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We construct for the first time a fractional-order hyperchaotic system via the original integer-order system. ,e dynamical
behavior of this fractional-order hyperchaotic system is investigated in detail using first approximation method and Lyapunov
exponents. Next, an adaptive control strategy for the univariate controlled hyperchaotic system has been proposed. Also, the
tracking performance is fully taken into account in numerous applications, for instance, tracking sinusoidal periodic signal, self-
synchronization, and generalized synchronization of heterogeneous structure. Simulation results illustrate the validity and
performability of the proposed adaptive tracking control scheme.

1. Introduction

Fractional calculus has the characteristics of historical de-
pendence and global correlation and is an ideal tool to
describe the memory and heredity of real problems.
Compared with integer-order calculus, fractional calculus
has better fitting degree with the experimental results in
signal processing, hydrodynamics, mathematical biology,
and electrochemistry [1–5]. ,erefore, fractional calculus
has been widely used in many disciplines and engineering
fields. ,e research on fractional differential system can
enrich the related results in the field of calculus, which has
important theoretical significance and application value.
Virtually, fractional calculus seems to be the direct extension
of integral-order calculus, but the definition of fractional-
order derivative involves the kernel integral with parameter;
then, many properties of integral-order differential system
cannot hold in the fractional order, even if they have
connotative relationships, these properties may not obtain
equivalent conclusions [4]. Hence, it is of great significance
to study the fractional differential system in depth. It is noted
that qualitative problems of the nonlinear differential system
(such as bifurcation, chaos, and quasiperiod) are an

important branch of the evolution theory of differential
equations. With the development of fractional calculus
theory, the qualitative properties of fractional differential
system are widely used in many fields, for example, physical
mechanics, anomalous diffusion, automatic control, and
biomedicine; the qualitative research of the fractional dif-
ferential system has been paid attention by scholars, and
many profound results have been obtained [1, 2, 4].

As a kind of motion form of the nonlinear system, chaos
generally exists in nature. Chaos has many unique prop-
erties, such as aperiodic and long-term immeasurability. A
chaotic system with two or more positive Lyapunov expo-
nents is called the hyperchaotic system. Compared with
chaos, the attractor orbits of the hyperchaotic system are
separated in more directions [5–10]. As thus, the ran-
domness and unpredictability about the hyperchaotic sys-
tem are also stronger, which makes the hyperchaotic system
have a broader development prospect in image encryption
and secure communication. Based on the need of com-
munication security, many scholars have tried to use
hyperchaotic secure communication scheme, in which the
key signal is generated by hyperchaotic system. Because of
more complex dynamic characteristics in hyperchaotic
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secure communication scheme, it is difficult to use time
series to reconstruct and decode the phase space. How to
establish a hyperchaotic system model with new charac-
teristics and how to control and synchronize hyperchaos
have always been a hot topic in the field of dynamical
systems and control [8, 10].

In the past few years, the control requirements of in-
dustrial system are improved rapidly. Accordingly, the
nonlinear degree is increasing, which brings great challenges
to the analysis and synthesis of the system. ,erefore, it is
very important for the stable operation of nonlinear system
to improve the fault-tolerant ability and actively suppress
external disturbances [3, 11–15]. Adaptive control has the
function of self-tuning, while tracking control has the
function of path synchronization. ,e combination of
adaptive control and tracking control can keep or approach
the ideal performance of the original system after system
failure [12–15]. ,e introduction of adaptive tracking
control in the fractional-order system can not only upgrade
the conventional adaptive tracking control but also meet the
control requirements of the system described by the frac-
tional-order operator. In the present stage, the research on
fractional-order adaptive tracking control is still in its in-
fancy, and only a basic theoretical framework has been
formed. ,erefore, it is necessary to further explore the
potential of fractional-order adaptive tracking control in
complex systems to achieve the asymptotic convergence of
adaptive tracking control.

Based on the above analysis, in this paper, a new four-
dimensional hyperchaotic system characterized by fractional
differential equation is proposed, and dynamic behavior of
the proposed system is studied. ,e stability of the equi-
librium point and attractor evolution is studied by using the
normal form method and Lyapunov exponents. ,e global
dynamic behaviors, including hyperchaotic attractor, cha-
otic attractor, and singular degenerate ring, are discussed in
detail. Moreover, adaptive tracking control of the considered
system is analyzed and applied effectively.

2. ANewFractional-OrderHyperchaoticSystem

In memristor oscillator systems, a first-order mem-circuit is
often discussed as follows:

_x1(t) � x2(t),

_x2(t) � θ1x3(t) − θ2x2(t) − θ3x
2
1(t)x2(t),

_x3(t) � θ4x2(t) − θ4x3(t) + θ5x4(t),

_x4(t) � −θ6x3(t) − θ7x4(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where xi(t), i ∈ 1, 2, 3, 4{ }, is the system state and θi,
i ∈ 1, 2, 3, 4, 5, 6, 7{ }, is the system parameter.

When θ1 � 16.3, θ2 � −3.28, θ3 � 19.68, θ4 � 1, θ5 � 1,
θ6 � 15, and θ7 � 0.5, system (1) shows a chaotic behavior.
Accordingly, chaotic attractors in three-dimensional pro-
jection are described as Figure 1.

As a natural extension of integral calculus, fractional
calculus plays an important role in practical engineering
applications, especially in modeling the fractional-order

system. Recently, Wu and Zeng [4] have introduced frac-
tional calculus into the design of memristor systems, found
that the memristor systems of fractional order have better
performance, and have achieved some successful applica-
tions. Continuing along this path, we reestablish a new
fractional-order system:

D
α
x1(t) � x2(t),

D
α
x2(t) � θ1x3(t) − θ2x2(t) − θ3x

2
1(t)x2(t),

D
α
x3(t) � θ4x2(t) − θ4x3(t) + θ5x4(t),

D
α
x4(t) � −θ6x3(t) − θ7x4(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where Dα is Caputo fractional derivative operator with order
α> 0, xi(t), i ∈ 1, 2, 3, 4{ }, is the system state, and θi,
i ∈ 1, 2, 3, 4, 5, 6, 7{ }, is the system parameter.

When α � 1, system (2) degenerates into system (1).
Compared with system (1), system (2) is a broader form.

Let α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68, θ4 � 1,
θ5 � 1, θ6 � 15, and θ7 � 0.5; then, Lyapunov exponents of
system (2) are λ1 � 0.400714, λ2 � 0.020389,
λ3 � −0.008180, and λ4 � −7.854758 (Figure 2); this suggests
that system (2) is hyperchaotic. Accordingly, hyperchaotic
attractors in three-dimensional projection are described as
Figure 3.

3. Dynamic Behaviors in Hyperchaotic
System (2)

By Dαx1(t) � 0, Dαx2(t) � 0, Dαx3(t) � 0, and
Dαx4(t) � 0, system (2) exhibits a unique equilibrium point
O(0, 0, 0, 0).

By linearizing system (2) at the equilibrium point
O(0, 0, 0, 0), the corresponding Jacobian matrix is

J �

0 1 0 0

0 −θ2 θ1 0

0 θ4 −θ4 θ5
0 0 −θ6 −θ7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

,e detailed characteristic equation is

Υ(χ) � χ χ3 + θ2 + θ4 + θ7( χ2

+ −θ1θ4 + θ2θ4 + θ2θ7 + θ4θ7 + θ5θ6( χ

−θ1θ4θ7 + θ2θ4θ7 + θ2θ5θ6.

(4)

Let α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68, θ4 � 1,
θ5 � 1, θ6 � 15, and θ7 � 0.5 and the roots of the charac-
teristic equation (4) are χ1 � 0, χ2 � 5.133,
χ3 � −1.676 − 2.946i, and χ4 � −1.676 + 2.946i, where i is
imaginary number; thus, the equilibrium point O(0, 0, 0, 0)

is an unstable saddle point.
Suppose that the four Lyapunov exponents of system (2)

are λ1, λ2, λ3, and λ4, by reordering to satisfy λ1 > λ2 > λ3 > λ4;
the following is to study the influences of parameter varying
on the dynamic behavior of system (2); here, we select the
evolution of Lyapunov exponents to reflect the influences of
parameter variation.

2 Discrete Dynamics in Nature and Society



Case 1: α � 0.5, θ1 ∈ [14.8, 16.7], θ2 � −3.28,
θ3 � 19.68, θ4 � 1, θ5 � 1, θ6 � 15, and θ7 � 0.5; then,
we get λ1 > 0, λ2 > 0, λ3 < 0, and λ4 < 0 (Figure 4); system
(2) has two positive Lyapunov exponents and is in the
hyperchaotic state.
Case 2: α � 0.5, θ1 � 16.3, θ2 ∈ [−4, −3], θ3 � 19.68,
θ4 � 1, θ5 � 1, θ6 � 15, and θ7 � 0.5; then, we get λ1 > 0,
λ2 > 0, λ3 < 0, and λ4 < 0 (Figure 5); system (2) has two
positive Lyapunov exponents and is in the hyperchaotic
state.
Case 3: α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 ∈ [19.4, 20.6],
θ4 � 1, θ5 � 1, θ6 � 15, and θ7 � 0.5; then, we get λ1 > 0,
λ2 > 0, λ3 < 0, and λ4 < 0 (Figure 6); system (2) has two
positive Lyapunov exponents and is in the hyperchaotic
state.
Case 4: α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68,
θ4 ∈ [0.8, 9], θ5 � 1, θ6 � 15, and θ7 � 0.5; then, we get
λ1 > 0, λ2 > 0, λ3 < 0, and λ4 < 0; system (2) has two
positive Lyapunov exponents and is in the hyperchaotic
state.
Case 5: α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68,
θ4 � 1, θ5 ∈ [0.2, 1.4], θ6 � 15, and θ7 � 0.5; then, we

get λ1 > 0, λ2 > 0, λ3 < 0, and λ4 < 0; system (2) has two
positive Lyapunov exponents and is in the hyperchaotic
state.
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Figure 1: Chaotic attractors in three-dimensional projection.
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Figure 2: Dynamics of Lyapunov exponents with respect to system
(2).
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Case 6: α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68,
θ4 � 1, θ5 � 1, θ6 ∈ [14, 21.3], and θ7 � 0.5; then, we get
λ1 > 0, λ2 > 0, λ3 < 0, and λ4 < 0; system (2) has two
positive Lyapunov exponents and is in the hyperchaotic
state.
Case 7: α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68,
θ4 � 1, θ5 � 1, θ6 � 15, and θ7 ∈ [0, 0.5]; then, we get
λ1 > 0 and λ2 > 0 (for example, θ7 � 0, 0.1, 0.2, 0.3, 0.5)
or λ2 < 0 (for example, θ7 � 0.4), λ3 < 0, λ4 < 0; system
(2) will experience hyperchaotic and chaotic states; see
Figure 7 when θ7 � 0.2 and Figure 8 when θ7 � 0.4.

,e algorithm for Lyapunov exponents is described as
follows:

Step 1: the fractional differential equation is trans-
formed into an equivalent integral equation
Step 2: the approximate solution of the transformed
equation system is obtained
Step 3: the Jacobian matrix of the transformed equation
system is decomposed via QR method (the matrix is

decomposed into a normal orthogonal matrix Q and an
upper triangular matrix R)

–1
–0.5

0
0.5

1

–1
–0.5

0
0.5

1
–4

–2

0

2

4
Hyperchaotic attractor: 3D projection

x1
x3

x2

(a)

x1
x4

x2

–3
–2

–1
0

1
2

3

–1
–0.5

0
0.5

1
–3

–2

–1

0

1

2

3
Hyperchaotic attractor: 3D projection

(b)

x1
x4

x3

–4
–2

0
2

4

–1
–0.5

0
0.5

1
–1

–0.5

0

0.5

1
Hyperchaotic attractor: 3D projection

(c)

x2
x3

x4

–1
–0.5

0
0.5

–4
–3

–2
–1

0
1

–2

–1

0

1

2

Hyperchaotic attractor: 3D projection

(d)

Figure 3: Hyperchaotic attractors in the three-dimensional projection.
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Figure 4: Dynamics of Lyapunov exponents with respect to Case 1.
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Step 4: the product of eigenvalues of Jacobian matrix is
calculated
Step 5: Lyapunov exponents and fractional dimension
are calculated

Remark 1. Lyapunov exponents represent the numerical
characteristics of the average divergence rate of adjacent
trajectories in phase space, which is one of the characteristics
used to identify some numerical values of chaotic motion.
Here, we transform the fractional differential equation into
an equivalent integral equation and solve the Lyapunov
exponents of the corresponding integral equation via
MATLAB.

Remark 2. In Cases 1–6, by adjusting the parameters, we
describe the hyperchaotic behavior of the system. At the
same time, in order to provide an intuitive understanding,
we give the evolution diagram of Lyapunov exponents for
Case 1 to Case 3 (of course, the similar evolution diagram of
Lyapunov exponents for Case 4 to Case 6 is omitted). In Case

7, when θ7 ∈ [0, 0.5], the system will be hyperchaotic/
chaotic.

4. Adaptive Tracking Control

4.1. Design Strategy about Adaptive Tracking Control.
Combined with the nonlinear characteristics of system (2),
this subsection aims to carry out the research on adaptive
tracking control strategy of the fractional-order hyper-
chaotic system. Our goal is to design an adaptive tracking
controller so that the variable x1(t) of the hyperchaotic
system (2) can track any given reference signal in various
forms.

Consider the following univariate controlled hyper-
chaotic system:

D
α
x1(t) � x2(t) + u(t),

D
α
x2(t) � θ1x3(t) − θ2x2(t) − θ3x

2
1(t)x2(t),

D
α
x3(t) � θ4x2(t) − θ4x3(t) + θ5x4(t),

D
α
x4(t) � −θ6x3(t) − θ7x4(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where u(t) is the adaptive controller to be designed.
Suppose any reference signal is y(t), define the tracking

error as e(t) � x1(t) − y(t) and the controller u(t) is
designed as

u(t) � ρ(t)e(t), (6)

where ρ(t) is adaptive control gain and satisfies

D
αρ2(t) � −2ω e

2
(t) + e(t)D

α
e(t) , (7)

where ω> 0 is a constant and its size of ω directly affects the
convergence rate of control gain ρ(t).

Theorem 1. For the controlled system (5), if the adaptive
controller represented by (6) and (7) is selected, then the state
variable x1(t) can track any given reference signal y(t) in
different forms.

Proof. To choose

V(t) �
1
2

e
2
(t) +

1
2ω

ρ2(t), (8)

then

D
α
V(t) ≤ e(t)D

α
e(t) +

1
ω
ρ(t)D

αρ(t)

� −e
2
(t)

≤ 0.

(9)

Bymean of the fractional-order convergence principle, it
follows that the state variable x1(t) of the controlled system
(5) asymptotically converging to the reference signal y(t)

under the adaptive controllers (6) and (7). □

4.2. Tracking Sinusoidal Periodic Signal. Signal tracking is an
important research topic in the field of signal processing. It is
widely used in radar detection, sonar positioning, wireless
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Figure 5: Dynamics of Lyapunov exponents with respect to Case 2.
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Figure 6: Dynamics of Lyapunov exponents with respect to Case 3.
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Figure 7: Hyperchaotic attractors.
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communication, seismic exploration, radio astronomy,
biomedical engineering, and many other military and civil
fields. Signal tracking performance includes noise perfor-
mance (noise filtering ability), dynamic performance (dy-
namic tracking ability), and tracking performance (tracking
accuracy). ,e adaptive tracking control strategy proposed
in this paper can satisfy the dynamic signal tracking ability
without losing the tracking performance, so as to improve
the loop performance.

Here, the sinusoidal periodic signal 0.5 sin(t) is selected
as the reference signal, and the simulation result is shown in
Figure 9. It can be seen from Figure 9 that the system variable
x1(t) is controlled on the periodic orbit after about 0.1
second, which fully demonstrates that the designed adaptive
tracking controller can make the controlled system (5) ac-
curately track the given periodic signal 0.5 sin(t).

4.3. Self-Synchronization. ,e phenomenon of self-syn-
chronization opens up a new application domain of vi-
bration technology and guides the birth of a new discipline
of vibration utilization engineering. At present, self-syn-
chronous vibrator is widely used in industrial production
departments, such as vibrating screen, vibrating feeder, and
vibrating dehydrator. On the basis of the analysis of adaptive
tracking control in the previous content, combining the
adaptive tracking control with the self-synchronization
theory, we aim to guide the establishment of a systematic
self-synchronization theoretical framework.

Selecting the following hyperchaotic system (10) as the
response system,

D
α
z1(t) � z2(t),

D
α
z2(t) � θ1z3(t) − θ2z2(t) − θ3z

2
1(t)z2(t),

D
α
z3(t) � θ4z2(t) − θ4z3(t) + θ5z4(t),

D
α
z4(t) � −θ6z3(t) − θ7z4(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Let α � 0.5, θ1 � 16.3, θ2 � −3.28, θ3 � 19.68, θ4 � 1,
θ5 � 1, θ6 � 15, and θ7 � 0.5; to choose the reference signal
y(t) � z1(t), the relevant simulation result is shown as
Figure 10. Viewed from Figure 10, system state x1(t) is
consistent with z1(t) about 0.2 second, which also com-
pletely demonstrates that system (5) and system (10) can
achieve self-synchronization under the adaptive controllers
(6) and (7).

4.4. Generalized Synchronization of Heterogeneous Structure.
Heterogeneous coupling is one of the key characteristics of
the cyber-physical system. In fact, the communication
network in the cyber-physical system is composed of sensor
network, actuator network, and computer network, which is
often heterogeneous. How to choose the appropriate and
effective control strategy to obtain desired performance of
the system and then to achieve the stability and controlla-
bility of the system are hot issues.
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Selecting the following three-dimensional system (11) as
the response system,

D
αμ1(t) � ξ1 μ2(t) − μ1(t)( ,

D
αμ2(t) � ξ2μ1(t) − ξ3μ1(t)μ3(t),

D
αμ3(t) � −ξ4μ3(t) + ξ5μ

2
1(t).

⎧⎪⎪⎨

⎪⎪⎩
(11)

When α � 0.5, ξ1 � 10, ξ2 � 40, ξ3 � 1, ξ4 � 2.5, and
ξ5 � 4, system (11) shows chaotic behavior. Assume the
reference signal y(t) � μ1(t) + μ2(t); in other words, gen-
eralized synchronization is realized in system (5) and system
(11). ,e related simulation result is shown as Figure 11. As
seen from Figure 11, system state x1(t) is consistent with the
reference signal y(t) � μ1(t) + μ2(t) about 0.1 second,
which also fully illustrates that system (5) and system (11) in
heterogeneous structure can achieve generalized synchro-
nization under the adaptive controllers (6) and (7).

5. Conclusion

In this paper, based on an integer-order chaotic system, a
new fractional-order hyperchaotic system is constructed.

,e basic dynamics of this system, including Lyapunov
exponents and attractor types, are studied in detail. ,e
analysis shows that the new fractional-order system presents
chaos, hyperchaos, and other complex motions with the
change of different parameters. Finally, an adaptive tracking
controller is designed to realize the single-variable tracking
control of the hyperchaotic system for different types of
reference signals. Taking the tracking control of sinusoidal
periodic signal, self-synchronization, and generalized syn-
chronization between heterogeneous systems as examples,
the effectiveness of the adaptive controller is verified.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] K. Mathiyalagan and G. Sangeetha, “Second-order sliding
mode control for nonlinear fractional-order systems,” Applied
Mathematics and Computation, vol. 383, Article ID 125264,
2020.

[2] E. Saatci and E. Saatci, “State-space analysis of fractional-
order respiratory system models,” Biomedical Signal Pro-
cessing and Control, vol. 57, Article ID 101820, 2020.

[3] P. Trivedi, V. Vyawahare, and M. D. Patil, “Tracking control
for fractional order systems with high relative degree outputs,”
IFAC-PapersOnLine, vol. 53, no. 1, pp. 170–175, 2020.

[4] A. Wu and Z. Zeng, “Global Mittag-Leffler stabilization of
fractional-order memristive neural networks,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 28,
no. 1, pp. 206–217, 2017.

[5] A. Yousefpour, H. Jahanshahi, J. M. Munoz-Pacheco,
S. Bekirosd, and Z. Wei, “A fractional-order hyper-chaotic
economic system with transient chaos, Chaos,” Solitons &
Fractals, vol. 130, Article ID 109400, 2020.

[6] V. Basios and C. G. Antonopoulos, “Hyperchaos & labyrinth
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