corresponding analysis also can be derived

and a mixed equilibrium strategy “enter the system with
probability qe” exists and

qe � q
∗
e . (8)

For the case of c2 � 0, which have been shown in [26], a
mixed equilibrium strategy “enter the system with proba-
bility q0e” exists and q0e is uniquely given by

q
0
e �

Rμ − c1

λR
, if R<

c1

μ − λ
,

1, if R≥
c1

μ − λ
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

If λ≥ μ,

q
0
e �

Rμ − c1
λR

. (10)

Compared with the unobservable M/M/1 queueing
system presented in [2], the benefit function is added with an
SE cost which causes that the joining probability qe should
not be greater than q0e . And through the joining probability
defined in equations (6)–(9), it is readily proved that qe ≤ q0e .
/is fact illustrates that fewer customers are motivated to
join the queue, and at this moment, the system turns less
crowded. /erefore, c2Prob can be used as a factor to induce
customer behaviour or regulate the whole system. □

3.2. SocialWelfare. Equation (6) shows that qe is the unique
equilibrium joining probability of customers. It corresponds
to the proportion of customers who will choose to enter the
system for service. Based on customer behaviour, the ex-
pected social welfare per time unit is

S qe( 􏼁 � λqe R −
c1

μ − λqe

−
c2λqe

μ
􏼠 􏼡. (11)

0
λq λq λq λq λq

1
μ μ

n
μ

n+1
μ μ

· · · · · ·

Figure 1: /e transition rate diagram of unobservable case.
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And for the case of c2 � 0, the expected social welfare per
time unit is

S
0

q
0
e􏼐 􏼑 � λq

0
e R −

c1

μ − λq
0
e

􏼠 􏼡. (12)

In reference [2], the server revenue is equal to the social
welfare in the unobservable case and so it is readily shown
that S(qe)≤ S0(q0e).

Sections 3.1 and 3.2 show that the joining probability and
social welfare are smaller than the case of c2 � 0. /ese
results are reasonable and accessible, and thus the authors
focus on the observable case to verify whether the same
situation would happen.

4. The Observable Case

In this case, the system is same as the work of Naor [1],
where a customer arriving at time t knows the exact number
of customers in the system. And so Naor showed that there
exists equilibrium threshold strategy, i.e., there exists
threshold n such that an arriving customer enters the system
if N(t)≤ n and balks otherwise. For this, the system has n + 1
customers at most, and the transition rate diagram is
depicted in Figure 2. And the stationary distribution
pob(i): 0≤ i≤ n + 1􏼈 􏼉 on threshold n is

pob(i) �
ρi

(1 − ρ)

1 − ρn+2 , i � 0, 1, . . . , n + 1, (13)

where ρ � (λ/μ)(≠ 1). Firstly, the individual equilibrium
strategy will be investigated within the threshold strategy.

4.1. Individual Equilibrium Strategy. /e exact number of
customers N(t) can help to determine the expected sojourn
time of an arriving customer. Moreover, it can influence the
service experience of customers and the service environ-
ment of the system during the service process. Since N(t) is
observed, the probability Parrival(i) that an arriving cus-
tomer observes i customers upon arrival can exactly de-
scribe the real-time state of the system. Hence, the
probability Prob defined in equation (3) is replaced with
Parrival(i) to derive the individual equilibrium threshold.
/e PASTA property shows that Parrival(i) � pob(i), and
then the new net benefit function on threshold n of an
arriving customer who observes i customers in the system
can be defined as

In(i) � R − c1E[W] − c2Prob � R − c1
i + 1
μ

− c2pob(i) · 1 i≥1{ },

�

R −
c1

μ
, if i � 0,

R −
c1(i + 1)

μ
−

c2ρ
i
(1 − ρ)

1 − ρn+2 , if 1≤ i≤ n + 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

i � 0 means the system is empty and the server only
serves the arriving customer. At this time, the service ex-
perience reaches its optimum and would not generate any
cost related c2.

Moreover, through simple calculation,

In(i + 1) − In(i) �

−
c1

μ
−

c2ρ(1 − ρ)

1 − ρn+2 , if i � 0,

−
c1

μ
+

c2ρ
i
(1 − ρ)

2

1 − ρn+2 , if 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

For given threshold n(≥ 0), In(0) � R − (c1/μ)> 0 is
obvious from equation (4). And if In(1)< 0, this means the
threshold n must be zero; that is to say, customer joins the
system when the system is empty, and once the system is
nonempty, no one joins in.

To get more generalized results, the authors investigate
the nonzero thresholds under the condition of In(1)≥ 0
hereinafter.

For individual equilibrium threshold n, there imply
two-tier meanings. Firstly, the benefit In(i)(1≤ i≤ n) of an
arriving customer, who finds i customers upon arrival and
decides to join, should be nonnegative. And secondly, if he
finds n + 1 customer and decides to join, his benefit In(n +

1) must be negative; if not, there exist at least (n + 2)

customers in the system which contradicts to the system
threshold n. Based on these two points, the upper bound
and lower bound of thresholds can be determined. To
achieve the upper bound, the following proposition is
needed to illustrate the quality of benefit functions In(i)

and In(n).

Proposition 2. For threshold n, In(n)≥ 0 can ensure the
benefits In(i)(1≤ i≤ n) are all nonnegative.

Proof. /e proof is divided into three cases:

If ρ> 1, equation (15) yields In(i + 1) − In(i)< 0 and
then In(n) � min In(i), 1≤ i≤ n􏼈 􏼉.
If ρ< 1 and (c1/μ)≥ c2ρ(1 − ρ)2/(1 − ρn+2), equation
(15) also yields In(i + 1) − In(i)≤ 0 and then
In(n) � min In(i), 1≤ i≤ n􏼈 􏼉.
If ρ< 1 and (c1/μ)< c2ρ(1 − ρ)2/(1 − ρn+2), then
equation (15) yields In(0) − In(1)> 0 and In(2)−

In(1)> 0. Hence, i � 1 is a local minimum point of In(i)

for 0≤ i≤ 2. Furthermore, In(i + 2)− 2In(i + 1)+

In(i) � − (c2ρi(1 − ρ)3/(1 − ρn+2))< 0 shows that In(i)

is concave for 1≤ i≤ n. If In(i) increases on 1≤ i≤ n,
then In(i)(1≤ i≤ n) are all nonnegative because
of In(1)≥ 0; if In(i) increases at first and then
decreases, In(n)≥ 0 can ensure In(i)(1≤ i≤ n) are all
nonnegative.

/e proof of Proposition 2 is completed.
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/is proposition shows that all the benefits
In(i)(1≤ i≤ n) are nonnegative so long as In(n) is non-
negative. Hence, to achieve the upper bound of threshold n,
it is just to find the maximum number of n such that
In(n)≥ 0. □

Lemma 1. In the observable M/M/1 queueing system, the
individual equilibrium threshold has an upper bound nU.

Proof. Equation (14) yields

In+1(n + 1) − In(n) � R −
c1(n + 2)

μ
−

c2ρ
n+1

(1 − ρ)

1 − ρn+3 − R

+
c1(n + 1)

μ
+

c2ρ
n
(1 − ρ)

1 − ρn+2

� −
c1
μ

+
c2ρ

n
(1 − ρ)

2

1 − ρn+2
􏼐 􏼑 1 − ρn+3

􏼐 􏼑
,

Δ2In(n) � In+2(n + 2) − 2In+1(n + 1) + In(n)

� −
c2ρ

n
(1 − ρ)

3 1 + ρn+3
􏼐 􏼑

1 − ρn+2
􏼐 􏼑 1 − ρn+3

􏼐 􏼑 1 − ρn+4
􏼐 􏼑

< 0.

(16)

Hence, In(n) is a discrete concave function on n.
Considering I1(1)≥ 0 and In(n)⟶ − ∞ as n⟶∞ for
any ρ, there exists a unique integer nU such that

In(n)≥ 0, if n≤ nU,

In(n)< 0, if n> nU.
􏼨 (17)

So, nU is the upper bound of threshold.
Lemma 1 shows that threshold n has an upper bound nU

so that In(n)≥ 0 for all n≤ nU. And combining with
Proposition 2, all the benefits In(i)(1≤ i≤ n≤ nU) are
nonnegative.

Next, it is turn to seek for the lower bound of threshold n

through the benefit In(n + 1) of an arriving customer, who
finds n + 1 customers upon arrival and decides to join. If
In(n + 1)> 0, an arriving customer enters the system and
therefore the system contains n + 2 customers which con-
tradicts the policy of threshold n. So, to achieve the lower
bound of threshold or all the equilibrium thresholds, it is
necessary to find the minimal n(≤ nU) satisfying
In(n + 1)≤ 0.

/e following theorem shows how to find the lower
bound and all the possible thresholds. □

Theorem 2. . In the observable M/M/1 queueing system,
there exist at least one individual equilibrium threshold ne.

Proof. Equations (14) and (17) show that
InU

(nU + 1)≤ InU+1(nU + 1)< 0; therefore, individual equi-
librium threshold can be derived by backward extrapolation:
starting from the subscript nU to 1, let n1 − 1 be the subscript
of the first positive term of In(n + 1), then we have

InU
nU + 1( 􏼁, . . . , In1+1 n1 + 2( 􏼁, In1

n1 + 1( 􏼁< 0, In1− 1 n1( 􏼁≥ 0.

(18)

Specially, if In(n + 1)< 0 for all 1≤ n≤ nU, i.e.,

InU
nU + 1( 􏼁, . . . , I2(3), I1(2)< 0, (19)

define n1 � 1. Denote nL � n1, and then
ne ∈ nL, nL + 1, . . . , nU􏼈 􏼉 are all individual equilibrium
thresholds.

/e above theorem shows that any positive integer
ne ∈ nL, nL + 1, . . . , nU􏼈 􏼉 can be regarded as individual
threshold of customer, which is different from the results
presented in Naor [1].

Now, there may exist multiple thresholds after SE cost is
introduced. So what is the effect of them on the system? /e
numerical experiment illustrates that more social welfare can
be obtained based on the threshold nU or nL. /e following
section gives the social welfare function.

For the case of c2 � 0, Naor [1] shows that the unique
individual equilibrium threshold is

n
0
e � ⌊

Rμ
c1

− 1⌋. (20)

From /eorem 2, it is difficult to obtain the explicit
expression of ne, which leads ne and n0

e cannot be compared
although the concrete expression of n0

e is solved in equation
(20). For this reason, the comparison is performed nu-
merically in Section 5. However, after introducing SE cost,
there exist multiple thresholds rather than the unique
threshold in the observable case. And this modification
prompts not only customers to have more choices for
joining threshold but also the systemmanager achieves more
social welfare. □

4.2. Social Welfare. Given the individually equilibrium
threshold ne defined from/eorem 2, similar to Section 3.2,
the social welfare per time unit is

S ne( 􏼁 � λ􏽘

ne

i�0
pob(i) R −

c1(i + 1)

μ
− c2pob(i) · 1 i≥1{ }􏼨 􏼩.

(21)

For the case of c2 � 0, the social welfare per time unit

S
0

n
0
e􏼐 􏼑 � λ􏽘

n0e

i�0
pob(i) R −

c1(i + 1)

μ
􏼢 􏼣, (22)

0
λ

1
λ

μ

λ

μ
n

λ

μ
n+1

μ
· · ·

Figure 2: /e transition rate diagram of observable case.
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has been defined in [1]. By replacing n with ne or n0
e in

equation (13), the corresponding stationary distribution
pob(i) can be derived.

Since the expression of ne is implicit, these two social
welfare functions can not be compared directly. So, some
numerical experiments are shown in Section 5. Remarkably,
the tendency of social welfare is different from the result in
the unobservable case, and the detailed results can be seen in
Section 5.

5. Numerical Experiments

Section 3.1 shows that the joining probabilities qe and q0e
satisfy qe ≤ q0e . /is fact leads to the social welfare S(qe) and
S0(q0e) have the same relationship between them. /erefore,
this section gives priority to the observable case and in-
vestigates the tendency of individual thresholds ne and n0

e

and the social welfare S(ne) and S0(n0
e) by considering the

following system parameters:

R � 2.5,

c1 � 1.5,

μ � 3.

(23)

Firstly, the authors consider the tendency of thresholds
n0

e , nU, and nL. For the special case of c2 � 0, n0
e is inde-

pendent of λ and remains at a constant value (see Figure 3).
If c2 ≠ 0, after the SE cost c2Prob is introduced, the cost that
customer has to be afforded is added and so the upper and
lower bounds nU and nL of individual threshold ne are
smaller than n0

e . Hence, n0
e ≥ nU ≥ nL.

For fixed λ, the benefit of customers is decreasing with
the increase in c2. /erefore, the upper bound nU and lower
bound nL of thresholds are all decreasing. On the contrary,
for fixed c2, the system turns to more crowded, the prob-
ability of the idle state of server pob(0) is decreasing with the
increase in λ, and correspondingly, the probabilities of other
states pob(i) may be greater than before. Hence, the cus-
tomer’s benefit, the upper bound nU, and lower bound nL are
all decreasing. /is tendency can be seen in Figure 3.

Secondly, the authors consider the tendency of social
welfare functions. For fixed c2, the thresholds nU and nL are
kept as a constant, respectively, when λ< 2.5. With the
increase in λ, more customers join the system and then lead
to more social welfare. For greater λ(≥ 2.5), the thresholds
are no longer constants. With the increase in λ, the threshold
turns to decrease and hence the number of customers in the
system also decreases which would lead to a decrease in
social welfare. So, the graph of the social welfare function is
very similar to the graph of the unimodal function.

For fixed λ, the steady-state probabilities pob(i) are
constants, and however the social welfare S(nU) and S(nL)

do not necessarily increase when c2 decreases. For smaller
λ(< 2.5), Figure 3 illustrates that the thresholds nU and nL

are independent of c2 and kept as constants, and so the
benefit of customer In(i) is decreasing with the decrease in

c2. Hence, the smaller c2 is beneficial to reach more social
welfare. /is corresponds to the tendency of S(nU) and
S(nL) in Figure 4. For greater λ(≥ 2.5), the thresholds nU

and nL and the number of customers in system would de-
crease with the increase in c2, and then the sojourn cost of
customer would decrease, too. And the SE cost c2pob(i)

would increase. Hence, the relationship between those two
coefficients c1 and c2 play a critical role in the sum of sojourn
cost and SE cost, which causes that the social welfare does
not occupy the decreasing monotonicity on c2. For example,
for λ � 5.5, the social welfare S(nU) in the case of c2 � 2 is
greater than that of c2 � 0 in Figure 4(a).

Besides, for the cases of c2 � 0, 0.5, 1, the thresholds nU

and nL do not vary for arbitrary λ and the corresponding
social welfare functions S(nU) and S(nL) are all unimodal
functions. However, for the case of c2 � 2, S(nU) is not truly
unimodal in the interval of [0.5, 5.5]. For 0.5≤ λ≤ 4.1, nU �

3 and S(nU), as a unimodal function, reaches its maximum at
λ � 2.9. However, for λ≥ 4.3, nU � 2 and S(nU) begins to
increase not decrease. A similar result also can be seen for
c2 � 2.5. For greater c2, this tendency illustrates that the
unimodality of social welfare is transformed after adding SE
cost. As the authors mentioned above, the number of
customers in the system would decrease with the increase in
c2 so that the sojourn cost would decrease. Although the SE
cost is added, the social welfare S(nU) keeps increasing.
Hence, among the two factors of social welfare, the sojourn
cost plays more weight than SE cost for greater λ.

Is the social welfare increased at the expense of reduced
throughput? No. Figures 4 and 5 illustrate that social welfare
can be increased while maintaining the same throughput.

/irdly, the authors consider the tendency of
throughput. For fixed λ, the probability pob(i) is kept as a
constant. When c2 increases, the benefit of customer In(i)

decreases and then he has less motivation to join the system.
Hence, the system threshold n and the throughput T(n) �

μ[1 − pob(0)] � μ(1 − (1 − ρ)/(1 − ρn+2)) are all decreasing.
And Figure 5 illustrates the tendency of T(nU) and T(nL).

For fixed c2, especially for c2 � 0, 0.5, 1, 1.5, nU is in-
dependent of λ and so throughput T(nU) is increasing on λ.
/is tendency can be seen in Figure 5(a), and the similar
tendency also can be seen in Figure 5(b) for c2 � 0, 0.5, 1.

For c2 � 2, 2.5, 3, the throughput T(nU) is increasing on
λ when threshold nU is kept unchanged. And with the in-
crease in λ, the threshold nU must be declined to a lower
value. At this point, the throughput T(nU) decreases firstly
and then increases again until the threshold nU declines to
another lower value. For example, for the case of c2 � 2.5, nU

decreases one unit at λ � 3.1 and then the throughput T(nU)

firstly decreases at λ � 3.1 and then increases again. More
complicated tendency on T(nL) can be seen in Figure 5(b)
for the case of c2 � 2.5.

Under the condition of same throughput T(nu), for
example, c2 � 0.5, 1, 1.5, Figure 4(a) shows that the greater c2
means the less social benefit S(nu). And this tendency also
holds true for smaller λ(< 1.3) and c2 � 0. However, for

6 Discrete Dynamics in Nature and Society



greater λ(> 3.5), the social benefit S(nu) for the case of
c2 � 0 is the absolutely lowest among the four scenarios even
if the throughput T(n0

e) is slightly greater than T(nu) of the
other three scenarios. Besides this, the similar tendency
about c2 and S(nL) can also been found in Figures 4 and 5.

Generally, after introducing cost coefficient c2, the
thresholds ne are smaller than before. However, the social
welfare increases instead of decreasing in many situa-
tions keeping the acceptable throughput. /ese findings
illustrate that rather than simply considering the impact
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Figure 3: /e individual thresholds nU and nL vs. λ.
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of waiting time on customers, introducing service ex-
perience cost into the benefit function plays an unex-
pected role. Furthermore, when the customer flow is
relatively large, how to enhance the service quality and
improve the service environment is a concern that the
managers need to consider in the future.

6. Conclusions

To complete the service, the customer needs to afford an
inevitable sojourn cost that depends on the number of
customers. In this work, the authors introduce an extra
SE cost to establish the benefit function of customers. In
the unobservable case, some intuitional results are
reached. For example, joining probability and social
welfare are all smaller than before. And the individual
threshold is no exception in the observable case. How-
ever, in the situation of greater customer flow, numerical
results show that the unimodality of social welfare is
transformed, different from the result of Naor [1]. More
importantly, after SE cost is added, social welfare can be
improved while maintaining the same throughput. /e
reason for this interesting result owes to the multiple
possible thresholds. Hence, SE cost can be a potential
future focus to investigate the service system.
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