
Research Article
Sharp Bound of the Number of Zeros for a Liénard
System with a Heteroclinic Loop

Junning Cai ,1 Minzhi Wei ,1 and Guoping Pang2

1Department of Applied Mathematics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, China
2School of Mathematics and Statistics, Yulin Normal University, Yulin 537000, China

Correspondence should be addressed to Minzhi Wei; xiaoyanxiong123@163.com

Received 23 November 2020; Revised 24 December 2020; Accepted 8 January 2021; Published 28 January 2021

Academic Editor: Binxiang Dai

Copyright © 2021 Junning Cai et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the presented paper, the Abelian integral I(h) of a Liénard system is investigated, with a heteroclinic loop passing through
a nilpotent saddle. By using a new algebraic criterion, we try to find the least upper bound of the number of limit cycles bifurcating
from periodic annulus.

1. Introduction

A well-known analytic system with planar polynomial dif-
ferential equation of degree n is of the form:

_x � Pn(x, y), _y � Qn(x, y). (1)

In 1977, Arnold [1] proposed weak Hilbert’s 16th
problem and studied the number of zeros of the Abelian
integral:

I(h, δ) � 􏽉
Γh

qdx − pdy, h ∈ J, (2)

where p and q are the polynomials of degree n≥ 2 and Γh are
some closed ovals of corresponding Hamiltonian. More
precisely, H(x, y) is the Hamiltonian function of special
form of (1):

_x � Hy + εp(x, y, δ),

_y � − Hx + εq(x, y, δ),
(3)

where H(x, y), p(x, y), and q(x, y) are the polynomials of x

and y, their degrees satisfy max degp, degq􏼈 􏼉 � n,
deg(H) � n + 1, and ε is a positive and sufficiently small
parameter.

More precisely, the following Liénard system of type
(m, n) attracted more and more attentions from mathe-
maticians [2–15]:

_x � y,

_y � f(x) + εg(x)y,
(4)

where f(x) and g(x) are the polynomials of degrees m and
n, respectively. For example, Wang and Xiao [16] concluded
that the number of limit cycles in the system bifurcating
from period annulus is at most three. Qi and Zhao [17]
considered the Liénard system of type (5, 3), [18], Asheghi
and Zangeneh [19] considered the Liénard system of type (5,
4), and Sun [20] studied the limit cycles of type (7, 6) with
a heteroclinic loop connecting two nilpotent saddles. In this
paper, we intend to study on a following Liénard system that
is a small perturbation of the Hamiltonian vector field:

_x � y,

_y � x(x + 1)
3

x +
1
3

􏼒 􏼓 + ε a1x + a2x
3

+ a3x
5

+ x
7

􏼐 􏼑y,

(5)

with 0< ε≪ 1, and a1, a2, a3 are the constants. Equation (5)
holds the hyperelliptic Hamiltonian function:
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H(x, y) �
1
2
y
2

−
1
6
x
6

−
2
3
x
5

− x
4

−
2
3
x
3

−
1
6
x
2

�
1
2
y
2

+ A(x).

(6)

,e level sets (i.e., H(x, y) � h) of the Hamiltonian
function (6) are sketched in Figure 1. H(x, y) � h defines
a family of closed orbits of system (5)|ε � 0, denoted by Γh􏼈 􏼉.
Γ0 is the corresponding orbit to h � 0, it incloses an ele-
mentary center (− (1/3), 0), and Γ− (8/2187) defines two het-
eroclinic orbits, connecting a nilpotent saddle (− 1, 0) and
a hyperbolic saddle (0, 0). ,e Melnikov function on Γh is

I(h, δ) � 􏽉
Γh

a1x + a2x
3

+ a3x
5

+ x
7

􏼐 􏼑ydx

≡ a1I1(h) + a2I2(h) + a3I3(h) + I4(h),

(7)

for h ∈ (− (8/2187), 0), where δ � (a1, a1, a3, 1) and
Ii(h) � 􏽈Γhx2i− 1ydx, i � 1, 2, 3, 4. Our main work is to
provide a complete description of the number of limit cycles
for perturbed system in the whole plane.

2. Some Preliminaries

For system (3), some related definitions and significative
results are introduced, it can be seen in [21–23] in detail.

Definition 1. Assume that f0, f1, f2, . . . , fn− 1 are analytic
functions on a real open interval J.

(i) ,e family of sets f0, f1, f2, . . . , fn− 1􏼈 􏼉 is called
a Chebyshev system (T-system for short) provided
that any nontrivial linear combination k0f0(x) +

k1f1(x) + · · · + kn− 1fn− 1(x) has at most n − 1 iso-
lated zeros on J.

(ii) An ordered set of n functions f0, f1, f2, . . . , fn− 1􏼈 􏼉

is called a complete Chebyshev system (CT-system

for short) provided any nontrivial linear combi-
nation k0f0(x) + k1f1(x) + · · · + kn− 1fn− 1(x) has
at most i − 1 zeros for all i � 1, 2, . . . , n. Moreover, it
is called an extended complete Chebyshev system
(ECT-system for short) if the multiplicities of zeros
are taken into account.

(iii) ,e continuousWronskian of f0, f1, f2, . . . , fn− 1􏼈 􏼉

at x ∈ R is

W f0, f1, f2, . . . , fk− 1􏼂 􏼃 � det f
j
i􏼐 􏼑0≤i,j≤k− 1 �

f0(x) f1(x) . . . fk− 1(x)

f0′(x) f1′(x) . . . fk− 1′(x)

⋮ . . . . . . ⋮

f
(k− 1)
0 (x) f

(k− 1)
1 (x) . . . f

(k− 1)
k− 1 (x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (8)

where f′(x) is the first-order derivative off(x) andf
j
i (x) is

the jth order derivative of fi(x), i≥ 2. ,e definitions imply
that the function tuple f0, f1, f2, . . . , fn− 1􏼈 􏼉 is an ECT-
system on J; therefore, it is an ECT-system on J and then
a T-system on J; however, the inverse implications are not
true.

Let H(x, y) � (1/2)y2 + A(x) in (5) be an analytic
function. ,e set of ovals Γh � H(x, y) � h inside periodic
annulus is defined by h ∈ (h1, h2) � J. Supposed that P is
a punctured neighborhood of the origin foliated by ovals Γh,
then the projection of P on the x-axis is an interval (xl, xr)

with xl < 0<xr. It is easy to know that xA′(x)> 0,
∀x ∈ (xl, xr)\ 0{ }, such that A(x) has a zero of even

multiplicity at x � 0, and there exists an analytic involution
z(x), which is defined by A(x) � A(z(x)).

Lemma 1 (see [22]). On (xr, xl), supposed that an analytic
function fi(x) satisfies

Ii(h) � 􏽉
Γh

fi(x)y
2s− 1dx, for i � 0, 1, 2, . . . , n − 1, (9)

where h ∈ (h1, h2), s ∈ N, and Ih is the oval surrounding the
origin inside the level curve A(x) + (1/2)y2m � h􏼈 􏼉. Setting

li(x) ≔
fi(x)

A′(x)
−

fiz((x))

A′(x)
. (10)
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Figure 1: ,e level set of H(x, y).
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If the following assumptions are satisfied

(i) W[l0, l1, . . . , li] is nonvanishing on (xl, xr) for
i � 0, 1, . . . , n − 2

(ii) W[l0, l1, . . . , ln− 1] has k zeros on (xl, xr) counting
with multiplicities

(iii) s> n + k − 2

then for all nontrivial linear combination of I0, I1, . . . , In− 1􏼈 􏼉

has at most n + k − 1 zeros on (h1, h2) counting the multi-
plicities. Meantime, I0, I1, . . . , In− 1􏼈 􏼉 is called a T-system with
accuracy k on (h1, h2), where W[l0, l1, . . . , li] is Wronskian of
l0, l1, . . . , ln− 1􏼈 􏼉.

However, the third condition above always not been
satisfied, so we usually apply the next lemma to increase the
power of y in Ii.

Lemma 2 (see [22]). Let Γh be an oval inside the level curve
A(x) + (1/2)y2m � h􏼈 􏼉, F(x) be a function which satisfies

( F(x)/A′(x) ) which is analytic at x � 0. Hence,

􏽉
Γh

F(x)y
k− 2dx � 􏽉

Γh
G(x)y

kdx, ∀k ∈ N, (11)

where G(x) � (1/k)((F(x))/( A′(x) ))′(x).

3. The Least Upper Bound of Number of
Zeros of I(h, δ)

Multiply Ii(h) by ((2A(x) + y2)/2h) � 1, and the following
is obtained:

Ii(h) �
1
2h

􏽉
Γh

2A(x) + y
2

􏼐 􏼑x
2i− 1

ydx

�
1
2h

􏽉
Γh
2A(x)x

2i− 1
ydx + 􏽉

Γh
x
2i− 1

y
3dx􏼒 􏼓, i � 0, 1, 3.

(12)

Setting k � 3 and F(x) � 2x2i− 1A(x) and quoting
Lemma 2 to 􏽈Γh2x2i− 1A(x)ydx yield

􏽉
Γh
2x

2i− 1
A(x)ydx � 􏽉

Γh
Gi(x)y

3dx, (13)

where Gi(x) � (1/3)((2x2i− 1A(x))/A(x))′(x) �

((2x2i− 1( 3ix2 + 4ix − x + i ))/(3(3x + 1)2)).
By substituting (13) into (12) and multiplying ((2A(x) +

y2)/2h) � 1 again, it changes to

Ii(h) �
1
2h

􏽉
Γh

Gi(x) + x
2i− 1

􏼐 􏼑y
3dx

�
1
4h

2 􏽉
Γh

2A(x) + y
2

􏼐 􏼑 Gi(x) + x
2i− 1

􏼐 􏼑y
3dϕ,

�
1
4h

2 􏽉
Γh
2A(x) x

2i− 1
+ Gi(x)􏼐 􏼑y

3dx

+
1
4h

2 􏽉
Γh

x
2i− 1

+ Gi(x)􏼐 􏼑y
5dx.

(14)

Quoting Lemma 2, setting k � 5 and
F(x) � 2A(x)(x2i− 1 + Gi(x)), the following is obtained:

􏽉
Γh
2A(x) x

2i− 1
+ Gi(x)􏼐 􏼑y

3dx � 􏽉
Γh

Ei(x)y
5dx, (15)

where

Ei(x) �
1
5

2A(x)( x2i− 1 + Gi(x)

A(x)
􏼠 􏼡

′
(x) �

2x
2i− 1

ri(x)

15(3x + 1)
4,

ri(x) � 81ix
4

+ 18x
4
i
2

− 24x
3

+ 48i
2
x
3

+ 144ix
3

+ 44i
2
x
2

+ 84ix
2

− 14x
2

− 4x + 16i
2
x + 24ix

+ 3i + 2i
2
.

(16)

By substituting (15) into (14) and multiplying ((2A(x) +

y2)/2h) � 1 again, the following is obtained:

Ii(h) �
1
4h

2 􏽉
Γh

Ei(x) + Gi(x) + x
2i− 1

􏼐 􏼑y
5dx

�
1
8h

3 􏽉
Γh

2A(x) + y
2

􏼐 􏼑 Ei(x) + Gi(x) + x
2i− 1

􏼐 􏼑y
5
d,

�
1
8h

3 􏽉
Γh
2A(x) Ei(x) + Gi(x) + x

2i− 1
􏼐 􏼑y

5dx

+
1
8h

3 􏽉
Γh

Ei(x) + Gi(x) + x
2i− 1

􏼐 􏼑y
7dx.

(17)

Quoting Lemma 2 once more, then

􏽉
Γh
2A(x) Ei(x) + Gi(x) + x

2i− 1
􏼐 􏼑y

5dx � 􏽉
Γh

Di(x)y
7dx,

(18)

where

Di(x) �
1
7

2A(x)( x2i− 1 + Gi(x) + Ei(x)

A(x)
􏼠 􏼡

′
(x)

�
2x

2i− 1
gi(x)

105(3x + 1)
6,

gi(x) � 15i − 24x − 1008x
5

− 1218x
4

− 672x
3

− 178x
2

+ 184ix + 3645ix
6

+ 8496ix
5

+ 7761ix
4

+ 3848ix
3

+ 1107ix
2

+ 3120i
2
x
3

+ 1072i
2
x
2

+ 200i
2
x + 16i

2
+ 1296x

6
i
2

+ 4104x
5
i
2

+ 5040x
4
i
2

+ 544i
3
x
3

+ 228i
3
x
2

+ 48i
3
x

+ 108x
6
i
3

+ 432x
5
i
3

+ 684x
4
i
3

+ 4i
3
.

(19)
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From the above computation, the following result can be
obtained easily.

Lemma 3

8h
3
Ii(h) � 􏽉

Γh
fi(x)y

7dx ≡ 􏽥Ii(h), (20)

where fi(x) � x2i− 1 + Gi(x) + Ei(x) + Di(x). <erefore,
I1(h), I2(h), I3(h), I4(h)􏼈 􏼉 is an ECT-system if and only if
􏽥I1(h)t, n 􏽥I2q(h)h,􏽥

I3x
(h)7, C 􏽥I4;(h)􏼚 􏼛 is as well.

Take the following function

li(x) �
fi

A′
􏼠 􏼡(x) −

fi

A′
􏼠 􏼡(z(x)), (21)

where z(x) is an analytic involution, defined by
A(x) � A(z(x)) on (− 1, − (1/3)). Factoring A(x) − A(z(x))

yields

−
1
6

(x − z)q(x, z), (22)

where

q(x, z) � z + 6z
3

+ 4z
2

+ 4z
2
x
2

+ 6zx
2

+ x + 6z
2
x

+ 4xz
3

+ x
5

+ 4x
4

+ 6x
3

+ 4x
2

+ 4xz + 4zx
3

+ 4z
4

+ x
2
z
3

+ x
4
z + xz

4
+ z

2
x
3

+ z
5
,

(23)

which defined z(x) on (− 1, 0). Hence,

d
dx

li(x) �
d
dx

fi

A′
⎛⎝ ⎞⎠(x) −

d
dx

fi

A′
⎛⎝ ⎞⎠(z(x))⎡⎢⎢⎣ ⎤⎥⎥⎦

dz

dx
, (24)

with (dz/dx) � − (((zq(x, z))/zx)/( ( zq(x, z) )/zz )). Sup-
pose that x ∈ (− 1, − (1/3)), then z(x) ∈ (− (1/3), 0); in other
words,

− 1<x< −
1
3
< z< 0. (25)

Lemma 4. <e function tuple l1(x), l2(x), l3(x), l4(x)􏼈 􏼉 is an
ECT-system for x ∈ (− 1, − (1/3)).

Proof. Taking (24) into consideration, with the aid of Maple
16, we can obtain the 4 following Wronskians:

W l1(x)􏼂 􏼃 � l1(x) �
3(x − z)w1(x, z)

35(3x + 1)
7
(x + 1)

3
(3z + 1)

7
(z + 1)

3,

W l1(x), l2(x)􏼂 􏼃 �
18(x − z)

3
w2(x, z)

125(z + 1)
6
(3z + 1)

13
(x + 1)

6
(3x + 1)

13
p(x, z)

,

W l1(x), l2(x), l3(x)􏼂 􏼃 � −
108(x − z)

6
w3(x, z)

42875(z + 1)
9
(3z + 1)

15
z
4
(x + 1)

9
(3x + 1)

15
x
4
p
3
(x, z)

,

W l1(x), l2(x), l3(x), l4(x)􏼂 􏼃 � −
62208(x − z)

10
w4(x, z)

300125(z + 1)
12

(3z + 1)
22

z
5
(x + 1)

12
(3x + 1)

22
x
5
p
6
(x, z)

,

(26)

where

p(x, z) � x
4

+ 4x
3

+ 2x
3
z + 6x

2
+ 8x

2
z + 3x

2
z
2

+ 4x

+ 12xz + 12xz
2

+ 4xz
3

+ 1 + 8z + 18z
2

+ 16z
3

+ 5z
4
,

(27)

and w1(x, z), w2(x, z), w3(x, z), and w4(x, z) are poly-
nomials in x, z{ } of degrees 15, 32, 53, and 73, respectively. In
the following, calculating the resultant with respect to z

between q(x, z) and p(x, z) gives

R(q, p, z) � 16x
6
(3x + 4) 27x

3
+ 54x

2
+ 27x − 4􏼐 􏼑(x + 1)

10
.

(28)

From Sturm’s ,eorem, we know that R(q, p, z) has no
root on (− 1, − (1/3)), then p(x, z) and q(x, z) have no
common root on (− 1, − (1/3)). In the following, we will
check whether wi(x, z) and q(x, z) have common root
under the condition (25).

(i) Calculating the resultant with respect to z between
q(x, z) and w1(x, z), that is, eliminating from
q(x, z) � 0 and w1(x, z) � 0 gives
R(q, w1, z) � 15552(x + 1)6(3x + 1)6φ1(x), where
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φ1(x) is a polynomial of degree 62 in x. Applying
Sturm’s theorem to φ1(x), there is not any x such
that φ1(x) � 0, so we conclude that W1[l1(x)]≠ 0
on (− 1, − (1/3)).

(ii) Calculating the resultant with respect to z between
q(x, z) and w2(x, z), that is, eliminating from
q(x, z) � 0 and w2(x, z) � 0 gives R(q, w2, z) �

123834728448x4(3x + 1)10(x + 1)22 φ2(x), where
φ2(x) is a polynomial of degree 122 in x. Applying
Sturm’s theorem to φ2(x), there are three points,
denoted by x1, x2, and x3, such that φ2(x) � 0,
which x1 ≈ − 0.5231817697, x2 ≈ − 0.5050882970,
and x3 ≈ − 0.39862246670.

(iii) ,us we will check if q(x) and w2(x, z) have any
common roots on (− 1, − (1/3)) by using the pro-
gram with Maple 16 to find all the possible intervals.

>with(RegularChains);
>with(ChainTools);
>with(SemiAlgebraicSetTools);
>sys: � [w2(x, z), q(x, z)];
>R2: � PolynomialRing([x, z]);
>dec: � Triangularize(sys, R);
[regular chain]> L: � map(Equations, dec, R);

[x + 1, z], [x, z + 1], [x + 1, z + 1], [3x + 1, 3z + 1],[

φ∗1(x, z),φ∗2(x, z)􏼂 􏼃, η∗1(x, z), η∗2(x, z)􏼂 􏼃􏼃,

(29)

where φ∗1(x, z) � φ∗11(z)x + φ∗12(z), η∗1(x, z) �

η∗11(z)x + η∗12(z), and φ∗11, φ
∗
12, and η∗2 are poly-

nomials in z of degree 41, 41, and 42, η∗11, η
∗
12, and

η∗2 are polynomials in z of degree 79, 79, and 80,
respectively. It is obvious that, all the roots of the
regular chains [x + 1, z], [x, z + 1], [x + 1, z + 1],
and [3x + 1, 3z + 1] do not satisfy (14), the regular
chains [φ∗1(x, z), φ∗2(x, z)] and [η∗1(x, z), η∗2(z)]

are square-free and zero-dimensional (because the
number of variables equals the number of poly-
nomials). L[5][1] and L[5][2] represent φ∗1(x, z)

and φ∗2(z), and L[6][1] and L[6][2] represent
η∗1(x, z) and η∗2(z) in Maple, we use the following
program to check their common roots.

>C: � Chain([L[5][2], L[5][1]], Empty(R2), R2);
[regular chain] >RL: � RealRootIsolate
(C, R2, ′abserr′ � (1/105));
[box, box]>map(BoxValues, RL, R2);

x � −
68575
131072

, −
34287
65536

􏼔 􏼕, z � −
59409777128373836560319652339976029315
340282366920938463463374607431768211456

,􏼔􏼔

−
118819554256747673120639304679952058629
680564733841876926926749214863536422912

􏼕􏼕,

x � −
174237
131072

, −
43559
32768

􏼔 􏼕, z � −
163983771529936100306969912196931267809936064008805527989890579
411376139330301510538742295639337626245683966408394965837152256

,􏼔􏼔

−
655935086119744401227879648787725071239744256035222111959562315
1645504557321206042154969182557350504982735865633579863348609024

􏼕􏼕,

x � −
5721
32768

, −
22883
131072

􏼔 􏼕, z � −
95578876636133688791068498973648060853858107987
182687704666362864775460604089535377456991567872

,􏼔􏼔

−
382315506544534755164273995894592243415432431947
730750818665451459101842416358141509827966271488

􏼕􏼕,

x � −
52249
131072

, −
6531
16384

􏼔 􏼕,

z � −
3451103638335089536925233311376009
2596148429267413814265248164610048

, −
6902207276670179073850466622752017
5192296858534827628530496329220096

􏼔 􏼕,

(30)
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>C: � Chain([L[6][2], L[6][1]], Empty(R), R2);
[regular chain]>RL: � RealRootIsolate
(C, R,′abserr′ � (1/105));

[box, box]>map(BoxValues,RL, R);

x �
13355
131072

,
3339
32768

􏼔 􏼕, z � −
6047230960549727002402305215747932185702389013319747
11972621413014756705924586149611790497021399392059392

􏼔􏼔 ,

−
24188923842198908009609220862991728742809556053278987
47890485652059026823698344598447161988085597568237568

,􏼕􏼕

x � −
66203
131072

, −
33101
65536

􏼔 􏼕, z �
7002027595
68719476736

,
14004055191
137438953472

􏼔 􏼕􏼔 􏼕.

(31)

It means that there are 6 pairs of common roots of
w2(x, z) and q(x, z) in the listed intervals, re-
spectively. However, there is not any pair of them
satisfies the condition (25). It is said that
w2(x, z)≠ 0 as − 1< x< − (1/3); therefore,
W[l1(x), l2(x)]≠ 0.

(iii) Similarly, we use the same program as (i) and (ii) to
find all the possible intervals, which may hold the
common roots of w3(x, z) and q(x, z) and then
obtain the following regular chains:

[x, z], [x, z + 1], [x + 1, z], [x + 1, z + 1],[

3x + 1, 3z + 1], u
∗
1(x, z), u

∗
2(x, z)􏼂 􏼃,􏼂

ρ∗1(x, z), ρ∗2(x, z)􏼂 􏼃􏼃,

(32)

where u∗1(x, z) � u∗11(z)x + u∗12(z),
ρ∗1(x, z) � ρ∗11(z)x + ρ∗12(z), and u∗11, u

∗
12, and u∗2 are

polynomials in z of degree 57, 57, and 58, re-
spectively, ρ∗11, ρ

∗
12(z), and ρ∗2 are polynomials in z of

degree 111, 111, and 112, respectively. Isolating the
fifth and sixth regular chains yields

x � −
54979
131072

, −
27489
65536

􏼔 􏼕, z � −
856271130202849555762339288322376111382316862455404994678519855401
3369993333393829974333376885877453834204643052817571560137951281152

􏼔􏼔 ,

−
107033891275356194470292411040297013922789607806925624334814981925
421249166674228746791672110734681729275580381602196445017243910144

􏼣􏼣,

x � −
174741
131072

, −
43685
32768

􏼔 􏼕􏼔 ,

z � −
3030298039091615678970663582957756689217473784749385379759227090702937762986412587479826606535809219
8749002899132047697490008908470485461412677723572849745703082425639811996797503692894052708092215296

􏼔 ,

−
6060596078183231357941327165915513378434947569498770759518454181405875525972825174959653213071618437
17498005798264095394980017816940970922825355447145699491406164851279623993595007385788105416184430592

􏼕􏼕,

x � −
4163
16384

, −
33303
131072

􏼔 􏼕, z � −
361868533714530451234631234914240547837472188608858683748897796324263
862718293348820473429344482784628181556388621521298319395315527974912

,

−
1447474134858121804938524939656962191349888754435434734995591185297051
3450873173395281893717377931138512726225554486085193277581262111899648

,

x � −
42589
32768

, −
170355
131072

􏼔 􏼕, z � −
480531930410139348156667048862506606461576771541323121412001025602246951271
904625697166532776746648320380374280103671755200316906558262375061821325312

,

−
961063860820278696313334097725013212923153543082646242824002051204493902541
1809251394333065553493296640760748560207343510400633813116524750123642650624

􏼕,
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x � −
69625
131072

, −
8703
16384

􏼔 􏼕, z � 􏼢−
29680061337195580870771064771100920742487699647
22835963083295358096932575511191922182123945984

,

−
14840030668597790435385532385550460371243849823
11417981541647679048466287755595961091061972992

􏼣􏼣,

x � −
22699
65536

, −
45397
131072

􏼔 􏼕, z � −
249398274372099944349741313215654480864719460648955
187072209578355573530071658587684226515959365500928

,􏼔

−
124699137186049972174870656607827240432359730324477
93536104789177786765035829293842113257979682750464

􏼣􏼣􏼣

􏼢x �
15487
131072

,
121
1024

􏼔 􏼕,

z � 􏼢−
671186327417864448164206670006314426784341428019480859893071190393381893648895245
1897137590064188545819787018382342682267975428761855001222473056385648716020711424

,

−
167796581854466112041051667501578606696085357004870214973267797598345473412223811
474284397516047136454946754595585670566993857190463750305618264096412179005177856

􏼣􏼣,

x � −
11593
32768

, −
46371
131072

􏼔 􏼕, z �
272465990628347833
2305843009213693952

,
4359455850053565329
36893488147419103232

􏼔 􏼕􏼣􏼢 􏼣.

(33)

It means that there are 8 pairs of common roots of
w3(x, z) and q(x, z) in the listed intervals, re-
spectively. However, there is not any pair of them
satisfies the condition (25). It is said that
w3(x, z)≠ 0 as − 1< x< − (1/3); therefore,
W[l1(x), l2(x), l3(x)]≠ 0.

(iv) Similarly, we use the same program as (ii) and (iii)
to find all the possible intervals, which may hold the
common roots of w4(x, z) and q(x, z) and then
obtain the following regular chains:

[x, z], [x + 1, z], [x, z + 1], [x + 1, z + 1],[

3x + 1, 3z + 1], v
∗
1(x, z), v

∗
2(x, z)􏼂 􏼃,􏼂

ω∗1(x, z),ω∗2(x, z)􏼂 􏼃􏼃,

(34)

where v∗1(x, z) � v∗11(z)x + v∗12(z),ω∗1
(x, z) � ω∗11(z)x + ω∗12(z), and v∗11, v∗12, and v∗2 are
polynomials in z of degree 75, 75, and 76, re-
spectively, ω∗11, ω∗12, and ω∗2 are polynomials in z of
degree 145, 145, and 146, respectively. Isolating the
fifth and sixth regular chains yields

>C: � Chain([L[6][2], L[6][1]], Empty(R), R2);
[regular chain]>RL: �

RealRootIsolate(C, R,′abserr′ � (1/ 105));
[box, box, box, box, box, box,

box, box, box, box, box, box, box, box]>map
(BoxValues,RL, R);
>evalf(%);

[ [ x � [− 1.113883972, − 1.113876343 ], z � [− 0.01488446846, − 0.01488446846 ] ],

[ x � [− 1.277610779, − 1.277603149 ], z � [− 0.1301213260, − 0.1301213260 ] ],

[ x � [− 0.5849761963, − 0.5849685669 ], z � [− 0.1345142627, − 0.1345142627 ] ],

[ x � [− 1.329246521, − 1.329238892 ], z � [− 0.2715335562, − 0.2715335562 ] ],

[ x � [− 0.3662719727, − 0.3662643433 ], z � [− 0.3014530812, − 0.3014530812 ] ],

[ x � [− 1.333335876, − 1.333328247 ], z � [− 0.3333242893, − 0.3333242893 ] ],

[ x � [− 0.3014602661, − 0.3014526367 ], z � [− 0.3662645453, − 0.3662645453 ] ],

[ x � [− 0.1345214844, − 0.1345138550 ], z � [− 0.5849732646, − 0.5849732646 ] ],

[ x � [− 1.078308105, − 1.078300476 ], z � [− 0.9149922188, − 0.9149922188 ] ],

[ x � [− 0.9149932861, − 0.9149856567 ], z � [− 1.078306231, − 1.078306231 ] ],

[ x � [− 0.01488494873, − 0.01487731934 ], z � [− 1.113876799, − 1.113876799 ] ],

[ x � [− 0.1301269531, − 0.1301193237 ], z � [− 1.277609231, − 1.277609231 ] ],

[ x � [− 0.2715377808, − 0.2715301514 ], z � [− 1.329244729, − 1.329244729 ] ],

[x � [− 0.3333282471, − 0.3333206177 ], z � [− 1.333333333, − 1.333333333 ]] ],

(35)
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>C: � Chain([L[7][2], L[7][1]], Empty(R), R2);
[regular_chain]>RL: � RealRootIsolate(C,

R,′abserr′ � (1/105));
[box, box, box, box, box, box]>map(BoxValues,
RL, R);

>evalf(%);

[x � [0.1184310913, 0.1184387207], z � [− 0.3332116462, − 0.3332116462]],

[x � [0.1063232422, 0.1063308716], z � [− 0.4784850961, − 0.4784850961]],

[x � [0.5298614502, 0.5299377441], z � [− 0.7129253486, − 0.7129253486]],

[x � [− 0.3332138062, − 0.3332061768], z � [0.1184337894, 0.1184337894]],

[x � [− 0.4784851074, − 0.4784774780], z � [0.1063252093, 0.1063252093]],

[x � [− 0.7129287720, − 0.7129211426], z � [0.5298903953, 0.5298903953]].

(36)

It means that there are 20 pairs of common roots of
w4(x, z) and q(x, z) in the listed intervals, respectively.
However, there is not any pair of them satisfies the condition
(25). It is said that w4(x, z)≠ 0 as − 1<x< − (1/3); there-
fore, W[l1(x), l2(x), l3(x), l4(x)]≠ 0.

Based on Lemma 1 and Lemma 4, we obtain the fol-
lowing proposition: □

Proposition 1. 􏽥I1(h)t, n 􏽥I2q(h)h,􏽥
I3x

(h)7, C 􏽥I4;(h)􏼚 􏼛 is an
ECT-system and I1(h), I2(h), I3(h), I4(h)􏼈 􏼉 is as well.
<erefore there are at most 3 zeros for I(h, δ) on
h ∈ (− (8/2187), 0).

4. Conclusion

In this work, we study the Poincare
�

bifurcation of the
Lie

�
nard system with the form (5), and we prove 4 is the least

upper bound of the number of limit cycles by the Poincare
�

bifurcation.
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