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In the near future, transportation systems modelers and planners will likely be challenged by more complex scenarios. )is is due
to the different types of vehicles that include different (i) powertrains (conventional, hybrid, electric, etc.), (ii) ownerships
(privately-owned vs. shared vehicles), and (iii) levels of automation (from human-driven to fully autonomous). All these different
vehicle types compete for the same arcs and jointly participate to congestion. )us, existing methods for travel demand as-
signment to a transportation network, the main tools for transportation systems analysis to support transportation project
assessment and evaluation, need to be extended to cope with mixed traffic. In this paper, deterministic process models for day-to-
day dynamic multivehicle assignment are presented, including fixed-point models for equilibrium assignment as a special case.
Vehicle types may be distinguished with respect to several parameters, such as flow equivalence coefficient, occupancy factor, cost
equivalence coefficient, and behavioral parameters. Results of an application to a toy network are also discussed showing that
advanced vehicles (AVs) may or may not have a positive effect of equilibrium stability.

1. Introduction

Technologies and prototypes for advanced vehicles (AVs),
such as connected, automated, autonomous vehicles, or
electric and hybrid ones, both for transportation of people or
goods are fast developing. Still, the time needed to turn the
existing stock of (mostly privately-owned) traditional ve-
hicles (TVs) into (possibly shared) advanced vehicles will
last several years during which mixed traffic is expected.
Indeed, according to current estimates, transition to wide-
spread fully autonomous and electric cars will require at least
20 years. Meanwhile, enhancements of existing tools of
Traffic and Transportation )eory are required by trans-
portation systems modelers and planners.)us, methods for
travel demand assignment to a transportation network, the
main tools for transportation systems analysis to support
transportation project assessment and evaluation, need to be
extended to cope with mixed traffic.

Equilibrium assignment was introduced by Wardrop
(1952) [1]; afterwards, Stochastic User Equilibrium based on
random utility theory (RUT) was introduced by Daganzo

and Sheffi (1977) [2]. Equilibrium assignment may effec-
tively be formulated through fixed-point (FP) models (in-
troduced by Daganzo, 1983 [3], through the use of inverse
cost function) as shown by the general framework in
Cantarella (1997) [4]. )is modeling approach implemented
in several commercial software packages is the most used in
practical applications.

Methods for day-to-day (or interperiodic) dynamic as-
signment (introduced for transportation systems analysis by
Horowitz, 1984 [5]) play a central role in advanced trans-
portation system analysis, since they allow analysing and
forecast equilibrium stability and fluctuations around it, as a
result of past events. Indeed, even though exactly one
equilibrium flow and cost patterns exist, the system state,
flow and cost patterns, may evolve towards the equilibrium
or towards another kind of attractor.

)e stability analysis can be addressed through deter-
ministic process (DP) models, derived from discrete-time
nonlinear dynamic systems theory [6, 7]. Moreover, the
equilibrium analysis does not allow analysing transients after
demand and/or supply changes, or obtaining a statistical
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description of the system state evolution over time, i.e.,
means, modes, moments, and, more generally, frequency
distributions, this kind of analysis requiring stochastic
process (SP) models (introduced for transportation systems
analysis by Cascetta, 1987 [8], 1989 [9]). A first unifying
framework was proposed by Cantarella and Cascetta (1995)
[10]. Additional details on SP are available (e.g., [11–13]).

A general theory of travel demand assignment including
static and dynamic modeling approaches has recently been
proposed in the book by Cantarella et al. (2019) [14], which is
a comprehensive reference for mathematical details as well
as references.

In a recent paper, Cantarella and Di Febbraro (2017) [15]
showed how existing fixed-point (FP) models for equilibrium
assignment can be extended to transportation networks where
several types of vehicles, including, for instance, AVs and TVs,
compete for the same arcs and jointly participate to congestion.
Cantarella et al. [16, 17] provided sufficient conditions for
fixed-point existence uniqueness, specified algorithms for
large-scale applications, analysed conditions for their conver-
gence, and discussed some large-scale examples.

)is paper proposes DP models for day-to-day dynamic
multivehicle assignment. Different vehicle types may be
given by the following:

Fossil fuelled vs. electrical energy
Ownership, say privately owned vs. (operator-owned)
shared vehicles
Level of automation, from human-driven to fully
autonomous
Others

According to the proposed modeling approach, if the
route choice behavior is described by applying the Random
Utility )eory, vehicle type may be distinguished through
different parameters regarding dispersion of perceived
utility (in the choice function), weights of attributes (in the
utility function), etc. Vehicle types may also be distinguished
with respect to the occupancy factor, that is, the average
number of users on-board, the flow equivalent factor, that is,
the relative effect on capacity, and the cost equivalent factor.

In Section 2, the adopted multivehicle modeling ap-
proach is described, briefly reviewing the relevant back-
ground. )en, in Section 3, some simple examples
considering two types of vehicles, TVs and AVs moving on a
toy network, are discussed showing the effecting of in-
creasing the AVs proportion. Major findings and research
perspectives are discussed in Section 4.

)e main original contributions of this paper are as
follows:

Deterministic process models for day-to-day dynamic
multivehicle assignment, including fixed-point models
for equilibrium assignment as a special case
Vehicle types may be distinguished with respect to
several parameters as shown below
Comparison between moving average and exponential
smoothing filters for modeling user memory and
learning

An application to a toy network showing that, even in
very simple networks, AVs may or may not have a
positive effect of equilibrium stability

2. Multivehicle Assignment

In this section, the adopted modeling approach is described,
and; it is consistent with the Six Equation Assignment Mod-
eling (SEAM) and the Two Equation Assignment Modeling
approaches proposed in Cantarella et al. (2019) [14], where
mathematical details are discussed. User category is not ex-
plicitly introduced in the following to simplify notations.

2.1. Assignment to Uncongested Networks. Connections are
described by an oriented graph. Parking facility can easily be
considered. Each origin and each destination are modeled
through a further node connected to the main network
through connecting arcs. Users are distinguished with re-
spect to o-d pair i they are travelling from/to and type of
used vehicle m. )e reference vehicle type (RVT) has index
m� 1; usually, privately owned human-driven fossil fuelled
passenger cars are used as RVT.

2.1.1. Basic Definitions and Equations. )e cost per each
vehicle type m is given by an affine transformation of the
RVT cost:

cm � χm ∗ c + cZm∀m, (1)

where, with reference to vehicle type m,cZm ≥ 0 is the arc
specific cost vector per vehicle type; c≥ 0 is the arc cost vector,
common to all vehicle types; χm > 0 is the cost equivalence
coefficient, modeling, for example, different on-board com-
fort, speeds, etc. with χ1� 1 (for further details, see Section
2.4); and cm ≥ 0 is the arc cost vector per vehicle type.

)e route costs can be obtained from the corresponding
arc costs through an affine transformation from the arc space
to the route space defined by the transpose of arc-route
incidence matrix:

wim � Bim
T
.cm + wZim∀im, (2)

where, with reference to o-d pair i and vehicle type m,
wZim ≥ 0 is the route specific or nonadditive cost vector, such
as not arc-based tolls or fares; Bim is the arc-route incidence
matrix; and wim ≥ 0 is the route cost vector; arc and route
(generalized transportation) costs are assumed measured by a
common unit, usually travel time or money, through duly
homogenization of different attributes, such as the value of
time, not explicitly introduced to simplify notations.

)e (systematic) utility function for o-d pair i and vehicle
type m is specified through a linear transformation (almost
always in research analysis as well as in practical
applications):

vim � − ψmwim∀im, (3)

where, with reference to o-d pair i and vehicle typem,ψm > 0
is the utility scale parameter, such that the term ψiwi is
dimensionless, and vim is the route systematic utility vector.
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Route choice behavior for o-d pair i and vehicle type m
can be modeled by applying any discrete choice modeling
theory so that route choice proportions depend on route
utility:

pim � pim vim; θm( 􏼁∀im, (4)

where, with reference to o-d pair i and vehicle typem, pim > 0
is the route choice proportion vector and θm> 0 is the route
choice function parameter vector, with θm1 being the scale
factor (if present), as in a Logit choice model.

Most often, the choice function pim(•) in (4) is derived
from Random Utility )eory (RUT). Examples are the well-
known models belonging to Logit family or Probit and the
more recent Gammit and Weibit. If the parameters of the
perceived utility pdf do not depend on systematic utility
values, the resulting choice function, called invariant, is
monotone increasing with symmetric semidefinite positive
Jacobian.

Flow conservation ensures that flows of all routes
connecting the o-d pair i using vehicle type m sum up to
demand flow:

him � diqimpim∀im, (5)

where, with reference to o-d pair i and vehicle typem, qim ≥ 0
is the proportion of the total demand flow per vehicle type
and o-d pair; dim ≥ 0 is the demand flow; and him ≥ 0 is the
route flow vector.

)e average number of users on board, possibly different
per vehicle type, is introduced to convert demand and route
flows measured in users per unit of time into arc flows
measured in vehicles per unit of time. Furthermore, a flow
equivalence coefficient for each vehicle type needs to be
introduced to measure arc flows in RVTs per time unit (and
to distinguish the effect on congestion, see Section 2.2.1).

)e arc total flows are given by the sum of arc flows plus
the arc base flows due to each combination of o-d pair i and
vehicle type m over all o-d pairs and vehicle types:

f � ΣiΣmηim

1
φm

􏼠 􏼡Bimhim + fz, (6)

where, with reference to vehicle typem, fz ≥ 0 is the arc base
flow vector; φm > 1 is the occupancy factor, that is, the av-
erage number of users on board; ηm > 0 is the flow equiv-
alence coefficient, with η1 � 1; and f ≥ 0 is the arc (total) flow
vector.

2.1.2. Arc Flow Function. If the vehicle type demand flows
are given. the arc flow function between arc flows and
(common) arc costs can be obtained by combining together
equations (1)–(6):

f � f c;
ηm
φm

􏼠 􏼡, χm,ψm, θm∀m􏼠 􏼡. (7)

)e arc function (7) models the effects of the route
choice behavior at a macroscopic scale. It has values in the
arc feasibility set Sf, which is nonempty (if the network is
connected), compact, and convex. )e arc flow function (7)

differs from the arc flow function with one vehicle type, since
several parameters have been introduced to distinguish the
vehicle types; see Section 2.4 for further discussion.

)e arc function (7) is a linear combination of route
choice functions; thus, it is continuous and c. differentiable if
all the route choice functions are continuous and c. dif-
ferentiable; moreover, it is monotone nondecreasing with
symmetric semi-definite negative Jacobian if all the route
choice functions are invariant.

)e arc flow function (7) can be computed with or
without explicit route enumeration even for very large-scale
applications through algorithms derived from graph theory.

2.2. Equilibrium Assignment to Congested Networks. In
congested networks, arc costs are assumed depending on arc
flows due to congestion. Equilibrium assignment models
search for mutually consistent arc flows and costs.

2.2.1. Arc Cost Function. )e arc cost function models the
driving behavior at a macroscopic scale:

c � c(f; κ)≥ 0, ∀f ∈ Sf, (8)

κ> 0 is the vector of the arc capacities, with entries κa, say
the maximum flow that may traverse arc a, measured
consistently with arc flows in RVTs per time unit; in most
functions, the arc cost actually depends on the ratio between
the arc flow and the capacity, fa/κa; in this case, the capacity
plays the role of arc flow scale factor.

Other parameters of the arc cost function are not ex-
plicitly introduced.

)e cost function is called separable; the cost of each arc
a, ca, depends on the corresponding flow, fa only, non-
separable, otherwise. All usually adopted cost functions are
continuous and c. differentiable; in most cases, they are s.
increasing monotone too; often, but not always, they have
symmetric Jacobian, as it occurs for separable cost functions
with diagonal Jacobian.

2.2.2. Fixed-Point Models. )e above-described arc flow
functions (7) can be combined with the arc cost function (8) to
specify fixed-point (FP) models for equilibrium assignment:

c∗ � c f∗( 􏼁 ∈ c Sf( 􏼁, (9)

f∗ � f c∗;
ηm

φm

􏼠 􏼡, χm, ψm, θm∀m􏼠 􏼡 ∈ Sf. (10)

Equivalent formulations with respect to flows

f∗ � f c f∗( 􏼁;
ηm

φm

􏼠 􏼡, χm, ψm, θm∀m􏼠 􏼡 ∈ Sf, (11)

or costs only

c∗ � c f c∗;
ηm

φm

􏼠 􏼡, χm, ψm, θm∀m􏼠 􏼡􏼠 􏼡 ∈ c Sf􏼐 􏼑, (12)

are often used in the literature.
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)e above FPmodels are consistent with those discussed by
Cantarella and Di Febbraro (2017) [15] and Cantarella et al.
[16, 17]. Existence of equilibrium flows or costs is guaranteed if
both the arc cost function and the arc flow function are con-
tinuous (if the network is connected). Formonotone decreasing
arc flow function (7), if the arc cost function (8) is monotone s.
increasing, uniqueness is guaranteed. )e above fixed-point
models can be solved for very large-scale applications through
algorithms based on the Method of Successive Averages.

2.3. Day-to-DayDynamic Assignment to CongestedNetworks.
Day-to-day dynamic assignment models try to describe the
evolution over time of arc flows and costs.

2.3.1. Further Definitions and Equations. )e specification
of a model for day-to-day dynamic assignment requires an
extension of models for the equilibrium assignment by
including submodels of the following:

(i) User memory and learning: how users forecast the
level of service that they will experience today, from
experience and other sources of information, such as
informative systems, about previous days.

(ii) User habit and inertia to change: how users make a
choice today, possibly repeating yesterday choice to
avoid the effort needed to take a decision, or recon-
sidering it according to the forecasted level of service.

)e arc cost updating relation, modeling user memory
and learning, gives the today forecasted route costs with
respect to previous day costs. It extends equation (9).

)is relation can be specified by an exponential
smoothing (ES) filter, say a convex combination of yesterday
route forecasted costs and yesterday actual route costs, given
by an affine transformation of the yesterday arc costs:

xk
� β c fk− 1

􏼐 􏼑 +(1 − β)xk− 1
, (13)

for given f 0, and x0 � c(f 0), where xk− 1≥ 0 is the forecasted
arc cost vector, common to all vehicle types, for day k − 1;
β ∈ ]0, 1[ is the cost updating parameter, that is, the weight
given to yesterday actual costs; in the following, the cost
updating parameter β is assumed time invariant; it can be
different per vehicle type; f k− 1≥ 0 is the arc flow vector for
day k − 1; c(f k− 1; κ) is the actual arc cost vector, common to
all vehicle types, for day k − 1; and xk≥ 0 is the forecasted arc
cost vector, common to all vehicle types, for day k.

A model of user memory and learning process with
explicitly finite memory depth μ can be specified through a
moving average, MA (β, μ), filter with one parameter β. At
this aim, first the weights of the ES filter are only applied to μ
previous days; thus at day t, the summation starts at day t − μ
+ 1; then a scaling factor ensuring that weights ζk sum to 1 is
applied; the resulting decreasing weights ζj for last μ days are
given by

ζj �
β(1 − β)

j− 1

1 − (1 − β)
μ

( 􏼁
􏼠 􏼡≥ 0, ∀j � 1, 2, . . . μ, (14)

where μ> 1, μ integer, is the memory depth and ζj is the
weight given to the actual cost occurring in any of the μ
previous days, 􏽐jζj � 1.

)e resulting (strict) convex moving average MA(β, μ)
filter with one parameter is given by

xk
� 􏽘

j�1,...,μ
ζjc fk− j

􏼐 􏼑, ∀k> μ, (15)

with suitable initialization.
)e arc flow updating relation, modeling user habit and

inertia to change, gives the today arc flow with respect to
forecasted costs and previous day flows. It extends equation
(10).

)is relation can be specified by an exponential
smoothing (ES) filter, say a convex combination of yesterday
arc flows due to users who do not reconsider their yesterday
choice and today arc flows due to users who reconsider their
yesterday choice:

fk
� αf xk− 1

;
ηm
φm

􏼠 􏼡, χm, ψm, θm∀m􏼠 􏼡 +(1 − α)fk− 1∀k,

(16)
where α∈]0,1[ is the choice updating parameter, that is, the
proportion of users reconsidering yesterday choice; in the
following, the choice updating parameter α is assumed day-
invariant; it can be different per vehicle type.

2.3.2. Deterministic Process Models. )e above-described arc
flow updating relation (16) can be combined with the arc
cost updating relation (13) or (15) to specify deterministic
process (DP) models for day-to-day dynamic assignment.

ES/ES DP models are given by the following equations:

xk
� βc fk− 1

􏼐 􏼑 +(1 − β)xk− 1
, ∀k,

(17)

fk
� αf xk− 1

;
ηm

φm

􏼠 􏼡, χm, ψm, θm∀m􏼠 􏼡 +(1 − α)fk− 1∀k,

(18)

for given f0, and x0 � c(f0).
)e DPmodel (11–14) can easily be rewritten as a proper

Markovian DP by putting equation (13) into (15), but still
keeping equation (13). )e state variables of DP model (11,
14) are (xk, fk); the updating parameters are α and β; other
parameters are demand flow, d, and any other parameter in
the arc flow function and in the arc cost function.

MA/ES DP models are given by the following equations:

xk
� 􏽘

j�1,...,μ
, ζjc fk− j

􏼐 􏼑, ∀k>μ, (19)

fk
� αf xk− 1

;
ηm

φm

􏼠 􏼡, χm, ψm, θm∀m􏼠 􏼡 +(1 − α)fk− 1∀k,

(20)

where

ζj �
β(1 − β)

j− 1

1 − (1 − β)
μ

( 􏼁
≥ 0, ∀j � 1, 2, . . . , μ, (21)

with suitable initialization.
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Table 1: Parameters of arc cost functions.

Arc c0a κa ]1 ]2
1 15 2400 2.5 4
2 8 3600 2.0 4
3 12 2400 1.5 4
4 24 3600 2.0 4
5 15 3600 1.5 4

A

B

C

D

Figure 1: )e toy network.

Table 2: Parameters of vehicle types.

Type (ηm/μm) χm
1 (TVs) 1.0 1.0
2 (AVs) 0.8 0.9

Table 3: Bifurcation demand flow, reference scenario θTV � 7.0.

Scenario
θTV � 7.0

qm
DP-ES/
ES

DP-MA/ES
μ� 2 μ� 3 μ� 4 μ� 5 μ� 6

TVs AVs dBif dBif dBif dBif dBif dBif
0 1 0 3917 3875 3771 3917 3896 3917
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Figure 2: Continued.
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)efixed-point states of both DPmodel (11, 14) and (13,14)
are equivalent to the equilibrium states as defined by FP model
(9, 10). Applying techniques from the theory of discrete-time
nonlinear dynamic systems, the above DP models can be used
to study the local stability of each fixed-point state, say whether
it is an attractor. Moreover, a bifurcation analysis can be carried
to single out which attractor is reached by the evolution over
time when an input data or a parameter is changed.

)e above DP models are a generalization of those al-
ready in literature due to the many parameters introduced in
the arc flow function to distinguish the vehicle types; see
Section 2.4 for further discussion.

2.4. Main Parameters Suitable to Distinguish Vehicle Types.
All assignment models discussed above include several
parameters useful to distinguish vehicle types; they are
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Figure 2: (a) Bifurcation diagrams of route flows, reference scenario, ES/ES. (b) Bifurcation diagrams of route flows, reference scenario,
MA/ES μ� 2. (c) Bifurcation diagrams of route flows, reference scenario, MA/ES μ� 3.

Table 4: Bifurcation demand flow, AVs scenarios A θAV � 7.0 and θAV � 4.7

Scenario
θTV � 7.0
θAV � 4.7

qm DP-ES/
ES

DP-MA/ES
μ� 2 μ� 3 μ� 4 μ� 5 μ� 6

TVs AVs dBif dBif dBif dBif dBif dBif
A1 0.9 0.1 3958 3917 3813 3958 3938 3958
A2 0.7 0.3 4063 4000 3917 4063 4021 4063
A3 0.5 0.5 4146 4104 4000 4146 4125 4146
A4 0.3 0.7 4271 4229 4104 4271 4229 4271
A5 0.1 0.9 4375 4333 4229 4375 4354 4375
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Scenario DP-ES/ES
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Figure 3: Continued.
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Scenario DP-MA/ES (µ = 2)
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Figure 3: Continued.
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Scenario DP-MA/ES (µ = 3)
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Figure 3: (a) Bifurcation diagrams of route flows, scenarios A, ES/ES. (b) Bifurcation diagrams of route flows, scenario A, MA/ES μ� 2.
(c) Bifurcation diagrams of route flows, reference scenario, MA/ES μ� 3.
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discussed below in detail. As already noted, the reference
vehicle type (RVT) has index m� 1, usually privately owned
human-driven fossil fuelled passenger cars.

2.4.1. Supply Parameters. Supply parameters are mainly
related to congestion and level-of-service provided. Arc
flows as well as arc capacities are measured consistently with
arc flows in RVTs per time unit; thus

the flow equivalence coefficient, ηm > 0 with η1 � 1, is
introduced to model different effects of congestion with
respect to capacity, for instance, due to average length
and/or width, e.g., passenger vs. vans vs. trucks, ...; it is
generally assumed that AVs have less effect on con-
gestion than TVs.

It is worth noting that the capacity of arc a, κa > 0, say the
maximum flow that may traverse arc a, is measured RVTs per
time unit; thus its value is independent of the traffic com-
position, andmostly depends on street features, such as width,
slope, etc. Inmost cost functions, the arc cost actually depends
on the ratio between the arc flow and the capacity, fa/κa; in this
case, the capacity plays the role of arc flow scale factor.

Different types of vehicles may experience different costs
on the same arc, thus

the cost equivalence coefficient, χm > 0 with χ1 � 1, is
introduced to model, for example, different speeds, etc.
According to the literature, it can be assumed that
advanced vehicles may experience smaller generalized
costs than TVs, e.g., energy consumption, travel time,
and value of time [18–22].

Different types of vehicles may have different arc access
allowance, e.g., lanes or areas reserved to e-vehicles, and/or
experience different tolls, e.g., congestion tools; thus

the arc specific cost of traversing arc a per vehicle type
m, cZma collected in vector cZm≥ 0, is summed to the
generic cost affected by congestion, say χm ca.

2.4.2. Demand Parameters. Demand parameters are mainly
related to user behavior. Users moving with different types of
vehicles along the same route may experience different (dis)
utility with respect to the same route cost; thus in the utility
function

the utility scale parameter, ψm> 0 such that the term ψi
wi is dimensionless, is introduced to model on-board

comfort, privacy, etc.; it is generally assumed that AVs
experience smaller disutility than TVs since other ac-
tivities than driving may be carried out when on-board.

Any route choice function, usually but not necessarily
derived from Random Utility )eory (RUT), contains some
parameters modeling dispersion and other features of the
perceived utility distribution that may be different per ve-
hicle type; thus

the route choice function parameter, vector, θm> 0, is
introduced; in some models, as the Logit, a scale factor
θm1 is present, often proportional to the perceived
utility dispersion.

As far as calibration is concerned, the utility scale pa-
rameter θm1 may not be distinguished from the utility pa-
rameter ψm; thus their ratio plays the role of a single
parameter; on the other hand, the meanings of the two
parameters are different and this condition should carefully
be taken into account in scenario design.

To convert demand and route flows measured in users
per unit of time into arc flows measured in vehicles per unit
of time,

the occupancy factor, say the average number of users
on-board φm ≥ 1, is introduced; for example, it is
expected that advanced vehicles may allow a higher
occupancy factor than other types, for instance, in
large-scale ride-sharing with autonomous vehicles.

From the mathematical point of view, each ratio (ηm/μm)
plays the role of a single parameter; on the other hand, the
meanings of the two parameters are different and this
condition should carefully be taken into account in scenario
design.

Vehicle types may also be differentiated with respect to
the route choice function pim(●).

2.4.3. Dynamic Updating Parameters. Dynamic updating
parameters, the choice updating parameter, the cost
updating parameter, and the memory depth in MA filters, are
related to memory and learning modeling; they might be
differentiated per vehicle type. But, in this case the fixed-point
stability conditions and bifurcation analysis already in literature
(see Cantarella et al. (2019) [14] for details) no longer apply;
extension of these results may easily be conceived from the
theoretical point of view, but can hardly be derived in practice
since involving the closed form solution of high-degree
polynomial equations with complex coefficients.

3. Numerical Examples

)is section discusses the results of the application of the ES/
ES and MA/ES DP models to a toy network to study the
effects on fixed-point state stability of introducing AVs.

3.1. Input Data and Assumptions. A toy network with 4
nodes A, B, C, D, and 5 arcs, 1� (A, C), 2� (B, D), 3� (B, C),
4� (A, B), 5� (C, D), is considered (Figure 1).

Table 5: Bifurcation demand flow, AVs scenarios B θTV � 7.0 and
θAV � 2.3

Scenario
θTV � 7.0
θAV � 2.3

q DP-ES/
ES

TVs AVs dBif
B1 0.9 0.1 3833
B2 0.7 0.3 3708
B3 0.5 0.5 3625
B4 0.3 0.7 3563
B5 0.1 0.9 3521
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Scenario DP-ES/ES
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Figure 4: Bifurcation diagrams of route flows, scenarios A, ES/ES with θTV � 7.0 and θAV � 2.3.
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)e pair of nodes (A, D) is the only o-d pair, connected
by 3 routes: 1� (ACD), 2� (ABD), and 3� (ABCD) (paths
are numbered after arcs 1, 2, and 3, respectively)

BPR-like separable arc cost functions are considered (no
arc specific cost is considered):

ca � c0a 1 + v1
fa

κa
􏼠 􏼡

v2

􏼠 􏼡, (22)

where ]1> 0 is the congestion multiplier: how much greater
the arc cost is when flow is equal to capacity with respect to
zero flow cost; this parameter is to be calibrated against data,
in urban applications, 2 is an often used value; ]2> 0 is the
congestion exponent: how fast the arc cost increases against
flow; this (integer) parameter too is to be calibrated against
data; in urban applications, 2 is an often used value; as this
value increases, the shape of the function tends to a vertical
asymptote; c0a> 0 is the cost when flow is zero.

Costs are given by travel times and measured in minutes;
all flows and capacities are measured in vehicles per hour.
Values of parameters are given in Table 1.

Given the values of capacities in Table 1, the max flow
that can traverse the network from A to D is 6000. Given the
zero flow arc costs, the cost of the shortest path from A to D
with is wMINo � 30.

User may travel through either of two types of vehicles:
TVs (1) and AVs (2). In both cases, the route choice behavior
for user travelling is modeled by a Logit choice function:

pr �
exp vr/θm( 􏼁

􏽐k∈Riexp vk/θm( 􏼁
, for any route r, (23)

where the dispersion parameter θm> 0 per vehicle type m is
proportional to the standard deviation σ of the route per-
ceived utility modeled as a random variable, according to the
Random Utility )eory. It includes the utility scale pa-
rameter ψm.

Vehicle types are also distinguished with respect to ratio
(ηm/μm) and cost equivalent χm parameters, with TVs (1)
being the RVT, as given in Table 2, where AVs are assumed
having a beneficial effect on congestion and being faster.

3.2. Results of a Bifurcation Analysis. To study the effects of
introducing of AVs on fixed-point state stability, the results
of a bifurcation analysis with respect to the value of demand
flow d are presented below varying the vehicle type pro-
portions qm as well as the dispersion parameters θm.

)e evolution over time of the system is described by the
DPmodels in Section 2.3, say ES/ES andMA/ES with μ� 2, 3,
4, 5, 6 to compare the effect of different memory and learning
filters. In all scenarios analyzed below, α� 0.5 and, β� 0.6.

Since the arc cost functions are continuous and
monotone increasing and the Logit choice functions are
continuous and invariant (dispersion parameter θm does not
depend on the systematic utility vim), there exists exactly one
fixed-point state, equivalent to the equilibrium pattern.

Table 6: Parameters of vehicle types.

Type (ηm/μm) χm
1 (TVs) 1.0 1.0
2 (AVs) 0.7 0.8

Table 7: Bifurcation demand flow, AVs scenarios C: θTV � 7.0 and θAV � 4.7; (ηm/μm)� 0.7 and χm � 0.8

Scenario
θTV � 7.0
θAV � 4.7
(ηm/μm)� 0.7
χm � 0.8

q DP-ES/ES

TVs AVs dBif

C1 0.9 0.1 4021
C2 0.7 0.3 4250
C3 0.5 0.5 4500
C4 0.3 0.7 4771
C5 0.1 0.9 5104

Table 8: Bifurcation demand flow, AVs scenarios D: θTV � 7.0 and θAV � 2.3; (ηm/μm)� 0.7 and χm � 0.8

Scenario
θTV � 7.0
θAV � 2.3
(ηm/μm)� 0.7
χm � 0.8

q DP-ES/ES

TVs AVs dBif

D1 0.9 0.1 3917
D2 0.7 0.3 3938
D3 0.5 0.5 3979
D4 0.3 0.7 4042
D5 0.1 0.9 4125
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Scenario DP-ES/ES
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Figure 5: Bifurcation demand flow, AVs scenarios C: θTV � 7.0 and θAV � 4.7; (ηm/μm)� 0.7 and χm� 0.8.
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Scenario DP-ES/ES
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Figure 6: Bifurcation demand flow, AVs scenarios C: θTV � 7.0 and θAV � 2.3; (ηm/μm)� 0.7 and χm� 0.8.
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Moreover, it can be proven that flip bifurcations only may
occur since the arc cost functions are monotone increasing
and separable (see Cantarella et al. 2019 [14]).

3.2.1. Reference Scenario: All TVs. In the reference scenario,
only TVs are considered. )e dispersion parameter is
θTV � 7.0, corresponding to 30% variation coefficient with
respect to wMINo. Table 3 shows the values of demand flow,
dBif, at which the flip bifurcation occurs: the unique fixed-
point stable becomes unstable. )e values of dBif have been
found through numerical search.

)ey have also been verified through the stability con-
ditions based on eigenvalues of the Jacobian of the ES/ES DP
model (details in Cantarella et., 2019 [14]). Analogous
conditions for the MA/ES DP model are not yet available.

Regarding the memory and learning filters, greater
memory depth μ has a stabilizing effect, as expected, and
results for MA tend to ES as the μ increases. Rather sur-
prisingly, the convergence of the results from the MA filter
to those from the ES filter as the memory depth μ increases is
not smooth but dBif oscillates between odd and even values,
dBif for an odd value of μ being smaller than the dBif for the
two near even values. )is condition is worth further re-
search work.

For values of demand flow greater than dBif, the system
evolves towards a 2-periodic attractor as shown by bifur-
cation diagrams (Figure 2) with respect to values of demand
flow up to 6000 for ES andMAwith μ� 2 or 3 only, the green
line showing the equilibrium route flow.

3.2.2. Scenarios A and B: Increasing Proportion of AVs.
In scenarios A, the effect of increasing the AVs proportion is
analyzed. )e dispersion parameter of TVs is still θTV � 7.0,
but the dispersion parameter of AVs is θAV � 4.7, corre-
sponding to 20% variation coefficient with respect to wMINo,
since AVs may have access to information reducing un-
certainty both of users and modelers. Table 4 shows the
values of demand flow, dBif, at which the flip bifurcation
occurs. Bifurcation diagrams are reported in Figure 3; as
expected, flip bifurcations occur towards periodic and
aperiodic attractors.

Increasing the AVs proportion has a positive effect on
fixed-point stability, since the bifurcation demand flow
increases reducing the set of values of demand flow for
which the fixed point is not stable. Indeed, AVs have less
effect on congestion as modeled by the flow equivalent flow
coefficient (including the occupancy factor) and smaller
costs as modeled by the cost equivalent parameter. In all
scenarios, great memory depth μ has a stabilizing effect.

)e beneficial effect of AVs may vanish if the dispersion
among users is reduced to θAV � 2.3, corresponding to 10%
variation coefficient with respect to wMINo. Table 5 shows, for
ES/ES DP only, that the values of demand flow dBif at which
the flip bifurcation occurs reduce as the AVs proportion
increases, increasing the values of demand flow for which the
fixed point is not stable. Indeed, reducing dispersion may
lead fixed-point states towards instability. Bifurcation dia-
grams are reported in Figure 4.

3.2.3. Scenarios C and D: Decreasing AVs Vehicle Type
Parameters. In these scenarios, the vehicle types parameters
for AVs have been reduced. In Table 6, the values of the AVs
parameters adopted have been reported.

)e DP-ES-ES cases have been analyzed with these new
parameters both for θAV� 4.7 (Scenario C) that for
θAV� 2.3 (Scenario D). Results are shown in Tables 7 and 8
for Scenario C and Scenario D, respectively.

In Scenario C, the same general trend observed in
Scenario A (where the same θAV � 4.7 is used) can be
observed (i.e., increasing the AVs proportion has a positive
effect on fixed-point stability, since the bifurcation demand
flow increases reducing the set of values of demand flow for
which the fixed point is not stable). In comparison with
Scenario A, higher values of dBif can be observed in this
Scenario C; thus, reducing the AVs parameters of vehicle
types, a positive effect can be observed on the system.
Similar results are highlighted comparing Scenario D (see
Table 8) with Scenario B, where the same θAV � 2.3 is
adopted.

Bifurcation diagrams, for Scenarios C and D, are re-
ported in Figures 5 and 6.

4. Conclusions

In this paper, deterministic process models for day-to-day
dynamic multivehicle assignment, including fixed-point
models for equilibrium assignment as a special case, have
been analyzed.

Furthermore, results of an application to a toy network
are discussed and a comparison has also been carried out
between moving average and exponential smoothing filters
for modeling user memory and learning. Similar results may
be obtained through bifurcation analysis with respect to
other parameters, such the occupancy factor or the updating
parameters α and β.

Generally, AVs have less impact on congestion than TVs
do, but, even on a very simple network application resulted
in that AVs may not have a positive effect of equilibrium
stability since negative effect of reducing dispersion may be
greater than positive effects on congestion.

To apply the proposed methodological framework to a
real case-study (network and vehicle characteristics), a pa-
rameter calibration against real data is required. However, as
of today, proper data are not available in the literature.

Worthy of further research efforts is the application of
the proposed framework to real-world cases that will become
increasingly important in the near future to evaluate the
impact of new vehicle types, and stability conditions forMA/
ES DP with μ� 2. Moreover, a detailed and effective mod-
eling of the effects of shared vehicles with public access, so-
called robotaxi, is still an open issue.

Data Availability

No real data have been used in the paper. )eoretical
findings are grounded on simulation experiments in a
laboratory network.
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