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-e goal of this paper is to build average convergence and almost sure convergence for ND (negatively dependent) sequences of
random variables under sublinear expectation space. By using the basic definition of sublinear expectation space, Markov
inequality, and Cr inequality, we extend average convergence and almost sure convergence theorems for ND sequences of random
variables under sublinear expectation space, and we provide a way to learn this subject.

1. Introduction

Classical probability theorems are widely used in many
fields, which only hold on some occasions of model cer-
tainty. However, there are uncertainties, such as measures of
risk, nonlinear stochastic calculus, and statistics in the
process of finance. At this time, nonadditive probabilities
and nonadditive expectations are useful tools for studying
uncertainties and nonlinear stochastic calculus in the pro-
cess of finance. In order to solve similar problems, Professor
Shige Peng [1–3] proposed g-expectation and G-expectation
theory in 2008, so that the sublinear expectation space has
attracted a lot of scholars’ attention.

-e limit theorem of nonadditive probability or non-
linear expectation is a challenging question of interest.
Under the framework of Peng, many limit theorems are
gradually established, such as Zhang [4–8] studied some
inequalities under sublinear expectation spaces, some limit
theorems for sublinear expectation spaces, and Marcinkie-
wiczs strong law of large numbers for nonlinear expecta-
tions; Bayraktar and Munk [9] acquired an α-stable limit
theorem under sublinear expectation; Xu and Zhang [10]
achieved three-series theorem for independent random
variables under sublinear expectations with applications;
Wu and Jiang [11] researched strong law of large numbers
and Chover’s law of the iterated logarithm under sublinear

expectations. In the last two years, the research of the
convergence under the sublinear expectation space is still
very hot. Ze and Zhou [12] discussed convergence of ran-
dom variables under sublinear expectations; Gao et al. [13]
researched a strong law of large number for negatively
dependent and nonidentical distributed random variables in
the framework of sublinear expectation; Wu and Lu [14]
acquired another form of Chover’s law of the iterated log-
arithm under sublinear expectations; Chen and Zhang [15]
studied an elementary proof of Peng’s central limit theorem
under sublinear expectations.

Complete convergence is a strong convergence, which
was first proposed by Hsu and Robbins [16] in 1947. In the
classical probability space, complete convergence, almost
sure convergence, average convergence, and convergence
of probability have been widely used, and many scholars
have studied these [17–20]. In the probability space, these
convergence problems have been studied more thoroughly.
-e average convergence and almost sure convergence is
needed to be made perfect under sublinear expectation.
Because of the expectation subaddition, it has brought us
some difficulties in dealing with these problems. Wemainly
establish the average convergence and almost sure con-
vergence for ND random variables under sublinear ex-
pectation and generalize them [21] to the sublinear
expectation space.
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-is paper is divided into four parts.-e first part mainly
introduces the background of sublinear expectation spaces
and some existing research results. -e second part mainly
introduces definitions and lemmas of sublinear expectation
spaces that we need to use. -e third part mainly describes
theorems and remarks. -e fourth part mainly explains the
proof process of the theorems.

2. Preliminaries

We use the framework and notions of Peng [2]. Let (Ω,F)

be a given measurable space, and let H be a linear space of
real functions defined on (Ω,F) such that if
X1, X2, . . . , Xn ∈H, then φ(X1, . . . , Xn) ∈H for each
φ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of
(local Lipschitz) functions φ satisfying

|φ(x) − φ(y)|≤ c 1 +|x|
m

+|y|
m

( |x − y|, ∀x, y ∈ Rn,

(1)

for some c> 0, m ∈ N depending on φ. H is considered as a
space of random variables. In this case, we denote X ∈H.

In this paper, we define C as positive constants, and the
positive constants represented by different places are
different.

Definition 1 (see [2]). A sublinear expectation Ê on H is a
function Ê: H⟶ R satisfying the following properties: for
all X, Y ∈H, we have the following:

(a) Monotonicity: ifX≥Y, then ÊX≥ ÊY

(b) Constant preserving: Êc � c

(c) Subadditivity: Ê(X + Y)≤ ÊX + ÊY, whenever ÊX +

ÊY is not of the form +∞ − ∞ or − ∞ +∞
(d) Positive homogeneity: Ê(λX) � λÊX, λ≥ 0

Here, R � [− ∞,∞], and the triple (Ω,H, Ê) is called a
sublinear expectation space.

Given a sublinear expectation Ê, let us denote the
conjugate expectation E of Ê by

EX ≔ − Ê(− X), ∀X ∈H, Êf≤V(A)≤ Êg, Ef≤V(A)≤ Eg, if f≤ I(A)≤g, f, g ∈H. (2)

From the definition, it is easily shown that, for all
X, Y ∈H,

EX≤ ÊX, Ê(X + c) � ÊX + c, Ê(X − Y)≥ ÊX − ÊY, Ê|X − Y|≥ |ÊX − ÊY|. (3)

Definition 2 (see [1]). If G ⊂ F, for the function
V: G⟶ [0, 1], there are the following:

(1) V(∅) � 0, V(Ω) � 1
(2) V(A)≤V(B), ∀A⊆B, A, B ∈ G

-en, call V as the capacity. If for any A, B ∈ G and
A∪B ∈ G, there is V(A∪B)≤V(A) + V(B), and then it is
said that V is subadditive. In the sublinear expected space
(Ω,H, Ê), the definition of upper capacity and lower ca-
pacity (V ,V) is

V(A) ≔ inf Êξ; I(A)≤ ξ, ξ ∈H ,

V(A) ≔ 1 − V A
c

( , ∀A ∈ F,
(4)

where V(Ac) is the complement of A.
V has subadditivity, and

V(A)≤V(A), ∀A ∈F,

V(A) � Ê(I(A)),

V(A) � E(I(A)), I(A) ∈H.

(5)

If f≤ I(A)≤g, f, g ∈H, then

Êf≤V(A)≤ Êg,

Ef≤V(A)≤ Eg,
(6)

from this, for X ∈H, we can get the Markov inequality

V(|X|≥ x)≤
Ê |X|

p
( 

x
p , ∀x> 0, p> 0. (7)

In addition to the Markov inequality, the Cr inequality is
also used in the following chapters. Let X1, X2, . . . , Xn ∈H
be random variables, then

Ê X1 + X2 + · · · + Xn



r ≤ cr Ê X1



r

+ Ê X2



r

+ · · · + Ê Xn



r

 ,

(8)

and among them,

cr �
1, 0< r≤ 1,

n
r− 1

, r> 1.
 (9)

Definition 3. (see [4]).

(1) Ê: H⟶ R, If there is ∀X, Xn ∈H, X≥ 0, n≥ 1,
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Ê(X)≤ 
∞

n�1
Ê Xn( ,

X≤ 
∞

n�1

Xn. (10)

It is said that Ê can be added several times.
(2) V: F⟶ R, for ∀An ∈ F, there is

V ∪
∞

n�1
An ≤ 

∞

n�1
V An( . (11)

It is said that V can be added several times.
Under normal circumstances, V has no countable ad-

ditivity, so it is necessary to define the external capacity V∗.

Definition 4 (see [4]). For A ∈ F,

V
∗
(A) � inf 

∞

n�1
V An( : A ⊂ ∪

∞

n�1
An

⎧⎨

⎩

⎫⎬

⎭,

V
∗
(A) � 1 − V

∗
A

c
( .

(12)

From the definition, it is known that V∗(A) can be added
several times, and V∗ ≤V has the following properties:

(a) If V can be added several times, then V∗ � V

(b) If there is g ∈H for I(A)≤g, then V∗(A)≤ Ê(g);
furthermore, if Ê can be added several times, then it
is necessary for f≤ I(A)≤g, f, g ∈H has
Ê(f)≤V∗(A)≤V(A)≤ Ê(g).

(c) When I(A)≤g ∈H,V∗(A)≤ Ê(g), there is
V(A)≤V∗(A), that is, V∗ is the largest and has a
capacity of countable additivity.

Definition 5. (see [5], negative dependence). In a sublinear
expectation space (Ω,H, Ê), a random vector
Y � (Y1, . . . , Yn), Yi ∈H is said to have negative depen-
dence (ND) to another random vector
X � (X1, . . . , Xm), Xi ∈H under Ê if for each pair of test
functions φ1 ∈ Cl,Lip(Rm) and φ2 ∈ Cl,Lip(Rn), we have
Ê[φ1(X)φ2(Y)]≤ Ê[φ1(X)]Ê[φ2(Y)], whenever either
φ1 andφ2 are coordinate-wise nondecreasing or φ1 andφ2
are coordinate-wise nonincreasing with φ1(X)

≥ 0, Ê[φ2(Y)] ≥ 0, Ê[|φ1(X)φ2
(Y)|]<∞, Ê[|φ1(X)|] <∞, Ê[|φ2(Y)|]<∞.

ND random variables: a sequence of random variables
Xn; n≥ 1  in a sublinear expectation space

(Ω,H, Ê).X1, X2, . . . is said to be ND if Xi+1 is ND to
(X1, . . . , Xi) for each i≥ 1.

Let Xn; n≥ 1  be a sequence of ND random variables
and f1(x), f2(x), . . . ∈ Cl,Lip(R) are nondecreasing (resp.,
nonincreasing) functions, then fn(Xn; n≥ 1) is also se-
quence of ND random variables.

Definition 6. Let Xn; n≥ 1  be a sequence of random
variables in H, we have several different types of
convergence:

(1) (Ze [12]) A sequence of random variables Xn; n≥ 1 

is said to completely converge to X(p> 0) if any
ε> 0, 

∞
n�1V(|Xn − X|> ε)<∞, which is denoted by

Xn⟶c .c X.
(2) (Wu [11]) A sequence of random variables

Xn; n≥ 1  is said to converge to X almost surely V

(a.s. V), denoted by Xn⟶ X a.s. V as n⟶∞ if
V(Xn↛X) � 0.
V can be replaced by V and V, respectively. By
V(A)≤V(A) and V(A) + V(Ac) � 1, for any
A ∈F, it is obvious that Xn⟶ X a.s. V implies
Xn⟶ X a.s. V, but Xn⟶ X a.s. V does not
imply Xn⟶ X a.s. V . Furthermore,

Xn⟶ X .s.V⇔V Xn⟶ X(  � 1⇔V Xn − X


≥ ε, i.o.  � 0, for∀ε> 0,

Xn⟶ X a.s.V⇔V Xn↛X(  � 0⇔V Xn⟶ X(  � 1.
(13)

In the probability space, P(A) + P(Ac) � 1 can get
Xn⟶ X a.s.⇔P(Xn⟶ X) � 1⇔P(Xn↛X) � 0.
But V(A) + V(Ac) � 1 does not necessarily hold
under sublinear expectation, that is, to say,
V(Xn⟶ X) � 1⇎V(Xn↛X) � 0. We can actually
get V(Xn↛X) � 0⇒V(Xn⟶ X) � 1; because of
V(Xn⟶ X) � 1⇏V(Xn↛X) � 0, we cannot de-
fine Xn⟶ X a.s. with V(Xn⟶ X) � 1.

(3) (Ze [12]) A sequence of random variables Xn; n≥ 1 

is said to Lp converge to X(p> 0) if
limn⟶∞Ê[|Xn − X|p] � 0, which is denoted by
Xn⟶Lp

X.
(4) (Ze [12]) A sequence of random variables Xn; n≥ 1 

is said to converge to X in capacity, if any

ε> 0, limn⟶∞V(|Xn − X|> ε) � 0, which is denoted
by Xn⟶V X.

By Borel–Cantelli’s Lemma, we can get
Xn⟶c .c. X⇒Xn⟶a .s.V X.

By Markov inequality, we can obtain
Xn⟶Lp

X⇒Xn⟶V X.

Lemma 1 (see [4], Borel–Cantelli’s lemma). Let An; n≥ 1 

be a sequence of events in F. Suppose that V is a countably
subadditive capacity. If 

∞
n�1V(An)<∞, then

V An i.o.(  � 0, where An i.o.  � ∩
∞

n�1
∪
∞

i�n
Ai. (14)
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Lemma 2 (see [5], Corollary 2.2; [6], -eorem 1). Let
X1, . . . , Xn  be a sequence of random variables in (Ω,H, Ê)

with ÊXk ≤ 0. Suppose that Xk+1 is negatively dependent to
(X1, . . . , Xk) for each k � 1, . . . , n − 1, Sn � X1 + · · · + Xn,

S0 � 0. 0en,
For 1≤p≤ 2

Ê S
+
n( 

p
 ≤ 22− p



n

k�1
Ê Xk



p
, (15)

for all x> 0

V Sn ≥ x( ≤C


n
k�1ÊX

2
k

x
2 . (16)

We know that the indicative function may be discon-
tinuous, Ê[X] is defined on Cl,Lip under sublinear expec-
tations space, so the constructor g(x) ∈ Cl,Lip is needed to
correct the discontinuity of the indicative function. Now, we
define g(x) ∈ Cl,Lip, for 0< μ< 1; let g(x) be a nonincreasing
function such that 0≤g(x)≤ 1 for all x and g(x) � 1 if
x≤ μ, g(x) � 0 if x> 1. -en,

I(|x|≤ μ)≤g(|x|)≤ I(|x|≤ 1). (17)

3. Main Results

Theorem 1. Suppose that an; n≥ 1  and bn; n≥ 1  are
positive integer sequences, Xnk; an ≤ k≤ bn, n≥ 1  is an array
of row-wise ND random variables and ÊXnk � EXnk. Let
hn; n≥ 1  and kn; n≥ 1  be two increasing sequences of
positive constants with kn⟶∞, hn⟶∞ and
(hn/kn)⟶ 0 as n⟶∞. For some 1≤ r< 2, satisfying

sup
n≥1

k
− 1
n 

bn

k�an

Ê Xnk



r <∞, (18)

lim
n⟶∞

k
− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � 0,

(19)

we can get

k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk ⟶
Lr

0, (20)

that is, to say,

Ê k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk 





r

⟶ 0, as n⟶∞. (21)

Remark 1. We extend the main conclusions of Shen’s [21]
article to sublinear expectation spaces because the inequality
of Lemma 2 is about ND random variables, and the con-
clusion of Shen [21] is not extended to END random var-
iables. Condition (19) is different from

limn⟶∞k− 1
n 

vn

i�un
E(|Xni| − h(1/r)

n )rI(|Xni|
r > h(n)) � 0 of

Shen’s [21] because the indicator function does not neces-
sarily exist in the sublinear expected space, so it needs to be
replaced by the g(·) function.

Theorem 2. Assume that an; n≥ 1  and bn; n≥ 1  are
positive integer sequences, Xnk; an ≤ k≤ bn, n≥ 1  is an array
of row-wise ND random variables, and V is countably sub-
additive. Let hn; n≥ 1  and kn; n≥ 1  be two increasing
sequences of positive constants with kn⟶∞, hn⟶∞ as
n⟶∞ and 

∞
n�1(hn/kn)(2− r/r) <∞. For some 1≤ r< 2,

satisfying (18) and



∞

n�1
k

− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠<∞,

(22)

we can have

limsup
n⟶∞

k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk ≤ 0 a.s.V , (23)

liminf
n⟶∞

k
− (1/r)
n 

bn

k�an

Xnk − EXnk)≥ 0 a.s.V . (24)

In particular, if ÊXnk � EXnk, then

lim
n⟶∞

k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk  � 0 a.s. V . (25)

Remark 2. -e almost sure convergence under the sublinear
expectation space is defined by the convergence of the ca-
pacity; capacity is divided into upper capacity and lower
capacity; the almost sure convergence of the upper capacity
can be pushed almost sure converges of the lower capacity;
otherwise, it does not hold. We prove that almost sure
convergence under sublinear expectation space is the proof
of the upper capacity of almost sure convergence. In order to
adapt to the sublinear expectation space and better prove
-eorem 2, combined with the g function, we change
limn⟶∞

vn

i�un
|ani|

rE|Xni|
rI(|Xni|

r > ε) � 0 of Shen’s [21] to
formula (22). In the sublinear expectation space, almost sure
convergence is different from the probability space. Gen-
erally speaking, the limit does not exist. Only under con-
dition ÊXnk � EXnk can there be a limit. -erefore, our
conclusion is divided into three parts, namely, formulas
(23)–(25).

4. Proof

Proof of 0eorem 1. For convenience, x≪y denotes that
there exists a constant c> 0 such that x≤ cy for n sufficiently
large. For an array of row-wise ND random variables
Xnk; an ≤ k≤ bn, n≥ 1 , to ensure the truncated random
variables are also ND, we demand that truncated functions
belong to Cl,Lip. For all an ≤ k≤ bn, n≥ 1, we define that
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Ynk � − h
(1/r)
n I Xnk < − h

(1/r)
n  + XnkI Xnk


≤ h

(1/r)
n  + h

(1/r)
n I Xnk > h

(1/r)
n ,

Znk � Xnk − Ynk � Xnk + h
(1/r)
n I Xnk < − h

(1/r)
n  + Xnk − h

(1/r)
n I Xnk > h

(1/r)
n .

(26)

By (17), we can easily draw that

Znk


 � Xnk − Ynk


 � Xnk


 − h

(1/r)
n I Xnk


> h

(1/r)
n ≤ Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (27)

We know

k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk 




� k

− (1/r)
n 

bn

k�an

Xnk − ÊXnk ⎛⎝ ⎞⎠

+

+ k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk ⎛⎝ ⎞⎠

−

. (28)

Paying attention to (x + y)+ ≤ x+ + |y| for x, y ∈ R, it is
easy to see that

Ê k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

� Ê k
− (1/r)
n 

bn

k�an

Ynk + Znk − ÊYnk + ÊYnk − ÊZnk + ÊZnk − ÊXnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

� Ê k
− (1/r)
n 

bn

k�an

Ynk − ÊYnk + Znk − ÊZnk + ÊYnk + ÊZnk − ÊXnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

≪ Ê k
− (1/r)
n 

bn

k�an

Ynk − ÊYnk + Znk − ÊZnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

+ Ê k
− (1/r)
n 

bn

k�an

ÊZnk + ÊYnk − ÊXnk 





r

≪ Ê k
− (1/r)
n 

bn

k�an

Ynk − ÊYnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

+ Ê k
− (1/r)
n 

bn

k�an

Znk − ÊZnk 





r

+ Ê k
− (1/r)
n 

bn

k�an

ÊZnk + ÊYnk − ÊXnk



⎛⎝ ⎞⎠

r

≕Sn + Wn + Tn.

(29)

If we want to get (21) in Lr, we first show that Sn⟶ 0 as
n⟶∞, according to 1≤ r< 2, it suffices to show
Ê((k− (1/r)

n 
bn

k�an
(Ynk − ÊYnk))+)2⟶ 0 as n⟶∞. Noting

that (hn/kn)⟶ 0 as
n⟶∞, Ê(Ynk − ÊYnk)2 ≤ 4ÊY2

nk, |Ynk|≤ |Xnk| and
|Ynk|≤ h(1/r)

n , by (15) and (18),

Discrete Dynamics in Nature and Society 5



Ê k
− (1/r)
n 

bn

k�an

Ynk − ÊYnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

2

≤ 22− 2
· k

− (2/r)
n 

bn

k�an

Ê Ynk − ÊYnk




2

≪ k
− (2/r)
n 

bn

k�an

ÊY
2
nk

≤ k
− (2/r)
n 

bn

k�an

Ê Ynk



2 h(1/r)

n

Ynk




 

2− r

≤
hn

kn

 

(2− r/r)

k
− 1
n 

bn

k�an

Ê Ynk



r

≤
hn

kn

 

(2− r/r)

· sup
n≥1

k
− 1
n 

bn

k�an

Ê Xnk



r

⟶ 0(n⟶∞).

(30)

-erefore, Sn⟶ 0 as n⟶∞. Next, we will prove
Wn⟶ 0 as n⟶∞; similar to (28), using Cr inequality,
we have

Wn � Ê k
− (1/r)
n 

bn

k�an

Znk − ÊZnk 





r

≪ Ê k
− (1/r)
n 

bn

k�an

Znk − ÊZnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

+ Ê k
− (1/r)
n 

bn

k�an

Znk − ÊZnk ⎛⎝ ⎞⎠

−

⎛⎝ ⎞⎠

r

≕Wn
′ + Wn
″.

(31)

For Wn
′, combining (15), (27), and (19), we can obtain

Wn
′ ≤ 22− r

· k
− 1
n 

bn

k�an

Ê Znk − ÊZnk




r

≪ k
− 1
n 

bn

k�an

Ê Znk



r ≤ k

− (1/r)
n 

bn

k�an

Ê Znk


⎛⎝ ⎞⎠

r

≤ k
− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r

⟶ 0, as n⟶∞.

(32)

We know − Znk; an ≤ k≤ bn, n≥ 1  is an array of row-
wise ND random variables, using − Znk instead of Znk in Wn

′.
-ere is

Ê k
− (1/r)
n 

bn

k�an

− Znk − Ê − Znk(  ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

⟶ 0, as n⟶∞.

(33)

For Wn
″, it is easy to see (x + y)− ≤ x− + |y| and (− x)− �

x+ for x, y ∈ R; according to Cr inequality, (19), (27), and
(33), we have
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Wn
″ � Ê k

− (1/r)
n 

bn

k�an

Znk − ÊZnk + ÊZnk − ÊZnk ⎛⎝ ⎞⎠

−

⎛⎝ ⎞⎠

r

≪ Ê k
− (1/r)
n 

bn

k�an

Znk − ÊZnk ⎛⎝ ⎞⎠

−

⎛⎝ ⎞⎠

r

+ Ê k
− (1/r)
n 

bn

k�an

ÊZnk − ÊZnk 





r

≤ Ê k
− (1/r)
n 

bn

k�an

Znk − ÊZnk ⎛⎝ ⎞⎠

−

⎛⎝ ⎞⎠

r

+ Ê k
− (1/r)
n 

bn

k�an

ÊZnk − ÊZnk



⎛⎝ ⎞⎠

r

≤ Ê k
− (1/r)
n 

bn

k�an

Znk + Ê − Znk(  ⎛⎝ ⎞⎠

−

⎛⎝ ⎞⎠

r

+ Ê k
− (1/r)
n 

bn

k�an

Ê Znk


⎛⎝ ⎞⎠

r

≤ Ê k
− (1/r)
n 

bn

k�an

− Znk − Ê − Znk(  ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

+ k
− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r

⟶ 0, as n⟶∞.

(34)

For Tn, note that |ÊX − ÊY|≤ Ê|X − Y|, (19), and (27).
We conclude that

Tn ≤ Ê k
− (1/r)
n 

bn

k�an

Ê Znk


 + Ê Ynk − Xnk


 ⎛⎝ ⎞⎠

r

≪ Ê k
− (1/r)
n 

bn

k�an

Ê Znk


⎛⎝ ⎞⎠

r

, (35)

≤ k
− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r

⟶ 0, as n⟶∞. (36)

From (30), (32), (34), and (35), we can easily get
Sn⟶ 0, Wn⟶ 0 and Tn⟶ 0 as n⟶∞ in Lr, so

Ê k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

⟶ 0, as n⟶∞.

(37)

Finally, we have to prove
Ê((k− (1/r)

n 
bn

k�an
(Xnk − ÊXnk))− )r⟶ 0 as n⟶∞. It shall

be noted that − Xnk; an ≤ k≤ bn, n≥ 1  is an array of row-

wise ND random variables, using − Xnk instead of Xnk in
(37), so we can get

Ê k
− (1/r)
n 

bn

k�an

− Xnk − Ê − Xnk(  ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

⟶ 0, as n⟶∞.

(38)

According to ÊXnk � − E(− Xnk) and condition of
ÊXnk � EXnk,

Ê k
− (1/r)
n 

bn

k�an

Xnk − ÊXnk ⎛⎝ ⎞⎠

−

⎛⎝ ⎞⎠

r

� Ê k
− (1/r)
n 

bn

k�an

− Xnk − Ê − Xnk(  ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

r

⟶ 0, as n⟶∞. (39)

So, we have Ê((k− (1/r)
n 

bn

k�an
(Xnk − ÊXnk))− )r⟶ 0, as

n⟶∞. Combining (28), we can get (21). In other words,
-eorem 1 is proved. □

Proof of 0eorem 2. In the process of -eorem 2, we still use
the mark of -eorem 1. In order to prove the establishment
of (23), we need to show
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I1 � limsup
n⟶∞

k
− (1/r)
n 

bn

k�an

Ynk − ÊYnk ≤ 0 a.s.V ,

I2 � limsup
n⟶∞

k
− (1/r)
n 

bn

k�an

Znk ≤ 0 a.s.V ,

I3 � lim
n⟶∞

k
− (1/r)
n 

bn

k�an

ÊYnk − ÊXnk  � 0.

(40)

We consider I1, using Markov inequality and (16).
Noting that |Ynk|≤ |Xnk|, |Ynk|≤ h(1/r)

n ,

∞
n�1(hn/kn)(2− r/r) <∞, Ê(Ynk − ÊYnk)2 ≤ 4ÊY2

nk and (18),
for some 1≤ r< 2, any δ > 0, we have

I1 � 
∞

n�1
V 

bn

k�an

Ynk − ÊYnk > δk
(1/r)
n

⎛⎝ ⎞⎠

≪ 
∞

n�1


bn

k�an
Ê Ynk − ÊYnk 

2

δ2k(2/r)
n

≪ 
∞

n�1
k

− (2/r)
n 

bn

k�an

ÊY
2
nk

≤ 
∞

n�1
k

− (2/r)
n 

bn

k�an

Ê Ynk



2 h(1/r)

n

Ynk




 

2− r

≤ 
∞

n�1

hn

kn

 

(2− r/r)

· sup
n≥1

k
− 1
n 

bn

k�an

Ê Xnk



r <∞.

(41)

We know V is countably subadditive, combining Lemma
1 (Borel–Cantellis Lemma). Let δ⟶ 0, we have
limsupn⟶∞ k− (1/r)

n 
bn

k�an
(Ynk − ÊYnk)≤ 0, a.s.V . Now, it

suffices to verify that

I2 � 
∞

n�1
V k

− (1/r)
n 

bn

k�an

Znk − ÊZnk > δ − k
− ((1/r))
n 

bn

k�an

ÊZnk
⎛⎝ ⎞⎠<∞.

(42)

By (22) and (27), we conclude that

lim
n⟶∞

k
− (1/r)
n 

bn

k�an

ÊZnk




≤ lim

n⟶∞
k

− (1/r)
n 

bn

k�an

Ê Znk




≤ lim
n⟶∞

k
− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n 

· 1 − g
Xnk




h
(1/r)
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� 0.

(43)

Hence, there exists k− (1/r)
n 

bn

k�an
ÊZnk < (δ/2), we use

Markov inequality, (15) of Lemma 2 and Cr inequality
because of (22) and (27); then, for any δ > 0,

I2 ≤ 
∞

n�1
V k

− (1/r)
n 

bn

k�an

Znk − ÊZnk >
δ
2

⎛⎝ ⎞⎠

≤ 2δ− 1


∞

n�1
k

− (1/r)
n Ê 

bn

k�an

Znk − ÊZnk ⎛⎝ ⎞⎠

≪ 
∞

n�1
k

− (1/r)
n Ê 

bn

k�an

Znk − ÊZnk ⎛⎝ ⎞⎠

+

⎛⎝ ⎞⎠

≤ 22− 1
· 
∞

n�1
k

− (1/r)
n 

bn

k�an

Ê Znk − ÊZnk





≪ 
∞

n�1
k

− (1/r)
n 

bn

k�an

Ê Znk




≤ 
∞

n�1
k

− (1/r)
n 

bn

k�an

Ê Xnk


 − h

(1/r)
n  1 − g

Xnk




h
(1/r)
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

<∞.

(44)

We know V is countably subadditive and arbitrary of δ,
which together with Lemma 1 (Borel–Cantellis Lemma)
implies limsupn⟶∞k− (1/r)

n 
bn

k�an
Znk ≤ 0, a.s.V .

Finally, we prove limn⟶∞I3 � 0. Similarly, combining
(43), we obtain limn⟶∞I3 � 0.-en, we obtain (23).We use
− Xnk instead of Xnk in (23), so we can get (24). When
ÊXnk � EXnk, there is (25), that is,-eorem 2 is proved. □
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