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*e mobile networks have increasingly facilitated our daily life but are also breeding grounds for malicious worms, which are
considered as the main threat to cyber security. *e purpose of this paper is to analyze the dynamics of worm propagation and to
control the worm epidemic based on mobile-phone networks. Accordingly, we establish an SEIQR-type model to explore the
worm epidemic with saturated incidence rate.*is paper shows that if the basic reproduction number is less than 1, the worm-free
equilibrium is asymptotically stable, and the epidemic of worm will eventually disappear and remain under control; in addition, if
the basic reproduction number is greater than 1, the asymptotical stability of worm-existence equilibrium is derived to imply that
the epidemic will remain persistent and uncontrollable. Our results give new insights to mobile network security, namely, that is
predicting the worm spreading tendency, identifying the epidemic control strategies, and estimating the worm popularity level.
Numerical experiments are conducted to show the rationality of our obtained results and the effectiveness of the control strategies.

1. Introduction

As everyone knows, the mobile devices, e.g., smartphones,
tablets, and laptops, are increasingly pervasive in the
world today but have been also both the target and victim
of network worm attackers. For example, because of its
convenience, the Wi-Fi is currently the most popular way
for mobile devices to access to the Internet, which has
considerably facilitated our daily life. Unfortunately, it
exposes these devices to worm attackers from mobile
Internet. A Wi-Fi worm, named Chameleon and appeared
in 2014, could spread like an airborne diseases [1].
However, the majority of mobile devices do not have any
effective methods to prevent worm attacks. Once a mobile
device has been compromised by worms, it can cause great
losses to users, including data leakage, system damage,
and financial losses [2]. Hence, as considered by network
experts, the outbreak of malicious worms is one of the
most serious risks to network security, property, and
function.

Many researchers have proposed mathematical models
to explore the dynamic behaviors of computer worms and
biological communities [3–11]. Due to the high similarity
between computer worms and biological virus, a series of
epidemic models are developed to study the transmission of
infectious disease in the host population [12–21]. In the
literature mentioned above, we find that the bilinear inci-
dence rate plays an important part in describing the dy-
namics of virus/worm transmission [4, 22]. However, in
most practical situations, this bilinear rate is impractical so
as to considerably restrict the availability of the results
obtained. *us, some nonlinear rates of incidence were
introduced by the literature [12, 15, 19–21], among which
the saturated rate can tend to its saturation level with the
increase of the number of infected or susceptible individuals.
Obviously, the saturated rate is more realistic as it can
present the inhibition effect of susceptible individuals and
the crowding effect of infectious individuals and can also
guarantee the boundness of contact rate. In this study, a
mathematical model with the saturated rate of incidence is
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taken into consideration to study the worm spreading
through mobile networks.

Notice that the above existing models mainly aim at the
computer worms spreading through fixed networks, and
because of the differences between computers and mobile
devices, they could not be applied directly in mobile net-
works, especially in Wi-Fi ones and 5G ones. Once a mobile
device connects to the networks via Wi-Fi, the Wi-Fi base
station can control (continue or disrupt) the connection;
then, the base station can be adopted to disrupt the con-
nection between the infected devices by worms and other
devices. If the connection is cut off, the infected devices are
quarantined so that the susceptible devices can be protected
from the attack of worms. Hence, in this paper, we consider
an SEIQR-type (susceptible-exposed-infectious-quaran-
tined-recovered) model, proposed by Xiao et al. [22], to
describe the dynamics and characteristics of the worm
propagation based on Wi-Fi networks. Compared with the
previous papers, the novel ideas of our paper are that (a) the
SEIQR model is along with the saturated rate of incidence;
(b) the recovery process from the susceptible group to the
recovered group is considered thanks to some sufficient
defense mechanisms or antivirus treatments; (c) the dys-
function of devices not only relates to natural death but also
depends on worm-related death, because in the real world,
the crash of most devices results from the attack of malicious
worms; and (d) the worm epidemic intervention strategies
are established by reducing its size and speed.

In this paper, we analyze the stability of worm-free and
worm-existence equilibria and identify the control strategies
of worm epidemic where an optimal strategy is devised to
minimize the cost of quarantine intervention and the
number of infected devices while maximizing the number of
recovered devices. Remark that the worm-free equilibrium
stability provides the rationale of worm epidemic inter-
vention strategies; while the worm-existence equilibrium
stability can predict the worm spreading tendency for a long
period and estimate the worm popularity level by the final
scope of infected devices. Furthermore, we carry out a series
of numerical experiment in order to demonstrate the ra-
tionality of our obtained results and the effectiveness of the
control strategies.

*e rest of our paper is constructed as follows: in Section 2,
we introduce the SEIQR-type model with saturated incidence
rate; in Section 3, we analyze the stabilities of worm-free and
worm-existence equilibria; in Section 4, we implement the
numerical analysis and experiments; in Section 5, we identify
the worm epidemic intervention strategies; in Section 6, we
conclude and discuss the paper; and in Appendix section, we
prove the main results obtained.

2. SEIQR-Type Worm Propagation Model

In the paper, we consider the general SEIQR-type worm
propagation model, in which the mobile devices are divided
into five groups: susceptible group (S) includes the devices
uninfected by malicious worms but vulnerable to worm
attacks; exposed group (E) includes the devices exposed to

and infected by the worms but not infectious; infectious
group (I) includes the exposed and infectious devices;
quarantine group (Q) includes the infectious and quaran-
tined devices; recovered group (R) includes the recovered
devices with immunity against the worms. Figure 1 shows
the state transition diagram with the involved modeling
parameters, Table 1 lists the baseline parameters and their
initial values, and Table 2 lists the state transitions and their
rates.

As shown in Figure 1 and Tables 1 and 2, we present the
state transitions of the SEIQR-type model in detail as
follows:

(1) Since the susceptible devices are of no immunity
against malicious worms, they can transit to the ex-
posed group at the saturated incidence rate
βSI/(1 + αI). Note that βI/(1 + αI) goes to its sat-
uration level as I increases, βI denotes the force of
worm infection, and 1/(1 + αI) denotes the crowding
effect of infectious ones and guarantees the boundness
of contact rate by an appropriate value for α.

(2) *e exposed devices become infectious at rate η,
where 1/η denotes the mean value of latent period. If
.., the latent period tends to 0, which follows that the
SEIQR model can reduce to a SIQR one.

(3) Due to the quarantine intervention implemented on
the infectious group, the infectious ones can transit
to the quarantined group at rate ξ. As ξ � 0, there is
no quarantine intervention, and then the SEIQR
model reduces to a SEIR one [13, 19].

(4) *anks to some sufficient defense mechanisms or
antivirus treatments, the susceptible, exposed, in-
fectious, and quarantined devices transit to the re-
covered group at rates ψ, ε, c, and φ, respectively.
Note that 1/φ denotes the mean value of quarantine
period. If φ⟶∞, then the quarantine period tends
to 0, which follows that the SEIQR model reduces to
an SEIR one [13, 19].

(5) *e dysfunction of mobile device can take place in all
groups due to not only the natural death but also the
worm-related death. *e dysfunction replacement is
taken to the susceptible group at rate Λ.

*erefore, the general SEIQR-type model considered in
the paper is formulated by the following system of nonlinear
ordinary differential equations:

S′(t) � Λ −
βS(t)I(t)

1 + αI(t)
− (ψ + μ)S(t),

E′(t) �
βS(t)I(t)

1 + αI(t)
− (η + ε + μ)E(t),

I′(t) � ηE(t) − (ξ + c + μ + θ)I(t),

Q′(t) � ξI(t) − (φ + μ + θ)Q(t),

R′(t) � ψS(t) + εE(t) + cI(t) + φQ(t) − μR(t).

(1)
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*e total number of mobile devices at time t, N(t),
satisfies that

N(t) � S(t) + E(t) + I(t) + Q(t) + R(t). (2)

By a summation of all the equations of system (1), we
have

N′(t)≤Λ − μN(t), (3)

which implies that

N(t)≤
Λ
μ

+ N(0) −
Λ
μ

 e
− μt

,

lim
t⟶∞

N(t) �
Λ
μ

.

(4)

Hence, we define system (1)’s feasible region as

Ω � (S, E, I, Q, R) ∈ R5
|0≤ S + E + I + Q + R≤

Λ
μ

 . (5)

Now, we make a nonnegativity analysis to ensure the
plausibility of SEIQR-type model (1). By the first equation in
(1), we have

S′(t)≤Λ − (ψ + μ)S(t), (6)

which implies that

S(t)≤
Λ

ψ + μ
+ S(0) −

Λ
ψ + μ

 e
− (ψ+μ)t

, (7)

and then in a long run,

S(t)≤
Λ

ψ + μ
≕Δ1. (8)

Further by the second equation in (1), we have

E′(t)≤
βΔ1
α

− (η + ε + μ)E(t), (9)

which implies that

E(t)≤
βΔ1

α(η + ε + μ)
+ E(0) −

βΔ1
α(η + ε + μ)

 e
− (η+ε+μ)t

,

(10)

and then in a long run,

E(t)≤
βΔ1

α(η + ε + μ)
≕Δ2. (11)

Arguing as above, it follows that

Λ

μS

ηE φQ

γI

ξI

μE μR

S E I Q R

εE

ψS

βSI/(1 + αI)

(μ + θ) Q(μ + θ) I

Figure 1: State transition diagram of the SEIQR-type model.

Table 1: Explanations and initial values of modeling parameter.

Parameters Explanations Initial values
N (t) Device number at time t N (0)�75,000
S (t) Number of susceptible devices at time t Not fixed
E (t) Number of exposed devices at time t Not fixed
I (t) Number of infectious devices at time t Not fixed
Q (t) Number of quarantined devices at time t Q (0)� 0
R (t) Number of recovered devices at time t S (0)� 0
Λ Rate of recruitment 0.75
μ Rate of natural death 0.00001
θ Rate of worm-related death 0.001
α Parameter of saturated incidence rate 0.8
β Infection rate in group S 0.053
ψ Rate of transition from S to R Not fixed
η Rate of transition from E to I 0.008
ε Rate of transition from E to R 0.0008
c Rate of transition from I to R 0.05
ξ Rate of transition from I to Q 0.05
φ Rate of transition from Q to R 0.005

Table 2: State transition events and transition rates.

Transition events Rate of transition
S⟶ E βS(t)I(t)/(1 + αI(t))

S⟶ R ψS(t)

E⟶ I ηE(t)

E⟶ R εE(t)

I⟶ Q ξI(t)

Q⟶ R φQ(t)

S⟶ Dysfunction μS(t)

E⟶ Dysfunction μE(t)

I⟶ Dysfunction (θ + μ)I(t)

Q⟶ Dysfunction (θ + μ)Q(t)

R⟶ Dysfunction μR(t)

Recruitment⟶ S Λ
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I(t)≤
ηΔ2

ξ + c + μ + θ
� Δ3,

Q(t)≤
ξΔ3

φ + μ + θ
� Δ4,

R(t)≤
ψΔ1 + εΔ2 + cΔ3 + φΔ4

μ
.

(12)

*us, by the above results, we get a proposition below.

Proposition 1. System (1) has solutions satisfying S(t)> 0,
E(t)> 0, I(t)> 0, Q(t)> 0, and R(t)> 0 for all t> 0, and its
feasible region Ω is an attracting and positively invariant set.

3. Dynamics Analysis

In this section, we analyze the stabilities of worm-free and
worm-existence equilibria. Firstly, we calculate the equi-
librium points and the basic reproduction number. Sec-
ondly, we study the stability of worm-free equilibriumwhich
can establish worm epidemic intervention strategies.
*irdly, we present the system uniform persistence. Finally,
we study the stability of worm-existence equilibrium which
can predict the worm spreading tendency and estimate the
epidemic popularity level.

3.1. Basic Reproduction Number and Equilibrium Points.
To analyze the dynamics of the SEIQR-type model described
by (1), we determine the equilibria satisfying

S′(t) � 0,

E′(t) � 0,

I′(t) � 0,

Q′(t) � 0,

R′(t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By I′(t) � 0, it follows that

E �
(ξ + c + μ + θ)I

η
, (14)

which is substituted into E′(t) � 0 to get that

βS

1 + αI
−

(η + ε + μ)(ξ + c + μ + θ)

η
 I � 0. (15)

Hence, we have

I � 0,

or I> 0,

S �
(η + ε + μ)(ξ + c + μ + θ)(1 + αI)

βη
.

(16)

If I � 0, we obtain the unique worm-free equilibrium
point of system (1) as

P
0

� S
0
, E

0
, I

0
, Q

0
, R

0
  �

Λ
ψ + μ

, 0, 0, 0,
ψ
μ

S
0

 . (17)

If I> 0, we derive by substituting S in (16) into S′(t) � 0
that

(η + ε + μ)(ξ + c + μ + θ)[β + α(ψ + μ)]

I − [βηΛ − (ψ + μ)(η + ε + μ)(ξ + c + μ + θ)] � 0.
(18)

Define the basic reproduction number R0 as

R0 �
βηΛ

(ψ + μ)(η + ε + μ)(ξ + c + μ + θ)
. (19)

Clearly, if R0 ≤ 1, the worm-free equilibrium is the
unique equilibrium; if R0 > 1, the worm-existence equilib-
rium is the unique positive equilibrium P∗ � (S∗, E∗, I∗,

Q∗, R∗), where

I
∗

�
βηΛ − (ψ + μ)(η + ε + μ)(ξ + c + μ + θ)

(η + ε + μ)(ξ + c + μ + θ)[β + α(ψ + μ)]
, (20)

and then S∗, E∗, Q∗, and R∗ satisfy

S
∗

�
(η + ε + μ)(ξ + c + μ + θ) 1 + αI

∗
( 

βη
,

E
∗

�
(ξ + c + μ + θ)I

∗

η
,

Q
∗

�
ξI
∗

φ + μ + θ
,

R
∗

�
ψS
∗

+ εE∗ + cI
∗

+ φQ
∗

μ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Hence, we give the following result regarding the
equilibrium points.

Theorem 1. If R0 ≤ 1, the worm-free equilibrium P0 is the
unique equilibrium point satisfying (17); if R0 > 1, the worm-
existence equilibrium P∗ is the unique positive equilibrium
point satisfying (20) and (21).

Remark 1. *e worm-existence equilibrium point
(S∗, E∗, I∗, Q∗, andR∗) can access the final scales of mobile
devices in all the groups for a long period. Especially, the
final scale of infected devices, namely, E∗ + I∗ + Q∗, can
estimate the popularity level of worm epidemic.

In fact, the basic reproduction number R0 is an im-
portant concept in virus/worm epidemic dynamics, which is
“the average number of secondary cases generated by one
primary case at the start of the epidemic in a completely
susceptible population” [23, 24] and can also be obtained by
the next generation matrix method [23] or the next gen-
eration operator theory [24]. From *eorem 1, the sharp
threshold value, R0, can completely determine the existence
of two equilibrium points.
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3.2. Stability of Worm-Free Equilibrium. In this section, we
study the local and global stabilities for worm-free equilibrium
P0, and their proofs can be found in Appendixes A.1 and A.2.

Theorem 2. If R0 ≤ 1, the worm-free equilibrium P0 is locally
asymptotically stable. Otherwise, P0 is an unstable point.

Theorem 3. If R0 ≤ 1, the worm-free equilibrium P0 is globally
asymptotically stable. Otherwise, P0 is an unstable point.

Combining*eorems 2 and 3, we know that the local and
global stabilities of worm-free equilibrium are equivalent.

Remark 2. From *eorem 2 and 3, we conclude that if
R0 ≤ 1, the exposed, infectious, and quarantined devices all
tend to 0, namely, that the infected devices tend to 0. Ac-
cordingly, R0 ≤ 1 indicates that the epidemic of worm will
eventually disappear and remain under control, and then to
prevent and control the epidemic, some related intervention
strategies should be adopted to make R0 smaller than 1, and
see those in Section 5. Clearly, *eorems 2 and 3 provide the

theoretical basis of those worm epidemic intervention
strategies.

We find out from *eorems 2 and 3 and Remark 2 that
the basic reproduction number R0, as a sharp threshold
value, will play a critical role to control the worm epidemic
based on mobile networks, because the threshold value R0
can completely determine the local and global dynamics for
worm-free equilibrium point P0 and also can govern if the
mobile devices infected by worms become extinct for time
locally and globally.

3.3. Uniform Worm Persistence. With the use of the acy-
clicity theorem [25], we present the uniform persistence of
system (1) if R0 > 1, whose proof is given in Appendix A.3.

Definition 1 (see [26]). System (1) is uniformly persistent in
Ω, if there is c ∈ (0, 1) such that any solution
(S(t), E(t), I(t), Q(t), andR(t)) of (1) with initial value
satisfies

min liminf
t⟶∞

S(t), liminf
t⟶∞

E(t), liminf
t⟶∞

I(t), liminf
t⟶∞

Q(t), liminf
t⟶∞

R(t) ≥ c. (22)

Theorem 4. If R0 > 1, the system (1) is uniform persistent in
the bounded set Ω.

Remark 3. *e uniform persistence of (1) in Ω means that
there exists a compact set K ⊂ Ω which is absorbent for
system (1) (see [27]).

3.4. Stability of Worm-Existence Equilibrium. We now
perform the stability analysis for the worm-existence
equilibrium P∗ and prove its related main results in Ap-
pendixes A.4 and A.5. From an epidemiological point of
view; P∗ is more necessary to study than its counterpart, i.e.,
the worm-free equilibrium P0.

Theorem 5. If R0 > 1, the worm-existence equilibrium P∗ is
locally asymptotically stable.

It is well-known that the local stability for P∗ may be
insignificant in practice, because it only assures the stability
of microvariations relative to its initial state of P∗. Hence, we
turn to the global stability for P∗ by the Li–Muldowney
geometric approach [28].

Theorem 6. If R0 > 1, the worm-existence equilibrium P∗ is
globally asymptotically stable.

Remark 4. *e global stability for P∗ ∈ int(Ω) is equivalent
to that the set Ω − (S, E, I, Q, R)|It � n0{ } is a globally stable
set for P∗.

Remark 5. From*eorem 5 and 6, the stability for P∗ shows
that if R0 > 1, all the groups of mobile devices will tend to S∗,
E∗, I∗, Q∗, and R∗, respectively, which are those in (20) and
(21). Accordingly, we conclude that R0 > 1 assures that the
epidemic of mobile network-based worm remains persistent
and uncontrollable, where we can predict the worm
spreading tendency in a long run and access the epidemic
popularity level by the final scope of infected devices (i.e.,
E∗ + I∗ + Q∗).

From the arguments of *eorem 5 and 6 and Remark 5,
we also see that the basic reproduction number R0 is an exact
threshold value which guarantees the local and global sta-
bilities for P∗ and governs whether the network-based worm
keeps always transmitting locally and globally.

4. Performance Evaluation

In this section, we carry out numerical simulations to verify
the feasibility of the dynamics of worm propagation via the
SEIQR-type model.

4.1. Simulation Setting. In the realistic scenario, it is quite
hard for researchers to get the corresponding data of worm
traffic traces. Even for some available data from MIT or
CAIDA (http://www.caida.org), the legitimate flow of traffic
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traces is not contained since these traces have been inten-
tionally filtered out before they are available. Hence, we
could not easily determine the necessary and appropriate
parameters of the constructed SEIQR-type model. However,
in the paper, we plan to choose the same parameter values as
those in [29] to fit a real worm epidemic based on mobile
networks.

As a typical example, we take Slammer worm in this
experiment. As one of the fastest spreading worms, Slammer
had attacked 75, 000 devices at the early stage after its
outbreak in January 2003 [30]. *us, the total number of
devices is set to be 75, 000. *e infection rate β is a key
parameter that determines the spreading speed of worms
among mobile devices. Consider that Slammer is a band-
width-limited worm with an average scan rate s � 4, 000
scans/second [31]; then, by the same method in [32], we get
the worm-infection rate as

β �
s

N
≈ 0.053. (23)

*e rate of natural death is μ � 0.00001, and the rate of
worm-related death is θ � 0.001. *e rates of state transi-
tions from E to I, from I to R, and from Q to R are η � 0.008,
c � 0.05, and φ � 0.005, respectively. *ese parameters
come from the average value of more than 10 simulation
operations [31].

*e rest parameters involved of the SEIQR-type model
are determined as follows. According to the definition of
region Ω, the recruitment rate is Λ � 0.75. Given the
quarantine intervention on the group of infectious devices,
the quarantine rate is ξ � 0.05 [22]. Based on the fact that the
average value of recovery period from the exposed group is
approximately 1, 200 seconds [7], we get the rate of recovery
from group E to group R as

ε �
1

1200
≈ 0.0008. (24)

Due to one or more security countermeasures which
have been taken initially for the susceptible devices to
prevent the worm attack, the recovery rate from states S to R
is set to ψ � 0.5. Finally, we set the parameter α of the
saturated incidence rate as 0.8 [29].

4.2. SensitivityAnalysis for Parameter α of Saturated Incidence
Rate. In this section, we make a sensitivity analysis for the
constant parameter α of the saturated incidence rate by a
numerical experiment, where we choose α � 0, 0.8, and 2,
and the rest parameters involved as the same as the ones in
Section 4.1. Please see Figure 2, which gives the impact of α
on the numbers of infectious and recovered devices. More
specifically, we observe from Figure 2(a) that as the pa-
rameter α increases, the number of infectious devices de-
creases and the duration of worm epidemic becomes shorter
(see Figure 2(a)), and the number of recovered devices
increases at a higher speed (see Figure 2(b)), which shows
that increasing the parameter α can be taken as an effectively
approach to control the worm epidemic based on mobile
networks.

Especially, if the parameter α � 0, in other words, the
SEIQR-type model considered is accompanied by a bilinear
incidence rate rather than a saturated incidence rate, we
know that by Figure 2 that the mobile network-based worm
can infect much more devices and its epidemic keeps on-
going for a longer period, and the devices becoming re-
covered from all groups are less and reach their maximum
size in an even longer period. Obviously, the saturated rate is
more effective and reasonable than the bilinear rate to
control the worm epidemic based on mobile networks.

4.3. Dynamics ofWorm-Free andWorm-Existence Equilibria.
In this section, we present simulation results to describe the
tendency of worm propagation and then to validate the
plausibility of the obtained results.

Firstly, we set the initial numbers in all device groups as
S(0) � 45000, E(0) � 20000, I(0) � 10000, Q(0) � 0, and
R(0) � 0, while the modeling parameters as the same as
those in Section 4.1. *en, using equation (17),
P0 � (1.5, 0, 0, 0, 74998.5), and using equation (19),
R0 � 0.715< 1. Based on*eorems 2 and 3, P0 is locally and
globally asymptotically stable, respectively, implying that as
t⟶∞, S(t), and R(t) will tend to steady states 1.5 and
74998.5, while E(t), I(t), and E(t) will all tend to 0. Hence,
the final size of infected devices, E0 + I0 + Q0, is 0, which tell
us that the worm will gradually become extinct and its
epidemic remain under control in the end. As seen in
Figure 3, the worm propagation tendency is fairly depressive
for a long period, and the final scope of infected devices will
vanish eventually, which is in accordance with the results of
*eorems 2 and 3.

Secondly, all the parameters and initial numbers are set
as those in the first part of this section except for ψ � 0.05. By
equations (20) and (21), P∗ � (7.64, 41.67, 3.3, 27.45,

71758.6), and by equation (19), R0 � 7.146> 1. Accordingly,
we conclude from *eorems 5 and 6 that P∗ is locally and
globally stable, namely, that as t⟶∞, S(t), E(t), I(t),
Q(t), and R(t) will tend to 7.64, 41.67, 3.3, 27.45, and
71758.6, respectively. Please see Figure 4, which gives the
worm propagation trend for a long period. Particularly, we
can get the final size of the infected devices, i.e.,
E∗ + I∗ + Q∗ � 72.42, to evaluate the worm epidemic pop-
ularity level. In other words, the worm epidemic remains
always propagating within a population of about 72.42.
From Figure 4(a), we get the rough curves of
S(t), E(t), I(t), Q(t), andR(t), and further from Figure 4(b),
we get the tendency of S(t), E(t), I(t), and Q(t) in more
detail. *e numerical results of Figure 4 are in accordance
with *eorems 5 and 6.

*irdly, as shown in Figures 3 and 4, the infected devices
will eventually vanish or approach to a negligible size, and
nearly all groups of devices will get recovered in the end,
which suggests that the worm epidemic does exist in mobile
networks but be of negligible scale owing to the quarantine
strategy and other measures taken to the susceptible and
infected devices. Consequently, these simulations validate
the proposed SEIQR-type model in defending against
malicious worms.
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5. Control Strategies on Worm Epidemic

To control biological viruses and network worms, the op-
timal control strategy is a frequently-used mathematical
approach [33], and its related numerical simulations and

region plots have also been considered in tails [33, 34]. So in
what follows, we firstly construct the optimal control
strategy based on Pontryagin’s Minimum Principle [35] to
minimize the cost of quarantine intervention and the
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Figure 3: Dynamics of the worm-free equilibrium.
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Figure 2: Sensitivity analysis of parameter in saturated incidence rate.
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number of infected devices as well as maximize the number
of recovered devices, and secondly we establish other control
strategies with the use of *eorems 2 and 3 to control the
worm epidemic based on mobile networks. Besides, a series
of corresponding numerical simulations are implemented to
validate the effectiveness of control strategies mentioned
above.

5.1. Be Optimal Control Strategy. In this section, the op-
timal control strategy is constructed for the SEIQR-type
model described by system (1), where a control variable u(t),
0≤ u(t)≤ 1, is chosen to denote the inhibiting effect of
quarantine strategy on the worm epidemic. Especially, when
u(t) � 1, the quarantine strategy is perfectly effective; when
u(t) � 0, the quarantine strategy has no effect at all. Hence,
the optimal control problem is formulated as

J(u) � 
tf

t0

Ku
2

+ E(t) + I(t) − R(t) dt, (25)

where the parameter K≥ 0 denotes the weight of the benefit
of quarantine cost, and this problem is subject to the fol-
lowing state system:

S′(t) � Λ −
βS(t)I(t)

1 + αI(t)
− (ψ + μ)S(t),

E′(t) �
βS(t)I(t)

1 + αI(t)
− (η + ε + μ)E(t),

I′(t) � ηE(t) − (u(t) + c + μ + θ)I(t),

Q′(t) � u(t)I(t) − (φ + μ + θ)Q(t),

R′(t) � ψS(t) + εE(t) + cI(t) + φQ(t) − μR(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

*e main goal of optimal control is to determine the
control variable u∗ satisfying
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Figure 4: Dynamics of worm-existence equilibrium.

8 Discrete Dynamics in Nature and Society



J u
∗

(  � min J(u): u ∈ U{ }, (27)

where U is the control set defined by
U � u(t): u(t) ismeasurable, 0≤ u(t)≤ 1, t ∈ [t0, tf] .

According to Fleming and Rishel (1975, [36]), we now
consider the existence of the optimal control variable u∗.

Theorem 7. Be optimal control variable u∗ ∈ U does exist
such that (27) holds under its state system (26) with initial
conditions at t0.

Be Hamiltonian for state system (26) is characterized as

H � Ku
2

+ E + I − R + w1 Λ −
βSI

1 + αI
− (ψ + μ)S  + w2

βSI

1 + αI
− (η + ε + μ)E 

+ w3[ηE − (u + c + μ + θ)I] + w4[uI − (φ + μ + θ)Q] + w5[ψS + εE + cI + φQ − μR],

(28)

which, along with the Pontryagin’s Minimum Principle [35],
leads to a theorem below.

Theorem 8. Given an optimal control variable u and cor-
responding solution of state system (26), there are adjoint
variables wi, i � 1, . . . , 5, such that the following adjoint
system of equations holds:

w1′(t) � −
zH

zS
�

w1 − w2( βI

1 + αI
+ w1μ + w1 − w5( ψ,

w2′(t) � −
zH

zE
� − 1 + w2 − w3( η + w2 − w5( ε + w2μ,

w3′(t) � −
zH

zI
� − 1 +

w1 − w2( βS

(1 + αI)
2 + w3 − w4( u + w3 − w5( c + w3(μ + θ),

w4′(t) � −
zH

zQ
� w4 − w5( φ + w4(μ + θ),

w5′(t) � −
zH

zR
� 1 + w5μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

with boundary conditions wi(tf) � 0, i � 1, . . . , 5. Also, the
optimal control variable u∗, subject to (26) and satisfying
(27), is given by

u
∗

� max 0, min 1,
w3 − w4( I

2K
  . (30)
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Remark 6. Note here that the optimality system contains
state system (26), adjoint system (11) with its initial and
boundary conditions, and the optimal control variable u∗

given by (30). Hence, the optimality system with quarantine
intervention is expressed by

S′(t) � Λ −
βSI

1 + αI
− μS,

E′(t) �
βSI

1 + αI
− (η + ε + μ)E,

I′(t) � ηE − u
∗

+ c + μ + θ( I,

Q′(t) � u
∗
I − (φ + μ + θ)Q,

R′(t) � εE + cI + φQ − μR,

w1′(t) � −
zH

zS
�

w1 − w2( βI

1 + αI
+ w1μ + w1 − w5( ψ,

w2′(t) � −
zH

zE
� − 1 + w2 − w3( η + w2 − w5( ε + w2μ,

w3′(t) � −
zH

zI
� − 1 +

w1 − w2( βS

(1 + αI)
2 + w3 − w4( u

∗
+ w3 − w5( c + w3(μ + θ),

w4′(t) � −
zH

zQ
� w4 − w5( φ + w4(μ + θ),

w5′(t) � −
zH

zR
� 1 + w5μ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

with initial conditions at time t0 and boundary conditions,
wi(tf) � 0, i � 1, . . . , 5.

Please see Appendixes A.6 and A.7 for the proofs of
*eorems 7 and 8. According to Lemma 4.1 in [37] and the
proof of *eorem 2 in [38], the uniqueness of solution for
the optimality system follows easily.

Theorem 9. Be solution for the optimality system is unique
for a small enough tf.

We finally carry out a set of numerical experiments to
validate the obtained-above control strategy. *e modeling
parameters and initial numbers are taken as those of Section
4.1. From Figure 5, the dynamics of the system without/with
quarantine are presented as follows:

(1) Figure 5(a) shows the trend of the susceptible
number without/with quarantine, where we see that
the susceptible number will decay sharply because
most of them become recovered with quarantine
intervention.

(2) Figure 5(b) shows the trend of the exposed number
without/with quarantine, which indicates that the
exposed number with quarantine gets much smaller,
and the device exposed to worms persists for a
shorter time.

(3) Figure 5(c) shows the trend of the infectious number
without/with quarantine. We observed that the in-
fectious maximum number is nearly 8000 without
quarantine, but this number is less than 500 with
quarantine.

10 Discrete Dynamics in Nature and Society



(4) Figure 5(d) shows the trend of the recovered number
without/with quarantine, which gives that with
quarantine, a larger number of mobile devices be-
come recovered more quickly.

5.2. Control Strategies Based on R0. *e basic reproduction
number R0, defined as (19), is a sharp threshold value that
determines completely the dynamics of worm propagation
and performs an important role in controlling the worm
epidemic. As described in *eorems 2 and 3, the worm-free
equilibrium point P0 is stable locally and globally under
condition that R0 ≤ 1. Hence, we adopt the corresponding

parameters such that R0 ≤ 1 to prevent the worm epidemic.
From equation (19), the number R0 relates to the parameters
as follows: the recruitment rate Λ, the quarantine rate ξ, the
recovery rates ψ, ε, and c, the infection rates β and η, and the
death rates μ and θ.

According to *eorems 2 and 3, the following corollary
regarding the parameters of R0 is given to prevent the worm
epidemic, and its proof is delayed to Appendix A.8.

Corollary 1. To control the epidemic of mobile network-
based worms, the following assertions for all the parameters in
(19) should be true:

Λ<
(ψ + μ)(ξ + c + θ + μ)

β
;

β<
(ψ + μ)(ξ + c + θ + μ)

Λ
;

ψ >
βηΛ

(η + ε + μ)(ξ + c + θ + μ)
− μ;

ξ >
βηΛ

(ψ + μ)(η + ε + μ)
− (c + μ + θ);

c>
βηΛ

(ψ + μ)(η + ε + μ)
− (ξ + μ + θ);

θ >
βηΛ

(ψ + μ)(η + ε + μ)
− (ξ + c + μ);

ε>
βηΛ

(ψ + μ)(ξ + c + θ + μ)
− (η + μ);

η<
(ψ + μ)(ε + μ)(ξ + c + θ + μ)

βΛ − (ψ + μ)(ξ + c + θ + μ)
, if βΛ>(ψ + μ)(ξ + c + θ + μ);

or η>
(ψ + μ)(ε + μ)(ξ + c + θ + μ)

βΛ − (ψ + μ)(ξ + c + θ + μ)
, if βΛ<(ψ + μ)(ξ + c + θ + μ).

(32)

Considering the parameter values appearing in Section 4.1
except forψ, we find out that the transition from theworm-free
regime to the worm-existence one happens when ψ � 0.3573,

which is in line with the lower-bound of ψ, obtained by
Corollary 1. And the similar conclusions still hold for the other
parameters.

By using the partial derivatives of R0 in equation (19), it
follows that

Discrete Dynamics in Nature and Society 11
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Figure 5: Dynamics of system without/without quarantine.
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Figure 6: Impacts of modeling parameters on the infectious devices number.
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zR0

zβ
> 0,

zR0

zη
> 0,

zR0

zΛ
> 0,

zR0

zμ
< 0,

zR0

zε
< 0,

zR0

zψ
< 0,

zR0

zξ
< 0,

zR0

zc
< 0,

zR0

zθ
< 0.

(33)

Hence, if all the parameters ofR0, except for only one, are
set to be constant, the function R0 decreases as β, η, and Λ
decrease, or as μ, ε, ψ, ξ, c, and θ increase. *is result, along
with *eorems 2 and 3, shows that to reduce the value of R0
to be less than 1, it suffices to decrease the values of β, η, and
Λ, or increase the values of μ, ε, ξ, c, and θ.

By the above analysis on R0, a series of control strategies
are established to control the epidemic of worms based on
mobile networks, and a set of numerical experiments are
conducted to demonstrate the effectiveness of obtained
strategies, especially to illustrate the influences of modeling
parameters on the infectious device number and the worm
spreading speed, which, in fact, are two critical factors to
judge the severity of worm epidemic:

(1) Decreasing the rate β infected in group S via using
immunization procedures and/or antivirus software:
conduct a numerical experiment to study the impact on
the infectious number by different values β � 0.1,
0.0531, and 0.01. As shown in Figure 6(a), the infectious
device number and the worm spreading time both get
smaller with the reduction of the infection rate β.

(2) Decreasing the infectious rate η from group E: set
different values for η as 0.008, 0.003, and 0.001 to
consider its impact on the infectious number. *e
simulation result is shown from Figure 6(b), namely,
that as the rate η becomes smaller, the malicious
worms will infect fewer devices in a longer period.

(3) Increasing the rate ξ quarantined to group Q via
strengthening the capabilities of quarantine strategy:
consider the effect on the worm propagation by
ξ � 0.03, 0.05, and 0.09. From Figure 6(c), we see that a

larger rate of quarantine can lead to a small number of
infectious cases, a lower speed of worm spreading, and
a shorter time it takes to control the worm epidemic.

(4) Increasing the rate ψ recovered from group S via
improving the quality and the user scale of antivirus
software: Set ψ � 0.5, 0.7, and 0.9, and from
Figure 6(d), we observe that as the rate ψ increases,
the infectious number will be smaller, the speed of
worm propagation will become lower, and the time
to control the epidemic of worm will get shorter.

(5) Increasing the rate ε recovered from group E via
reminding to install antivirus software: consider the
impact of rate ε on the infectious number by ε � 0,
0.0008, and 0.0018. From Figure 6(e), it follows that a
larger rate ε can result in reducing the size of mobile
devices infected by the network-based worms.

(6) Increasing the rate c recovered from group I via
enhancing the efficacy of antiviral treatment: to an-
alyze the impact of rate c on the number of infectious
devices with c � 0.05, 0.10, and 0.15. See Figure 6(f),
which indicates that with the increase of c, the
malicious worm will infect fewer mobile devices and
spread in mobile networks for a shorter period.

(7) Increasing the rate θ of worm-related death via
stopping and even eliminating infectious devices: set
θ � 0.001, 0.01, and 0.09, and from Figure 6(g), we
show that as the rate θ becomes larger, the worm
spreads more slowly, the epidemic lasts in a shorter
term, and the mobile devices infected by this worm
becomes fewer.

6. Conclusions

*is paper investigates dynamics and control of worm ep-
idemic based on mobile networks via a general SEIQR-type
model with a saturated incidence rate, in which this rate can
tend to its saturation level with the increase of the infectious
number, and obviously, it is more realistic as it can present
the crowding effect of infectious individuals and also
guarantee the boundness of contact rate. *e innovations of
this paper are (a) to consider the recovery process from the
susceptible group to the recovered group owing to sufficient
defense mechanisms or/and antivirus treatments; (b) to
discuss the dysfunction of devices related to worm-related
death because the crash of most devices results from the
attack of malicious worms; and (c) to establish the control
strategies in defending against the epidemic of worms.

Our results suggest that the basic reproduction number
R0, as a sharp threshold value, can completely determine the
dynamic behaviors of worm propagation and the control
strategies for worm epidemic. More specifically, if R0 ≤ 1, the
worm-free equilibrium is asymptotically stable, and the
epidemic of worm will eventually disappear and remain
under control; if R0 > 1, the asymptotical stability of worm-
existence equilibrium is derived to imply that the epidemic
will remain persistent and uncontrollable. *is study gives
new insights to mobile network security, namely, that is
predicting the worm spreading tendency, identifying the
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epidemic control strategies, and estimating the worm
popularity level. A series of numerical experiments are
conducted to show the rationality of our obtained results.

With the use of Pontryagin’s Minimum Principle [35],
we devise the optimal control strategy to minimize the
quarantine cost and the infected number as well as maximize
the recovered number. Furthermore, by the analysis for R0,
we present a set of control strategies to fight against the
epidemic of worm based on mobile networks, including to
decrease the rates of infection from groups S and E and to
increase the rate of quarantine, the rate of worm-related
death, and the rates of recovery from groups S, E, and I.

Also, increasing the parameter α of saturated incidence rate
can be used to stop the worm epidemic. Some numerical
experiments are also implemented to validate the effec-
tiveness of these obtained strategies.

Appendix

A. Proofs of Theoretical Results

A.1. Proof of Beorem 2. From (1) and (17), we obtain the
Jacobian matrix at worm-free equilibrium P0 as

J P
0

  �

− (ψ + μ) 0 −
βΛ
ψ + μ

0 0

0 − (η + ε + μ)
βΛ
ψ + μ

0 0

0 η − (ξ + c + μ + θ) 0 0

0 0 ξ − (φ + μ + θ) 0

ψ ε c φ − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.1)

and its characteristic equation is

λI − J P
0

 


 �

λ + ψ + μ 0
βΛ
ψ + μ

0 0

0 λ + η + ε + μ −
βΛ
ψ + μ

0 0

0 − η λ + ξ + c + μ + θ 0 0

0 0 − ξ λ + φ + μ + θ 0

− ψ − ε − c − φ λ + μ





� (λ + μ)(λ + σ] + μ)(λ + ε + μ + θ) (λ + η + ε + μ)(λ + ξ + c + μ + θ) −
βηΛ
ψ + μ

 

� 0.

(A.2)

Hence, Jacobian matrix J(P0) has three negative ei-
genvalues λ1 � − μ, λ2 � − (σ] + μ), and λ3 � − (φ + μ + θ),

and its other eigenvalues are the roots of the following
equation:
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λ2 +(2μ + η + ε + ξ + c + θ)λ +(η + ε + μ)(ξ + c + μ + θ) −
βηΛ
ψ + μ

� 0. (A.3)

Under the condition that R0 > 1, we have
(η + ε + μ)(ξ + c + μ + θ) − ((βηΛ)/(ψ + μ))< 0. So, equa-
tion (A.3) is of two positive and negative solutions, which
implies that P0 is an unstable point. On the other hand, if
R0 ≤ 1, we conclude using Hurwitz criterion [39] that the real
parts of all solutions of (A.3) are negative, and then those of
all eigenvalues of J(P0) are also negative. *erefore, by the

stability theory [40], we prove that this equilibrium point P0

is locally and asymptotically stable if R0 ≤ 1.

A.2. Proof ofBeorem 3. Note that, the Lyapunov function is
formulated as

L(E, I) � ηE +(η + μ + ε)I. (A.4)

Taking the derivative of L(E, I), we have

dL(E, I)

dt
� ηE′(t) +(η + ε + μ)I′(t)

� η
βSI

1 + αI
− (η + ε + μ)E  +(η + ε + μ)[ηE − (ξ + c + μ + θ)I]

�
ηβS

1 + αI
− (η + ε + μ)(ξ + c + μ + θ) I

≤ ηβS
0

− (η + ε + μ)(ξ + c + μ + θ) I

�
βηS

0

R0
R0 − 1( I,

(A.5)

where the second last step is due to (8) and (17). Hence, if
R0 ≤ 1, (dL(E, I)/dt) is negative semidefinite.

Furthermore, (dL(E, I)/dt) � 0 if I � 0. Actually, if
(dL(E, I)/dt) � 0, then

ηβS

1 + αI
− (η + ε + μ)(ξ + c + μ + θ) I � 0, (A.6)

and thus either I � 0 or S � ((η + ε + μ)(ξ + c+

μ + θ)(1 + αI))/βη. In the second case, we have that if R0 < 1,
then

0 � S′(t) �
Λ
R0

R0 − 1(  −
(η + ε + μ)(ξ + c + μ + θ)[β + α(ψ + μ)]I

βη
< 0, (A.7)

which is apparently a contradictory statement. In addition, if
I � 0, 0 � I′(t) � ηE and further E � 0.

As a result, if R0 ≤ 1, the largest compact invariant set of
(E, I) ∈ Ω|L′t(E, I)n � q0  is a singleton with the origin
point. Furthermore, by (8) and (17), we have that
limt⟶∞(S(t), E(t), I(t), Q(t)), R(t)) � P0. Based on the
LaSalles invariance principle [41], we prove that P0 is
globally stable if R0 ≤ 1.

If R0 > 1, it follows that (dL(E, I)/dt)> 0 for S suffi-
ciently close to Λ/(ψ + μ) except for when E � I � 0. So-
lutions starting sufficiently close to P0 leave a neighborhood

of P0 except for those on the invariant S-axis, on which (1)
reduces to S′ � Λ − (ψ + μ)S and then S(t)⟶Λ/(ψ + μ) as
t⟶∞.

In fact, the assertion that the worm-free equilibriumP0 is
unstable if R0 > 1 can also follow from the similar analysis of
eigenvalue to that in Appendix A.1.

A.3. Proof ofBeorem 4. From the instability of P0, P0 ∈zΩ,
and *eorem 4.3 in [42], we derive that system (1) has
uniform persistence in Ω if R0 > 1.
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A.4. Proof of Beorem 5. From (20) and (21), we obtain the
Jacobian matrix of (1) at worm-existence equilibrium point
P∗ as

J P
∗

(  �

−
βI
∗

1 + αI
∗ − (ψ + μ) 0 −

βS
∗

1 + αI
∗

( 
2 0 0

βI
∗

1 + αI
∗ − (η + ε + μ)

βS
∗

1 + αI
∗

( 
2 0 0

0 η − (ξ + c + μ + θ) 0 0

0 0 ξ − (φ + μ + θ) 0

ψ ε c φ − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.8)

and its characteristic equation as

λI − J P
∗

( 


 �

λ +
βI
∗

1 + αI
∗ + ψ + μ 0

βS
∗

1 + αI
∗

( 
2 0 0

−
βI
∗

1 + αI
∗ λ + η + ε + μ −

βS
∗

1 + αI
∗

( 
2 0 0

0 − η λ + ξ + c + μ + θ 0 0

0 0 − ξ λ + φ + μ + θ 0

− ψ − ε − c − φ λ + μ





� (λ + μ)(λ + φ + μ + θ) (λ + η + ε + μ)(λ + ξ + c + μ + θ) λ + ψ + μ +
βI
∗

1 + αI
∗ 

−
βηS
∗

1 + αI
∗

( 
2 λ + ψ + μ +

βI
∗

1 + αI
∗  +

β2ηS
∗
I
∗

1 + αI
∗

( 
3

⎫⎬

⎭

� 0.

(A.9)

*us, the matrix J(P∗) has two negative eigenvalues
λ1 � − μ, and λ2 � − (φ + μ + θ), and its other eigenvalues are
given by the following equation:
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λ3 + B1λ
2

+ B2λ + B3 � 0, (A.10) where

B1 � η + ε + ξ + c + θ + ψ + 3μ +
βI
∗

1 + αI
∗,

B2 � (η + ε + ξ + c + θ + 2μ) ψ + μ +
βI
∗

1 + αI
∗  +(η + ε + μ)(ξ + c + μ + θ) −

βηS
∗

1 + αI
∗

( 
2,

B3 �
βI
∗

1 + αI
∗ (η + ε + μ)(ξ + c + μ + θ) +(ψ + μ) (η + ε + μ)(ξ + c + μ + θ) −

βηS
∗

1 + αI
∗

( 
2

⎡⎣ ⎤⎦.

(A.11)

Obviously, B1 > 0, and since

βηS
∗

1 + αI
∗ � (η + ε + μ)(ξ + c + μ + θ), (A.12)

we get that B2 > 0 and B3 > 0. After a direct computation, we
have B1B2 − B3 > 0. Hence, we have used the Hurwitz cri-
terion [39] that the real parts of all solutions of (A.10) are
negative, and then those of all eigenvalues of J(P∗) are still
negative. *erefore, we derive using the stability theory [40]
that P∗ is locally stable if R0 > 1.

A.5. Proof ofBeorem6. We firstly consider the subsystem of
(1) as

S′(t) � Λ −
βSI

1 + αI
− (ψ + μ)S,

E′(t) �
βSI

1 + αI
− (η + ε + μ)E,

I′(t) � ηE − (ξ + c + μ + θ)I.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.13)

Hence, the Jacobian matrix of system (A.3) is

J �

−
βI

1 + αI
− (ψ + μ) 0 −

βS

(1 + αI)
2

βI

1 + αI
− (η + ε + μ)

βS

(1 + αI)
2

0 η − (ξ + c + μ + θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A.14)

and its second additive compound matrix is

J
[2]

�

−
βI

1 + αI
− m

βS

(1 + αI)
2

βS

(1 + αI)
2

η −
βI

1 + αI
− n 0

0
βI

1 + αI
− k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.15)

where m � ψ + η + ε + 2μ, n � ψ + ξ + c + θ + 2μ, and
k � η + ε + ξ + c + θ + 2μ.

Let A � A(S, E, I) � diag(1, (E/I), (E/I)). *en, the
directional derivative along (S, E, I) is

Af � diag 0,
E′I − I′E

I
2 ,

E′I − I′E

I
2 . (A.16)

Furthermore, we have

AfA
− 1

� diag 0,
E′
E

−
I′
I

,
E′
E

−
I′
I

 ,

AJ
[2]

A
− 1

�

−
βI

1 + αI
− m

βSI

E(1 + αI)
2

βSI

E(1 + αI)
2

ηE

I
−

βI

1 + αI
− n 0

0
βI

1 + αI
− k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.17)

Let B � AfA− 1 + AJ[2]A− 1, which has its matrix form:

B �
B11 B12

B21 B22
 , (A.18)

where
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B11 � −
βI

1 + αI
− m,

B12 �
βSI

E(1 + αI)
2,

βSI

E(1 + αI)
2 ,

B21 �
ηE

I
, 0 

T

,

B22 �

E′
E

−
I′
I

−
βI

1 + αI
− n 0

βI

1 + αI

E′
E

−
I′
I

− k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.19)

Denote a vector in R3 by (u, v, w) with its norm as
follows:

‖(u, v, w)‖ � max |u|, |v| +|w|{ }. (A.20)

Let μ(B) be the Lozinski l
⌣

measure with respect to this
norm. As was stated by [43], we choose

μ(B)≤ sup g1, g2 , (A.21)

where g1 � μ1(B11) + |B12|, g2 � |B21| + μ1(B22), and |B12|,
|B21| are matrix norms with respect to the l1 vector norm,
and μ1 is the .. measure with respect to l1 norm. *us, it
follows that

μ1 B11(  � −
βI

1 + αI
− m,

B21


 �
ηE

I
,

B12


 �
βSI

E(1 + αI)
2,

μ1 B22(  � max
E′
E

−
I′
I

− n,
E′
E

−
I′
I

− k 

�
E′
E

−
I′
I

− min n, k{ }.

(A.22)

Consequently,

g1 � −
βI

1 + αI
− m +

βSI

E(1 + αI)
2,

g2 �
ηE

I
+

E′
E

−
I′
I

− min n, k{ }.

(A.23)

By (A.3), we have

E′
E

�
βSI

E(1 + αI)
− (η + ε + μ),

I′
I

�
ηE

I
− (ξ + c + μ + θ).

(A.24)

*en,

g1 � −
βI

1 + αI
− m +

βSI

E(1 + αI)
+

βSI

E(1 + αI)
2 −

βSI

E(1 + αI)
 

�
E′
E

− μ −
βSI

(1 + αI)
− ψ +

βSI

E(1 + αI)
2 −

βSI

E(1 + αI)
 

≤
E′
E

− μ,

g2 �
E′
E

+(ξ + c + μ + θ) − min n, k{ }

�
E′
E

− μ

≤
E′
E

− μ.

(A.25)

Furthermore, we have

μ(B)≤ sup g1, g2 ≤
E′
E

− μ. (A.26)

Since there is a sufficiently large T> 0 such that for all
t>T, (E(t)/E(0))< eμt/2, i.e., (1/t)ln(E(t)/E(0)) < (μ/2), we
show that, for all t>T,

1
t


t

0
μ(B)ds≤

1
t


t

0

E′
E

− μ ds �
1
t
ln

E(t)

E(0)
− μ< −

μ
2
,

(A.27)

which yields that

q � limsup
t⟶∞

sup
(V(0),E(0),I(0))∈int(Ω)

1
t


t

0
μ(B)ds≤ −

μ
2
< 0.

(A.28)

*erefore, we apply the Li–Muldowney geometric ap-
proach (i.e., *eorem 3.5 of [28]) to know that (S∗, E∗, I∗) is
globally stable.

Subsequently, we turn to the subsystem of (1) as

Q′(t) � ξI − (φ + μ + θ)Q,

R′(t) � ψS + εE + cI + φQ − μR,

⎧⎨

⎩ (A.29)

which has its limit system as

Q′(t) � ξI
∗

− (φ + μ + θ)Q,

R′(t) � ψS
∗

+ εE∗ + cI
∗

+ φQ − μR.

⎧⎨

⎩ (A.30)

By a simple computation, we have

Q(t) � e
− (φ+μ+θ)t

Q(0) + ξI
∗


t

0
e

(φ+μ+θ)sds ,

R(t) � e
− μt

S(0) + 
t

0
ψV
∗

+ εE∗ + cI
∗

+ φQ(s) e
μsds ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A.31)

which proves that
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Q(t)⟶
ξI
∗

φ + μ + θ
� Q
∗
, R(t)⟶

ψV
∗

+ εE∗ + cI
∗

+ φQ
∗

μ
� R
∗
, as t⟶∞. (A.32)

As a result, we show that this equilibrium point P∗ is
globally stable if R0 > 1.

A.6. Proof of Beorem 7. Firstly, we need to check the fol-
lowing conditions:

(1) State system (26) has bounded coefficient; then, the
set of control variables and state is nonempty.

(2) Due to the boundedness of the solutions of (26), the
control set U is closed and convex.

(3) *e right-hand side of (26) is bounded by a linear
function in the state and control variables.

(4) *e integrand, Ku2(t) + E(t) + I(t) − R(t), of the
cost function is convex on U.

(5) *ere are c1 > 0, c2 > 0, and π > 1 such that

Ku
2
(t) + E(t) + I(t) − R(t)≥ c1|u|

π
− c2, (A.33)

where c2 relies on the boundedness of S(t), E(t), and I(t),
and c1 > 0 since K> 0 and L> 0.

*en, by *eorem 4.1 of Fleming and Rishel [36], the
existence of optimal control pair follows immediately.

A.7. Proof of Beorem 8. According to Pontryagin’s Mini-
mum Principle [35], the adjoint system and its boundary
conditions have standard forms. By the differentiating
Hamiltonian (29), we get the adjoint system as (11) with
wi(tf) � 0, i � 1, . . . , 5.

Under the optimal conditions, we have that the optimal
control variable, u∗, satisfies

zH

zu
∗ � 0. (A.34)

Note that, the Hamiltonian (29) can be expressed as

H � Ku
2

+ w4 − w3( Iu + other termswithout u, (A.35)

which, along with (A.34), implies that

zH

zu
∗ � 2Ku

∗
+ w4 − w3( I � 0. (A.36)

*en, it follows that

u
∗

�
w3 − w4( I

2K
. (A.37)

Because the standard control is bounded, we obtain that

u
∗

�

0,
w3 − w4( I

2K
≤ 0;

w3 − w4( I

2K
, 0<

w3 − w4( I

2K
< 1;

1,
w3 − w4( I

2K
≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.38)

Hence, the optimal control variable u∗ has the compact
form as (30), which completes this proof.

A.8. Proof of Corollary 1. By (19), we know that R0 < 1 if

βηΛ
(ψ + μ)(η + ε + μ)(ξ + c + μ + θ)

< 1. (A.39)

Hence by *eorems 2 and 3, the epidemic of worm does
not outbreak if

βηΛ<(ψ + μ)(η + ε + μ)(ξ + c + μ + θ). (A.40)

Since η< η + ε + μ, we have R0 < 1 if

Λ<
(ψ + μ)(ξ + c + μ + θ)

β
. (A.41)

Likewise, the corresponding assertions of other mod-
eling parameters can also be obtained.
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