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*is paper investigates the quasi-synchronization of nonidentical fractional-order memristive neural networks (FMNNs) via
impulsive control. Based on a newly provided fractional-order impulsive systems comparison lemma, the average impulsive
interval definition, and the Laplace transform, some quasi-synchronization conditions are obtained with fractional order 0< α< 1.
In addition, the error convergence rates and error boundary are also obtained. Finally, one simulation example is presented to
show the validity of our results.

1. Introduction

Memristor was predicted as the fourth circuit element de-
scribing the relationship between magnetic flux and voltage
by professor Chua [1] in 1971. *is component was
established successfully by HP Laboratories [2, 3] in 2008.
Memristors are used instead of traditional resistive elements
to simulate brain neuron synapses and build the memristor
neural networks (MNNs) model [4–9] because they have
memory characteristics. Now, it has been widely used in the
field of information processing, associative memory, and
image processing [10–12].

Fractional calculus originated in the 17th century and is a
generalization of integer-order calculus operations to arbitrary
order calculus operations [13]. Scholars introduce fractional
calculus into the study of MNNs and formed fractional-order
memristive neural networks (FMNNs)model [14–16]. FMNNs
can describe the memory properties of neurons more accu-
rately and achievemany results in synchronization and stability
[17–20]. *e global Mittag–Leffler stabilization of a class of
FMNNs with time delays was discussed under a state feedback
control in [17]. Chen and Ding [20] via a sliding mode con-
troller and fractional-order Lyapunov direct method studied
projective synchronization of nonidentical FMNNs.

On the other hand, synchronization means several
systems share a common dynamical process. However,
connection weights of FMNNs changed according to the
state dynamics and the synchronization of derive-response
systems will be destroyed. When the parameter mismatches
are small enough, we can control the synchronization error
in a small region, which is called quasi-synchronization
[21–24]. Recently, the impulsive control method has been
widely used in the quasi-synchronization of chaotic systems.
He et al. used a distributed impulsive control studying the
quasi-synchronization problem of drive-response hetero-
geneous networks in [21] and the number of controlled
nodes was also considered. Tang et al. [24] derived criteria
for quasi-synchronization of nonidentical coupled Lur’e
networks by delayed impulsive comparison principle, where
synchronization errors for different impulsive effects with
different functions were evaluated. *erefore, it is very
meaningful to study the synchronization problem in the case
of parameter mismatch [25–28].

To the best of our knowledge, the existing results about
quasi-synchronization are concentrated on the integer-order
systems, results about fractional-order systems are very few.
Motivated by this, we use an impulsive controller to study
the quasi-synchronization of FMNNs with parameter
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mismatches. *e main innovation points of this paper are as
follows: (1) a generalized fractional-order comparison
lemma is provided in this paper, which plays a central role in
the prove. (2) Our results connected with the fractional-
order α, which more reflects the characteristics of FMNNs.

1.1. Notations. R is the space of real number, N is the space
of nonnegative integers, C is the space of complex number,
Rn denotes a dimensional Euclidean space, and Rm×n is the
set of m × n real matrices. For any matrix B, BT denotes the
transpose of B and I denotes the identity matrix. For any
algebraic operations, matrices are assumed to have com-
patible dimensions. *e notation ‖ · ‖ denotes the matrix 2-
norm or the Euclidean vector norm. Let C([−∞, 0],Rn)

denotes the family of continuous functions from [−∞, 0] to
Rn. λmin(A) and λmax(A) denote the minimum and maxi-
mum eigenvalue of A, respectively. sign(·) is the symbolic
function; co b, c{ } represents the closure of convex hull
generated by real numbers b and c. Define χ(t) as a con-
tinuous function except at some finite number of points tk at
which χ(t+

k ) � χ(tk) and χ(t−
k ) exist; then the set of piecewise

right continuous function χ(t) is defined as
PC(l) � χ|χ: [−τ,∞)⟶ Rl􏽮 􏽯.

2. Preliminaries and System Description

2.1. Caputo Fractional-Order Calculus and Mittag–Leffler
Function. Caputo fractional operator plays an important
role in the fractional systems and has been more practical in
physical than the Riemann–Liouville fractional operation.

*erefore, we use Caputo fractional operator as the main
tool in this paper.

Definition 1 (see [13]). *e fractional integral of order α for
a function f(t) is defined as

0I
α
t f(t) �

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
f(τ)dτ, (1)

where t≥ 0, α> 0, and Γ(α) � 􏽒
+∞
0 e− ttα− 1dt.

Definition 2 (see [13]). *e Caputo fractional derivative of
order α for a function f(t) is defined by

0D
α
t f(t) �

1
Γ(n − α)

􏽚
t

0

f
(n)

(τ)

(t − τ)
α−n+1 dτ, (2)

where n − 1< α< n; n is a positive integer. *e Laplace
transform of the Caputo fractional-order derivative is

L 0D
α
t f(t)( 􏼁 � s

α
L(f(t)) − 􏽘

n−1

k�0
s
α− k− 1

f
(k)

(0), (3)

where α> 0, n � [α] + 1.

Lemma 1. Let Z1(s) and Z2(s) ∈ PC(1) be jumping dis-
continuity at s � sk, s≥ 0, Z1(s+

k ), and Z2(s+
k ) exist,

Z1(sk) � Z1(s−
k ), Z2(sk) � Z2(s−

k ). T he initial value
Z1(s) � Z2(s) � h(0)≥ 0. If there are constants c1, c2 > 0,
0< α< 1, and μ> 0, such that

0D
α
t 0Z1(s)≤ c1Z1(s) + c2, s≠ sk, Z1 s

+
k( 􏼁≤ μZ1 s

−
k( 􏼁, k ∈ N,􏼈 (4)

0D
α
t Z2(s)≥ c1Z2(s) + c2, s≠ sk, Z2 s

+
k( 􏼁 � μZ2 s

−
k( 􏼁, k ∈ N,􏼈 (5)

and Z1(s)≤Z2(s) for s≤ 0, then Z1(s)≤Z2(s) for s≥ 0. Proof . From (4) and (5), we have

Z1(s)≤ h(0)Eα c1s
α

( 􏼁 + 􏽚
s

0
(s − t)

α− 1
× Eα,α c1(s − t)

α
( 􏼁c2dt, (6)

Z2(s)≥ h(0)Eα c1s
α

( 􏼁 + 􏽚
s

0
(s − t)

α− 1
× Eα,α c1(s − t)

α
( 􏼁c2dt. (7)

We first prove
Z1(s)≤Z2(s), 0, t1􏼂 􏼁. (8)

As Z1(s), Z2(s) are continuous functions and
Z1(s)≤Z2(s) for s≤ 0, according to (6) and (7), we have
Z2(s)≥Z1(s), and therefore (8) holds. *en, assume
Z1(s)≤Z2(s) for t ∈ [tk−1, tk), k≤ c, and c ∈ N.*en, we have
Z1(sc)≤ μZ1(s−

c )≤ μZ2(s−
c ) � Z2(sc). In a similar manner to

the proof of (8), we can haveZ1(s)≤Z2(s) for s ∈ [tc, tc+1). By
mathematical induction, it is easy to conclude that
Z1(s)≤Z2(s) for s≥ 0. *is completes the proof. □

Lemma 2 (see [28]). x(t) ∈ Rn is a derivable and continuous
function, for t≥ t0; we have

t0
D

α
t

x
T
(t)Mx(t)􏽨 􏽩≤ 2x

T
(t)Mt0

D
α
t
x(t), α ∈ (0, 1],

(9)

where M ∈ Rn×n is a positive definite matrix.
;e Mittag–Leffler function is defined in the following.

Definition 3 (see [13]). Two-parameter Mittag–Leffler
function is defined as
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Eα,β(t) � 􏽘
∞

k�0

t
k

Γ(kα + β)
, (10)

where α> 0, β> 0, and t ∈ C. When β � 0, we have

Eα(t) � 􏽘
∞

k�0

t
k

Γ(kα + 1)
, (11)

where α> 0, t ∈ C.

Lemma 3 (see [29]). t ∈ R, t> 0, and 0< α< 1. Eα(t) is a
monotone increasing function. For any integer N> 1, and
t≠ 0, |arg(t)|> (π/2), then we have the following asymptotic
expansion:

Eα,β(t)≤
1
α

t
(1− β)/α

e
t(1/α)

− 􏽘
N

p�1

t
− p

Γ(β − αp)
+ O

1
t
N+1􏼠 􏼡. (12)

So, there exists t0 > 0, when t> t0, and we have

Eα(t)≤
1
α

e
t(1/α)

,

Eα,α(t)≤
1
α

t
(1− α)/α

e
t(1/α)

.

(13)

2.2. System Description. Now, we consider the following
FMNNs as a drive system:

0D
α
t xi(t) � −dixi(t) + 􏽘

n

j�1
bij xj(t)􏼐 􏼑fj xj(t)􏼐 􏼑xi(0) � x0i,

(14)

where i, j ∈ N; α is the fractional order; xi(t) represents the
state variable of the ith neuron; di > 0 denotes the self-
feedback connection weight; x0 � (x01, x02, . . . , x0n)T is the
initial value of state vector; fj(·) denote the activation
functions; and bij(xj(t)) are memristive connection weights
satisfy the following conditions:

bij xj(t)􏼐 􏼑 �
b
∗
ij, xj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ℸxj,

b
∗∗
ij , xj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ℸxj,

⎧⎪⎨

⎪⎩
(15)

where the switching jumps ℸxj > 0, b∗ij, and b∗
∗

ij are all
constants.

*e corresponding response system is described as

0D
α
t yi(t) � −diyi(t) + 􏽘

n

j�1

􏽥bij yj(t)􏼐 􏼑fj yj(t)􏼐 􏼑, yi(0) � y0i,
⎧⎪⎨

⎪⎩

(16)

where θi(t) is the impulsive controller, and the memristor-
based connection weights 􏽥bij(yj(t)) satisfy the following
condition:

􏽥bij yj(t)􏼐 􏼑 �

􏽥b
∗
ij, yj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ℸyj,

􏽥b
∗∗
ij , yj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ℸyj,

⎧⎪⎨

⎪⎩
(17)

where i, j ∈ N and switching jumps ℸyj > 0, 􏽥b
∗
ij,

􏽥b
∗∗
ij are

known constants.
For system (14), by applying the theories of set-valued

maps and differential inclusions, we have the following
differential inclusion form:

0D
α
t xi(t) ∈ − dixi(t) + 􏽘

n

j�1
K bij xj(t)􏼐 􏼑􏽨 􏽩fj xj(t)􏼐 􏼑. (18)

Let 􏽢bij � min b∗ij, b∗
∗

ij􏽮 􏽯, �bij � max b∗ij, b∗
∗

ij􏽮 􏽯, and co b∗ij,􏽮

b∗∗ij } � [􏽢bij,
�bij]. *e set-valued maps are defined as

K bij xj(t)􏼐 􏼑􏽨 􏽩 �

b
∗
ij, xj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<ℸxj,

co b
∗
ij, b
∗∗
ij􏽮 􏽯, xj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ℸxj,

b
∗∗
ij , xj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>ℸxj,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

and, besides, there exist measurable functions
ηij(xj(t)) ∈ K[bij(xj(t))] such that

0D
α
t xi(t) � −dixi(t) + 􏽘

n

j�1
ηij xj(t)􏼐 􏼑fj xj(t)􏼐 􏼑. (20)

Similarly, there exist measurable functions 􏽦ηij(yj(t)) �

K[􏽥bij(yj(t))] such that

0D
α
t yi(t) � −diyi(t) + 􏽘

n

j�1
􏽦ηij yj(t)􏼐 􏼑fj yj(t)􏼐 􏼑 + θi(t).

(21)

To ensure the uniqueness and existence of the solution of
system (20) and (21), we make the following assumption.

Assumption 1. *ere exists a positive constant L
�

j such that

fj(x) − fj(y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ L
�

j|x − y|, (22)

for all x, y ∈ R, j ∈ N.

Lemma 4 (see [30]). Let Assumption 1 be satisfied; then the
following inequalities hold:

􏽦ηij yj(t)􏼐 􏼑fj yj(t)􏼐 􏼑 − ηij xj(t)􏼐 􏼑fj xj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ bijL
�

j ej(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Δbij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌L
�

jℸmax,

(23)

where bij � max |b∗ij|, |b∗
∗

ij |􏽮 􏽯,ℸmax � max ℸxj,ℸyj􏽮 􏽯,Δbij

� b∗ij − b∗
∗

ij .

Remark 1. To reduce the conservativeness of our results, the
constraints on activation functions fj( ± ℸxj) � fj

( ± ℸyj) � 0, gj( ± ℸxj) � gj( ± ℸyj) � 0 are removed in
this paper.

Denote e(t) � y(t) − x(t) as the synchronization error
and the impulsive controller is designed as

θi(t) � −aiei(t) + 􏽘
∞

k�1
μk − 1( 􏼁ei(t)δ t − tk( 􏼁, (24)

Discrete Dynamics in Nature and Society 3



where ai are nonnegative constants, i ∈ N; impulsive in-
tensity μk ≠ 0; δ(·) denotes the Dirac impulsive function; and
the time series ζ � t1, t2, . . .􏼈 􏼉 is a strictly increasing se-
quence of impulsive instants which satisfies tk−1 < tk and
limk⟶+∞tk � +∞.

With considering the impulsive controller (24), the
controlled error neural networks could be rewritten as
follows:

0D
α
t ei(t) � − di + ai( 􏼁ei(t) + 􏽘

n

j�1

􏽦ηij yj(t)􏼐 􏼑fj yj(t)􏼐 􏼑 − ηij xj(t)􏼐 􏼑fj xj(t)􏼐 􏼑􏽨 􏽩, t≠ tk,Δei tk( 􏼁 � ei t
+
k( 􏼁 � μkei t

−
k( 􏼁, k ∈ N,

⎧⎪⎨

⎪⎩

(25)

where ei(t) is right-hand continuous at t � tk and the initial
conditions ei(0) � e0i ∈ C([−∞, 0],Rn) for i ∈ N.

2.3. ;e Definition of Quasi-Synchronization and Average
Impulsive Interval. Now, the definitions of quasi-synchroni-
zation and average impulsive interval are given as follows.

Definition 4 (see [24]). If there exists a compact setΘ for any
ei(0) ∈ C([−∞, 0],Rn), with the error e(t) converging to
Θ � ‖e(t)‖≤ ϱ􏼈 􏼉 as t goes to infinity, then system (14) will
achieve quasi-synchronization with error bound ϱ > 0.

Definition 5 (see [26]). Consider the impulsive sequence ζ �

t1, t2, . . .􏼈 􏼉 in the time interval (t, T). ω(t, T) is represented
as the number of impulsive times, if there exist positive
numbers N0 and Ta, such that

T − t

Ta

− N0 ≤ω(t, T)≤
T − t

Ta

+ N0, ∀T≥ t≥ 0, (26)

and then, Ta is greater than the average impulsive interval of
the impulsive sequence ζ.

3. Main Results

In this part, we explore the quasi-synchronization of system
(25) by impulsive controller (24). For two different im-
pulsive intensities −α< μk ≤ α and μk ≠ 0 and μk ≤ − α or
μk > α, we have *eorems 1 and 2.

Theorem 1. When impulsive intensity −α< μk ≤ α and
μk ≠ 0, if there exist diagonal matrices Q> 0, P> 0, scalars
β> 0, and d � diag(d1, d2, . . . , dn), B � (bij)n×n,
L
�

� diag(L1
�

, L2
�

, . . . , Ln

�

), π � NTPN, N � ΔBL
�

􏽥ℸmax,
|ΔB| � (|Δbij|)n×n, 􏽥ℸmax � diag(ℸmax,ℸmax, . . . ,ℸmax), ι �

maxk∈N μ2k􏼈 􏼉, if

(1) − 2Q d − 2Qa + QBL
�

+ L
�

B
T
Q + P

− 1
Q

2
− βQ< 0

(2) Υ �
ln(1/α)

Ta

+ β(1/α) < 0

(27)

are satisfied, then error systems (25) achieve quasi-synchronization

with error bound
����������������������������

(((β(1/α)− 1/α)(ι/α)− N0π)/(λmin(Q)·

􏽱

(−Y)))

at the convergence rate (h/2), where h is the unique solution
of the equation h + (ln(ι/α)/Ta) + β(1/α) � 0.

Proof. Construct the following Lyapunov function:

V(t) � 􏽘
n

i�1
Qi ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (28)

For t ∈ [tk−1, tk)(k � 1, 2, . . .), according to Lemmas 2
and 4, we get
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0D
α
t V(t)≤ 2􏽘

n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Qisign ei(t)( 􏼁0D

α
t Vei(t)

� 2􏽘

n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Qisign ei(t) − di + ai( 􏼁ei(t)􏼈(

+ 􏽘
n

j�1

􏽦ηij yj(t)􏼐 􏼑fj yj(t)􏼐 􏼑􏽨

−ηij xj(t)􏼐 􏼑fj xj(t)􏼐 􏼑􏽩􏽯

≤ − 2􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Qi di + ai( 􏼁 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 2􏽘
n

i�1
􏽘

n

j�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Qi

􏽦ηij yj(t)􏼐 􏼑fj yj(t)􏼐 􏼑 − ηij xj(t)􏼐 􏼑fj xj(t)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ − 2􏽘
n

i�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Qi di + ai( 􏼁 ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2􏽘

n

i�1
􏽘

n

j�1
ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Qi bijL

�

j ej(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Δbij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌L
�

jℸmax􏼠 􏼡

� −2|e(t)|
T
Q(d + a)|e(t)| + 2|e(t)|

T
Q × BL

�

|e(t)| + 2|e(t)|
T
QN

≤ − 2|e(t)|
T
Q(d + a)|e(t)| + 2|e(t)|

T
Q × BL

�

|e(t)| +|e(t)|
T
P

− 1
Q

2
|e(t)| + N

T
PN

� |e(t)|
T

−2Q d − 2Qa + QBL
�

+ L
�

B
T
Q + P

− 1
Q

2
− βQ􏼠 􏼡|e(t)| + β|e(t)|

T
Q|e(t)| + N

T
PN.

(29)

Based on (4) and (5) of *eorem 1, we get

0D
α
t V(t)≤ β􏽘

n

i�1
Qi ei(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ π � βV(t) + π. (30)

For t � tk, k ∈ N, according to (25), it yields

V t
+
k( 􏼁 � 􏽘

N

i�1
e

T
i t

+
k( 􏼁Qiei t

+
k( 􏼁

� μ2kV t
−
k( 􏼁.

(31)

Let Λ(t) be the unique solution of the following delayed
impulsive comparison system for any c> 0:

0D
α
tΛ(t) � βΛ(t) + π + c,Λ t

+
k( 􏼁 � μ2kΛ t

−
k( 􏼁, k � 1, 2, . . . ,Λ(t) � λmax(Q)‖e(0)‖

2
.􏽮 (32)

When t> 0, we have v(t)≤Λ(t) according to Lemma 1.
For t ∈ [0, t1), using the Laplace transform on (32), one

gets

Λ(t) � Eα βt
α

( 􏼁Λ(0) + 􏽚
t

0
(t − s)

α− 1
Eα,α β(t − s)

α
( 􏼁

×(π + c)ds.

(33)

By using Lemma 3, we have

Eα βt
α

( 􏼁≤
1
α

e
β(1/α)t

,

Eα,α β(t − s)
α

( 􏼁≤
β(1/α)− 1

α
(t − s)

1− α
e
β(1/α)(t− s)

.

(34)

*en, we can transform (33) as

Λ(t)≤
1
α

e
β(1/α)tΛ(0) + 􏽚

t

0

β(1/α)− 1

α
e
β(1/α)(t− s)

×(π + c)ds.

(35)
For t ∈ [t1, t2), one obtains from (35) and the second

equation of (32) that

Λ t
+
1( 􏼁≤

ι
α

e
β(1/α)t1Λ(0) + 􏽚

t1

0

ιβ(1/α)− 1

α
e
β(1/α) t1− s( ) ×(π + c)ds,

Λ(t)≤
1
α

e
β(1/α) t− t1( )Λ t

+
1( 􏼁 + 􏽚

t

t1

β(1/α)− 1

α
e
β(1/α)(t− s)

×(π + c)ds

�
ι
α2

e
β(1/α)tΛ(0) +

ι
α2

􏽚
t1

0
β(1/α)− 1

e
β(1/α)(t− s)

×(π + c)ds +
1
α

􏽚
t

t1

β(1/α)− 1
e
β(1/α)(t− s)

×(π + c)ds.

(36)
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For t ∈ [t2, t3),

Λ t
+
2( 􏼁≤

ι2

α2
e
β(1/α)t2Λ(0) +

ι2

α2
􏽚

t1

0
β(1/α)− 1

e
β(1/α) t2− s( ) ×(π + c)ds +

ι
α

􏽚
t2

t1

β(1/α)− 1
e
β(1/α) t2− s( ) ×(π + c)ds,

Λ(t)≤
1
α

e
β(1/α) t− t2( )Λ t

+
2( 􏼁 + 􏽚

t

t2

β(1/α)− 1

α
e
β(1/α)(t− s)

×(π + c)ds

�
ι2

α3
e
β(1/α)tΛ(0) +

ι2

α3
􏽚

t1

0
β(1/α)− 1

e
β(1/α)(t− s)

×(π + c)ds

+
ι
α2

􏽚
t2

t1

β(1/α)− 1
e
β(1/α)(t− s)

×(π + c)ds

+
1
α

􏽚
t

t2

β(1/α)− 1
e
β(1/α)(t− s)

×(π + c)ds.

(37)

By induction, we can derive that, for t ∈ [tk, tk+1),

Λ(t)≤ 􏽙
0≤tk≤t

ι
α

e
β(1/α)t1

α
Λ(0) + 􏽚

t

0
􏽙

s≤tk≤t

ι
α

e
β(1/α)(t− s)

×
β(1/α)− 1

α
(π + c)ds.

(38)

According to Definition 5, we have

e
β(1/α)(t− s)

􏽙
s≤tk≤t

ι
α
≤ e

β(1/α)(t− s) ι
α

􏼒 􏼓
t− s/Ta( )− N0( )

≤
ι
α

􏼒 􏼓
− N0

e
ln(1/α)/Ta( )+β(1/α)( )(t− s)

.

(39)

Substituting (39) into (38) yields

Λ(t)≤
ι
α

􏼒 􏼓
− N0

λmax(Q) 􏽘
N

i�1
ei(0)

����
����
21
α

e
ln(ι/α)/Ta( )+β(1/α)( )t

+ 􏽚
t

0

ι
α

􏼒 􏼓
− N0

e
ln(ι/α)/Ta( )+β(1/α)( )(t− s)β

(1/α)− 1

α
×(π + c)ds

≤Ωe
ln(ι/α)/Ta( )+β(1/α)( )t

+ 􏽚
t

0

β(1/α)− 1

α
e

ln(ι/α)/Ta( )+β(1/α)( )(t− s)
×

ι
α

􏼒 􏼓
− N0

(π + c)􏼢 􏼣ds,

(40)

where Ω � (ι/α)− N0(1/α)λmax(Q)sup‖e(0)‖2 > 0. Define
Δ(h) � h + ((ln(ι/α)/Ta) + β(1/α)). Note that Δ(h) is a
continuous function, Δ(0) � ((ln(ι/α)/Ta) + β(1/α))< 0, and
_Δ(h) � 1> 0. Above all, Δ(h) � 0 has a unique solution for
h> 0. Since c> 0, h> 0, 0< ι< 1, we obtain

Λ(t)≤
ι
α

􏼒 􏼓
− N0

λmax(Q)‖e(0)‖
2

<Ωe
− ht

+ β(1/α)− 1/α􏼐 􏼑(ι/α)
− N0(π + c)􏼐 􏼑/􏼐

− ln(ι/α)/Ta( 􏼁 + β(1/α)
􏼐 􏼑􏼐 􏼑􏼑,

(41)

for t≤ 0, which implies that (41) holds for all t> 0. Assume
that if (41) does not hold for all t> 0 , then there at least exists
a time instant t∗ > 0,

Λ t
∗

( 􏼁≥Ωe
− ht∗

+
β(1/α)− 1/α􏼐 􏼑(ι/α)

− N0(π + c)

− ln(ι/α)/Ta( 􏼁 + β(1/α)
􏼐 􏼑

, (42)

but, for t< t∗, we have

Λ(t)<Ωe
− ht

+
β(1/α)− 1/α􏼐 􏼑(ι/α)

− N0(π + c)

− ln(ι/α)/Ta( 􏼁 + β(1/α)
􏼐 􏼑

. (43)
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Denote (ln(ι/α)/Ta) + β(1/α) � −r; combining (40)and
(43), we have

Λ t
∗

( 􏼁≤Ωe
ln(ι/α)/Ta( )+β(1/α)( )t∗

+ 􏽚
t∗

0

β(1/α)− 1

α
e

ln(ι/α)/Ta( )+β(1/α)( ) t∗− s( )
×

ι
α

􏼒 􏼓
− N0

(π + c)ds

< e
− rt∗ Ω +

β(1/α)− 1/α􏼐 􏼑(ι/α)
− N0(π + c)

r
+ 􏽚

t∗

0

β(1/α)− 1

α
× e

rs ι
α

􏼒 􏼓
− N0

(π + c)ds
⎧⎨

⎩

⎫⎬

⎭

≤ e
− rt∗ Ω +

β(1/α)− 1/α􏼐 􏼑(ι/α)
− N0(π + c)

r
+

e
rt∗

− 1􏼐 􏼑 β(1/α)− 1/α􏼐 􏼑(ι/α)
− N0(π + c)

r

⎧⎨

⎩

⎫⎬

⎭

� Ωe
− ht∗

+
β(1/α)− 1/α􏼐 􏼑(ι/α)

− N0(π + c)

r
.

(44)

Obviously, inequality (44) contradicts (42), which im-
plies (41) holds for all t> 0. Letting c⟶ 0, we have

λmin(Q)‖e(t)‖
2 ≤V(t)≤Λ(t)<Ωe

− ht

+
β(1/α)− 1/α􏼐 􏼑(ι/α)

− N0π

− ln(ι/α)/Ta( 􏼁 + β(1/α)
􏼐 􏼑

.

(45)

*us, according to (45), the error converges into

Θ � e(t) ∈ Rn
|‖e(t)‖ ≤

������������������

β(1/α)− 1/α􏼐 􏼑(ι/α)
− N0π

λmin(Q) · (−Y)

􏽶
􏽴⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(46)

when t⟶ +∞. *e proof for condition 1 is completed.
When impulsive intensity μk ≤ − α or μk > α, we have

*eorem 2. □

Theorem 2. When impulsive intensity μk ≤ − α or μk > α, if
there exist diagonal matrices Q> 0, P> 0, scalars β> 0, and
d � diag(d1, d2, . . . , dn), B � (bij)n×n, �L� diag(�L1, �L2,

. . . , �Ln), π � NTPN, N � ΔB�L 􏽥ℸmax, |ΔB| � (|Δbij|)n×n,
􏽥ℸmax � diag(ℸmax,ℸmax, . . . ,ℸmax), ι � maxk∈N μ2k􏼈 􏼉, if

(1) − 2Q d − 2Qa + QB�L + �LB
T
Q + P

− 1
Q

2
− βQ< 0

(2) Υ �
ln(ι/α)

Ta

+ β(1/α)
− β(1/α)+1 < 0

(47)

are satisfied, then error systems (25) achieve quasi-synchroniza-

tion with error bound
�������������������������

((β(1/α)− 1/α)(ι/α)N0π/λmin(Q)·

􏽱

(−Y))

at the convergence rate (h′/2), where h′ is the unique so-
lution of the transcendental equation
h′ + (ln(ι/α)/Ta) + β(1/α) − β(1/α)+1 � 0.

Proof . *e same as the proof in *eorem 1, we obtain

e
β(1/α)(t− s)

􏽙
s≤ tk ≤ t

ι
α
≤ e

β(1/α)(t− s) ι
α

􏼒 􏼓
t− s/Ta( )+N0( )

≤
ι
α

􏼒 􏼓
N0

e
ln(ι/α)/Ta( )+β(1/α)( )(t− s)

.

(48)

Substituting (48) into (40) yields

Λ(t)≤
ι
α

􏼒 􏼓
N0
λmax(Q) 􏽘

N

i�1
ei(0)

����
����
21
α

e
ln(ι/α)/Ta( )+β(1/α)( )t

+ 􏽚
t

0

ι
α

􏼒 􏼓
N0

e
ln(ι/α)/Ta( )+β(1/α)( )( )(t− s)β

(1/α)− 1

α
×(π + c)ds

≤Ωe
ln(ι/α)/Ta( )+β(1/α)( )( )t

+ 􏽚
t

0

β(1/α)− 1

α
e

ln(ι/α)/Ta( )+β(1/α)( )( )(t− s)
×

ι
α

􏼒 􏼓
N0

(π + c)ds,

(49)
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where Ω � (ι/α)N0(1/α)λmax(Q)sup‖e(0)‖2 > 0. Define
Δ(h′) � h′ + (ln(ι/α)/Ta) + β(1/α) − β(1/α)+1. Note that
Δ(0) � (ln(ι/α)/Ta) + β(1/α) − β(1/α)+1 < 0 and _Δ(h′) � 1> 0.
So, function Δ(h′) � 0 has a unique solution h′ > 0.

Similar to (41), we can prove the following inequality is
true for all t> 0:

Λ(t)<Ωe
− h′t

+
β(1/α)− 1/α􏼐 􏼑(ι/α)

N0(π + c)

− ln(ι/α)/Ta( 􏼁 + β(1/α)
􏼐 􏼑 + β(1/α)+1. (50)

Letting c⟶ 0, we have

λmin(Q)‖e(t)‖
2 ≤V(e(t)) ≤Λ(t)<Ωe

− h′t

+
β(1/α)− 1/α􏼐 􏼑(ι/α)

N0π

− ln(ι/α)/Ta( 􏼁 + β(1/α)
􏼐 􏼑 + β(1/α)+1.

(51)

*en, according to (51), the error converges into

Θ � e(t) ∈ Rn
|‖e(t)‖ ≤

�����������������

β(1/α)− 1/α􏼐 􏼑(ι/α)
N0π

λmin(Q) · (−Υ)

􏽶
􏽴

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (52)

with the convergence rate (h′/2). So far, all proofs are
over. □

Remark 2. In impulsive dynamical networks or impulsive
control mechanism, the impulsive effect μk is essential to the
final results of the whole networks. Some previous works
have discussed the impulsive effects in the synchronization
of complex dynamical networks. Specifically, the impulsive
effect μk is always assumed to satisfy (−1, 0) or (−2, 0).
However, when a fractional-order system exchanges in-
formation with another system, the impulsive effect could
either play positive roles or negative roles. In this paper, the
impulsive gain μk is talked over under the value ranges: (1)
−α< μk ≤ α and μk ≠ 0, (2) μk ≤ − α or μk > α, where μk only
have a relation with variable α. *e range of gain μk values
was extended.

Remark 3. In this paper, the controller (24) contains the
impulsive control part and the feedback control part. For the
case −α< μk ≤ α and μk ≠ 0, the impulsive effect μk plays a
positive role in the quasi-synchronization. In this case, the
feedback control gain ai could be set as zero in order to save
control costs and manufacture. However, for the case μk ≤ − α
or μk > α, the impulsive effect μk could hinder the synchro-
nization of neural networks or even cause the instability of the
coupled neural networks. In this case, the feedback control part
could control effectively reduce the adverse effects brought by
the disadvantageous impulse. In addition, if μk � −1, it implies
ei(t+

k ) � −ei(t−
k ), which is impossible for impulsive control. If

μk � 0, ei(t+
k ) � ei(tk) � 0, which means that there is no

impulsive control effect.

4. Illustrative Examples

In this part, one example is given to show the effectiveness of
our methods.

Example 1. Consider 2-dimension drive system (14) with
α � 0.9, fj(s) � tanh(s), j ∈ N. Choose d1 � 3.4, d2 � 1.5,

ℸxj � 1L
�

j � 1,

b11 x1( 􏼁 �
1.3, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

1.6, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

b12 x2( 􏼁 �
−2, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

−2.45, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

b21 x1( 􏼁 �
−0.3, x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

−0.6, x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

⎧⎨

⎩

b22 x2( 􏼁 �
2.3, x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

2.6, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1.

⎧⎨

⎩

(53)

*e switching jumps andmemristive connection weights
of the response system (16) are the same as system (14). *e
initial conditions of the drive-response system are
x0i � (1.5, 1)T, y0i � (0.5, −0.5)T. *e average impulsive
interval is less than Ta � 0.02 and the positive constant
N0 � 1.

Case 1: when −0.9< μk ≤ 0.9 and μk ≠ 0, for *eorem 1,
considering disadvantageous impulsive effects here, set
ai � 8(i ∈ N), μk � −0.7, so we get ι � μ2k � 0.49.
Denoting β � 7, then we have Υ � (ln(ι/α)

/Ta) + β(1/α) � −21.7099< 0. By solving conditions (4)
and (5) in *eorem 1, we drive P � diag 15.0648,{

14.9541}, Q � diag 22.5648, 21.4627{ }, N � ΔBL
�

􏽥ℸmax �

(0.75, 0.6)T, π � ‖NTPN‖ � 13.8574 and the corre-
sponding error bound could be calculated as

|‖e(t)‖ ≤

������������������

β(1/α)− 1/α􏼐 􏼑(ι/α)
− N0π

λmin(Q) · (−Υ)

􏽶
􏽴

� 0.2677. (54)

In Figure 1, we plot the chaotic attractors of the
drive-response system with initial conditions. In
Figure 2, one can find that the error is under the
bound 0.1752, which is less than the error bound
‖e(t)‖ derived from the theorem. It implies the
systems achieve quasi-synchronization with a given
error bound.
Case 2: when μk > 0.9, for *eorem 2, impulsive effect
μk � 1.3, so ι � 1.12 � 1.69; we set the control gain
ai � 0, i ∈ N. As a similar process in Example 1, we have
Υ � (ln(ι/α)/Ta) + β(1/α) − β(1/α)+1 � −28.6372< 0 and

|‖e(t)‖ ≤

�����������������

β(1/α)− 1/α􏼐 􏼑(ι/α)
N0π

λmin(Q) · (−Y)

􏽶
􏽴

� 0.2356. (55)
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*e chaotic attractors of the drive-response system with
initial conditions are shown in Figure 3. In Figure 4, one can
find that the error is under the bound 0.1647, which is less
than the error bound ‖e(t)‖ derived from the theorem. It can
be obviously seen that the drive-response systems achieved
quasi-synchronization.

5. Conclusion

In this paper, the problem of quasi-synchronization of
delayed FMNNs is investigated. By designing an effective
impulsive controller and a new fractional comparison
lemma, some effective criteria for quasi-synchronization
(0< α< 1) are established. In the future, we will consider the
quasi-synchronization problem of delayed FMNNs.
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