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In the early stages of a major public emergency, decision-makers were troubled by the timely distribution of a large number of
donations. In order to distribute caring materials reasonably and efficiently, considering the transportation cost and time delay
cost, this paper takes the humanitarian logistics management as an example to study the scheduling problem. Based on the actual
situation of insufficient supply during the humanitarian logistics management, this paper using optimization theory establishes a
two-stage stochastic chance constrained (TS-SCC) model. In addition, due to the randomness of emergency occurrence and
uncertainty of demand, the TS-SCC model is further transformed into the two-stage robust counterpart (TS-RC) model. At the
same time, the validity of the model and the efficiency of the algorithm are verified by simulations.*e result shows that the model
and algorithm constructed are capable to obtain the distribution scheme of caring materials even in worst case. In the TS-BRC
(with box set) model, the logistics service level increased from 89.83% to 93.21%, while in the TS-BPRC (with mixed box and
polyhedron set) model, it increases from 90.32% to 94.96%. Besides, the model built in this paper can provide a more reasonable
dispatching plan according to the actual situation of caring material supply.

1. Introduction

In recent decades, the global ecological environment has
deteriorated dramatically. *e frequent occurrence of major
public emergencies not only poses a great threat to people’s
life and health but also hinders the national economic op-
eration. In disaster area, not only casualties and economic
losses will occur but also local transportation and com-
munication will be paralyzed. Emergencies generally cover a
wide range and have a great impact on current society and
long-term development. Muhammad et al. found that
dengue fever causes about 100million infections per year [1].
Due to the randomness of emergencies, management de-
partments cannot cope with excessive relief work in time in
actual relief work, which leads to further aggravation of the
severity of emergencies [2, 3]. It is necessary to study hu-
manitarian logistics. Humanitarian logistics is an activity for
emergency rescue in response to natural disasters, pro-
duction accidents, and other emergencies [4]. When the
emergencies occur, humanitarian logistics can quickly make

judgments and deliver materials to disaster areas and per-
sonnel. In the process of crisis resolution, reasonable
planning of humanitarian logistics plays an important role.
Humanitarian logistics can effectively respond to emer-
gencies and not only improve logistics efficiency but also
accelerate the rescue speed, which helps to reduce the ad-
verse impact of emergencies.

At present, many scholars focus their research on hu-
manitarian logistics mainly on deterministic conditions, but
do not discuss uncertainties. *e research on humanitarian
logistics can be divided into two aspects: location selection
and distribution. In terms of logistics facility location,
Amideo et al. discussed the challenges of optimizing models
in the context of deterministic shelter location and evacu-
ation routes [5]. Yi and Özdamar established the deter-
ministic humanitarian logistics location model to minimize
material relief and personnel treatment delays [6]. Widener
et al. discussed material issues and established a layered
location model for disaster relief materials [7]. Wohlgemuth
et al. established a dynamic vehicle routing optimization
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model for deterministic demand with minimum time delay
[8]. Chou et al. developed a dynamic optimal path model to
study resource allocation and vehicle routing problems [9].
*ese studies provide a good reference for emergency
management, but can be further incorporated into uncertain
optimization studies. In terms of emergency material allo-
cation, some scholars have studied its uncertainty and ir-
regularity [10, 11]. Okumura studied the distribution and
delivery of local, municipal and national warehouses for
emergency material management [12]. *e above study
discussed the distribution, management, and system of
emergency materials, but neglected the uncertainty of
emergency demand and distribution of emergency re-
sources. *ese research studies have explored the system
model of humanitarian logistics location and material dis-
tribution, respectively, and provided effective suggestions
for emergency management, but the disadvantage is that
they neglect the uncertainty of the problem itself and data on
the premise of defining conditions. *erefore, these studies
have shortcomings in practical application and cannot cope
with the situation of stochastic.

In traditional emergency dispatch management research,
many scholars focus on single-stage uncertainty research, while
few experts focus on two-stage stochastic programming. *e
two-stage stochastic optimization model is widely used in fi-
nancial investment, supply chain management, emergency
material dispatching, industrial engineering, and smart grid.
Some scholars have studied the problem of random or un-
certain real scenes [13, 14]. Yasari et al. established a two-stage
stochastic chance constrained model for the two-stage opti-
mization problem and solved it by heuristic algorithm [15].
Dillon et al. studied the optimization of blood supply chain
network using a two-stage stochastic optimization model [16].
Christoph et al. studied two-stage optimization of supply chain
network with delayed payment strategy under uncertain de-
mand [17]. Chen et al. studied the problem of the size of a
dedicated service station with opportunity constraints using
two-stage distributed robust optimization models [18, 19]. All
of the above are recent studies on the two-stage optimization
model. Research involves how to model, how to solve the
model, and even how to upgrade the algorithm. *ese phe-
nomena show that the two-stage optimization model has been
recognized by the majority of scholars and gradually widely
used in practice. Solving a two-stage stochastic optimization
model is usually complicated because it requires calculating the
expected value of a multivariable. Scenario-based stochastic
optimization is a commonmethod to solve two-stage stochastic
optimization problems. Maggioni et al. [20] and Venkitasu-
bramony and Adil [21] considered using the discrete scenario
optimization model to study supply chain optimization.
However, the solution of the scenario-based stochastic opti-
mizationmodel depends heavily on the defined scenario and its
probability of occurrence [22], and the solution of such amodel
is prone to fall into dimension disaster problem as the number
of scenarios increase. Sainathuni et al. studied inventory
transportation to determine the optimal distribution plan from
the supplier to the customer to minimize total costs [23]. Rong
et al. established a mixed integer linear programming model
[24]. Rezaee et al. considered the design of a green supply chain

network with stochastic demand and carbon price [25]. *e
above optimization models usually assume that the probability
distribution is known beforehand, which is inconsistent with
the actual situation. In addition, these models are not robust
enough for small disturbances in input parameters, i.e., small
changes in actual demand will affect the results.

In recent years, scholars have introduced robust optimi-
zation methods to various problems of supply chain man-
agement to improve the robustness of the model. In addition,
optimization theories including robust optimization are found
to involve in practical applications, such as the large-scale
group decision-making [26] and multicriteria bilevel games
[27]. Gülpınar et al. proposed a robust optimization model for
equipment location under the worst-case scenario by assuming
that the stochastic demand belongs to an uncertain set [28].
Zokaee et al. studied the optimization of a robust supply chain
network by assuming that demand, inventory capacity, and
some cost parameters belong to box sets [29].*e above robust
optimization models consider that uncertain parameters be-
long to a certain set, and the decision-making problem with
minimum total cost in the worst case is studied. In practice, the
decision results of stochastic programmingmodel are often too
conservative since the probability of stochastic programming
model does not usually occur. In order to reduce the chance
stochastic problems, the theoretical methods of the robust
optimization model have been extensively studied.

In the research of humanitarian logistics management, as
far as we know, few scholars have studied it through the two-
stage model. *e innovation and contribution of this paper is
to study how to construct the TS-RC model to discuss un-
certainty.*e first-stage decision is the selection of temporary
warehouse locations and the quantity of basic inventory, and
the second-stage decision is the transportation from the
warehouse to the point of demand. First, in order to improve
the satisfaction of logistics transportation service, a TS-SCC
model with opportunity constraints is considered, in which
the uncertain set is composed of the first and second moment
of stochastic demand. Unlike the classical TS-SCC facility
location problem, this model does not assume a preknown
probability distribution of stochastic demand. Compared with
the stochastic programming model, this model does not
assume that uncertain demand belongs to a predetermined
set. Secondly, by using the Karush–Kuhn–Tucher (KKT)
condition, the TS-SCCmodel is equivalently transformed into
a TS-RC model. In addition, according to the universality of
the model, we construct three RC models with different
undefined sets. In order to effectively solve the problem of
robustness, its convergence is proved by writing an algorithm.
Finally, in a numerical example, the emergency dispatching
problem is studied. Using historical sales data, the first and
second moments of stochastic demand are estimated by data-
driven method. Seven different probability distributions are
randomly generated for out-of-sample data. *e test results
show that the model in this paper has better stability than the
nonrobust optimization model and the classical stochastic
programming model.

*e rest of this paper is set up as follows. Section 2
describes two stages of humanitarian logistics management.
Section 3 transforms the TS-SCCmodel into TS-RC models.

2 Discrete Dynamics in Nature and Society



Section 4 verifies the solution algorithm of the model by
simulation. *e performance of the models is analyzed and
compared in detail in Section 5. Section 6 summarizes the
conclusions of this study and future research directions.

2. Problem Description and
Model Establishment

2.1. Problem Description. After disaster incidents, in addition
to rescue work, how to protect people’s livelihood is also a very
important issue. In order to reduce the loss and ensure the
safety of life, strict closure measures are generally adopted to
minimize the contact behavior of the people. In order to protect
people’s livelihood, caring materials from all over the country
have been flowing into the core area of the incident. How to
effectively distribute these caring materials has become an
urgent problem to be solved. On the premise of comprehensive
analysis of the real scene, this paper constructs a TS-SCC
model. *e specific model framework is shown in Figure 1.

In an uncertain demand context, the first-stage decision
is to choose a warehouse. In the second stage, the base stock
of the selected warehouse and the distribution ratio of goods
from the warehouse to the point of demand are determined.
*e goal of optimization problems is to minimize the total
cost under the constraints of meeting the demand. Problems
with adequate supply: to combat the outbreak, it does not
need the material production manufacturer to return to
work, expand their capacity, and strengthen the production
force of materials loving for plague prevention. At the same
time, large volumes of loving material will also need to be
called in from other regions to combat the outbreak. Against
this background, the rational distribution of charity dona-
tions plays an important role in the fight against outbreaks.
*e problem considered in this paper concerns a material
scheduling problem from the distribution center to the site
of demand. As far as possible, fairness in the distribution of
the charity donations is guaranteed, minimizing the delay
loss caused by the inadequate supply of materials and the
costs incurred during storage and distribution.

2.2. Basic Assumptions and Symbols. In order to introduce
the TS-SCC model and its application to the site selection
path planning problem, the related parameters and signs of
decision variables are summarized in Table 1.

Considering the practical problem that the material supply
under the influence of the new corona pneumonia outbreak is
not sufficient, the following assumptions are proposed:

(1) Because materials are uniformly distributed, the
manufacturer of materials delivers the manufactured
materials to the logistics consolidation center, which
is then uniformly distributed by the consolidation
center

(2) *e paths from the consolidation center to the
distribution center and from the distribution center
to the fixed hospital are interconnected, and the
shortest path is chosen

(3) Since the supplies are dispensed on day by day, the
supplies are dispensed in one stage of the day (24 h)

(4) Both the distribution centers are capable of storing
supplies that arrive the same day

(5) *e individual site-directed hospitals had known
requirements for a variety of supplies

2.3. Two-Stage Stochastic Chance Constrained Model.
Based on the above basic assumptions, a TS-SCC model is
constructed. *e model aims to minimize the total cost on
the basis of maximizing customer demand. *e specific
model is shown as follows. Based on a real-world scenario,
the first stage of a TS-SCCmodel is designed to minimize the
total cost. Random variables are defined in probability space
(Ξ,F, P) and assume that the first and second moments are
known precisely in advance, that is, EP[ε] � μ0, EP[(ε−

μ0)(ε − μ0)
T] � Σ0 ≻ 0. Assume Ξ � R|I|, and the closed

convex set P contains all probability distribution functions
with second-order moments as P, which are defined as:
P ≔ P: P ε ∈ Ξ{ } � 1, EP[ε] � μ0  and P ≔ P: EP[(ε−

μ0)(ε − μ0)
T] � Σ0}.

min 
j∈J

xjcf + maxE C2
Dj: c  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (1)

s.t. xj ∈ 0, 1{ }, ∀i ∈ I. (2)

*e first of the objective functions (1) is fixed cost, which
is the investment cost of infrastructure, including office
equipment consumption cost and basic hydropower cost.
Fixed cost is not related to vehicle routing.*e second cost is
affected by the uncertain parameters of the second stage.
Constraint (2) represents a 0-1 variable and participates in
the corresponding logistics operation only if and only if
xj � 1. In the second phase of the TS-SCCmodel, demand is
maximized with uncertain parameters:
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j∈J

yij ≤ 1, ∀j ∈ J,
(5)

yij ≤xj, ∀i ∈ I,∀j ∈ J, (6)


j∈J

yij
Dj ≤H

Max
j , ∀i ∈ I,

(7)

⌈yij⌉
dij

�vj

⎛⎝ ⎞⎠≤T
Max
ij , ∀j ∈ J, (8)

P ε|ε ∉ Ξj ≤ αj,

Dj � D
0
j + εD0

j , ∀j ∈ J,
(9)

0≤yij, xi ∈ 0, 1{ }, ∀i ∈ I,∀j ∈ J. (10)

*e total cost when the objective function maximizes
demand. Specific constraints: constraint (4) includes vehicle
transportation costs, time costs, and handling costs; con-
straint (5) means that the total loading and unloading ca-
pacity cannot be higher than the total demand of the
product, and there is no other outflow part; constraint (6)
indicates that only the selected initial node will participate in
the corresponding logistics operation; constraint (7) rep-
resents maximum capacity; constraint (8) represents max-
imum time constraints; constraint (9) represents random

probability constraints, ε is a random influence factor,
αj ∈ (0, 1) is a confidence level parameter, and P ·{ } repre-
sents the probability distribution function of random de-
mand. Constraint (10) is a dependent variable. In solving
problems (1)–(9), the following difficulties are encountered:
on the one hand, in practical applications, the probability
distribution of random parameters is unknown. Even if it is
assumed to obey a known probability distribution and if ε is
a continuous random variable, the objective function con-
tains expectations and involves the calculation of multiple

Stage 1: 
before the actions

Stage 2: 
emergency action

Known: Stage 1 and 2; constraint
scenarios
Decisions: emergency path
planning

Known: candidate location
Decisions: the site’s location and
initial inventory

Recourse actions

Figure 1: Schematic of the TS-SCC model.

Table 1: Description of relevant parameters.

Symbol Description
Dj Demand
cf Fixed operating cost
HMax

j Maximum inventory
hj Maximum load capacity
cv Fuel consumption cost per vehicle transit
Ec Unit oil consumption of the vehicle
ct Unit delay penalty cost
dij Origin and distance between initial requirement site
vi Vehicle average speed
tj Baseline arrival time
TMax

j Maximum arrival time
xi xj ∈ 0, 1{ }, if xj � 0, select site j; otherwise, unselected
yij yij ∈ [0, 1], continuous variable, if yij ≠ 0, path yij is selected
I *e set of i

J *e set of j
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integrals, which is extremely difficult to calculate. On the other
hand, in the second-stage optimization problem, there are
multiple opportunity constraints because the probability dis-
tribution of random demand is unknown, the opportunity
constraint is nonconvex, which is also very difficult to compute.

3. Establishment of TS-RC Model

Due to the diversity and irregularity of the real world, the
TS-SCC model is not feasible. Specifically, the external
market environment is full of uncertainties, and it is often
difficult to obtain the law of key parameters development,
especially the probability distribution of demand parameters
[30]. *e scope of application of an idealized random
probability model is very limited. *erefore, we introduce
the concept of robust optimization. Robust models provide
an effective measure of uncertainty. Robust optimization
studies are more applicable and stable than others. In this
section, the above deterministic TS-SCC models trans-
formed into a robust counterpart model by applying robust
optimization theory. In robust models, the uncertain pa-
rameters change within an uncertain set, so that the
probability distribution independent of the model can also
be used to study inventory routing problems. Based on the
random model, the initial node demand is defined as the
random demand parameter Dj � D0

j + Dj, where D0
j is the

nominal demand, the fluctuation of demand is Dj � εD0
j ,

and the disturbance proportion is ε [31]. On this basis, three
two-stage robust counterpart models are established.

3.1. TS-BRC Model. In the two-stage robust counterpart
model for box sets (TS-BRC model), the uncertain demand is
Dj and the uncertain set is the box set [32]. Based on the robust
optimization theory, the TS-SCC models are further trans-
formed into a TS-BRC model. *e domain of the uncertainty
parameter is UB � ε{ }: ‖ε‖∞ ≤Ψj} � ε{ }: |εj|≤Ψj , where
Ψj is the uncertainty level parameter (i.e., the security pa-
rameter) andΨj indicates atmost one parameter deviates from
the nominal value.

Theorem 1. Under the condition of uncertainty, when the
uncertain parameter is not 0, the key constraints in the TS-
BRC model min+ j∈Jxjcf + maxE[C2(

Dj: c)]} is equiv-
alent to them in the TS-SCC model
infZB: j∈Jxjcf + supUB

E[C2( Dj: c)]≤ZB} . When the
uncertain parameter is 0, the TS-BRC model degenerates into
a two-stage linear optimization model.

*e first stage of the TS-BRC model is (11)–(13), which
aims to minimize the total cost under uncertain conditions:

infZB, (11)

s.t. 
j∈J

xjcf + sup
UB

E C2
Dj: c  ≤ZB, (12)

xj ∈ 0, 1{ }, ∀i ∈ I. (13)

*e second stage of the TS-BRC model is (14)–(21),
which aims to minimize the initial distribution cost while
maximizing the satisfaction of demand:

infC2
Dj: c, (14)

s.t. C D
0
j  + sup
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Ψj c
2
v 
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− t
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j∈J

xjc
2
hyij + 

i∈I

j∈J

c
2
vyijdij

hj

⎛⎝ ⎞⎠≤C D
0
j , (16)


i∈I

yij ≤ 1, ∀j ∈ J, (17)

sup 
j∈J

yijD
0
j + Ψj
′

j∈J
yijD̂j

⎛⎝ ⎞⎠≤H
Max
j , ∀i ∈ I, (18)

⌈yij⌉
dij

�vj

⎛⎝ ⎞⎠≤T
Max
ij , ∀j ∈ J, (19)

P ε|ε ∉ UB ≤ αj, ∀j ∈ J, (20)

0≤yij ≤xi, xi ∈ 0, 1{ },∀i ∈ I,∀j ∈ J. (21)
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Proof. *e constraints of the uncertain linear programming
(LP) in question are “hard,” and the decision-maker cannot
tolerate violations of constraints when the data are in U.
General linear programming (LP) problem is
maxCTX|AX≤B, L≤X≤U . Under uncertain conditions,
the uncertain LP problem can be expressed as
minUB

CTX + D: AX≤B  . Among them, the cost func-
tion is CTX + D, the basic constraint is AX≤B, and the
support set is UB. Consider the matrix A, assume that el-
ement aij in A is uncertain, and then define that
aij � aij + aijξij, where aij is the really value, aij is nominal
value, while aij is fluctuation and ξij is factor (ξ ∈ UB). So,
they can be replaced equivalently. *en, uncertain sets and
their corresponding robust equivalences are as follows:
jaijxj + maxξ∈Ujaijxjξij ≤B. And, it is equivalent to J

aijX + ΨJaij|X|≤B. Set P∞ � [JL×L;O1×L], +∞ � [OL×1;

Ψ],K∞ � [θL×1; t]: ‖θ‖∞ � t , where L is the number of
uncertain parameters. *erefore, the inner layer maximi-
zation in it can be rephrased as maxξ∈UB jaijXξij:

P∞ξ + +∞ ∈ K∞Ψ}. Define the dual variable as wi and λi,
according to dual cone theory K∗∞ � [θL×1; t]: ‖θ‖l ≤ t .
*en, we can get minw,λ Ψλi: wij � aijX, ∀j, J|wij|≤ λi} ,
and minw,λ ΨJ|wij|: wij ≤ aijX, ∀j} is equivalent. *us, it
can be reformed as in the second stage ΨJaijX, and
infZB: j∈Jxjcf + supUB

E[C2(
Dj: c)]≤ZB. So, *eorem 1

was proved. □

3.2. TS-ERC Model. In the TS-RC model for ellipsoid sets
(TS-ERC model), when the uncertain parameter is defined
by l2 norm and made it float in the range of ellipsoid set,

UE � ς ∈ R|I|
: ‖ε‖2 ≤Ωj � ε

������


J

εj




2



, ε ∈ R|I|×|I|
,Ωj ∈ R

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(22)

In this model,R is a closed convex set.Ωj is an adjustable
safety parameter and the ball diameter of the uncertain set
[33]. *e matrix ε � Σ1/2 can be obtained and Σ is the co-
variance matrix。

Theorem 2. Under the condition of uncertainty, when the
uncertain parameter is not 0, the key constraints in the TS-
ERC model min+ j∈Jxjcf + maxE[C2(

Dj: c)]} is equiv-
alent to them in the TS-SCC model
infZE: j∈Jxjcf + supUB

E[C2(
Dj: c)]≤ZE} . When the

uncertain parameter is 0, the TS-ERC model degenerates into
a two-stage linear optimization model.

*e first stage of the TS-ERC model is (23)–(25), which
aim to minimize the total cost under uncertain conditions:

infZE, (23)

s.t. 
j∈J

xjcf + sup
UE

E C2
Dj: c

2
m  ≤ZE, (24)

xj ∈ 0, 1{ }, ∀j ∈ J. (25)

*e second stage of the TS-ERC model is (26)–(35),
which aims to minimize the initial distribution cost based on
maximizing satisfaction.

infC2
Dj: c , (26)

s.t. C2 D
0
j  +ΩjΥj + sup

UE

E C3
Dk: c

3
n  ≤C2, (27)
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j∈J
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2
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− t
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xjc
2
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0
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i∈I

j∈J
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2
vyijD

0
jdij

hj

⎛⎝ ⎞⎠≤C D
0
j , (28)

Υj ≥
�������


j∈J

D
2
jr
′2
i



, ∀i ∈ I,∀j ∈ J, (29)

ri
′ ≥ 

i∈I

j∈J

xjc
2
hyij +

c
2
vyijdij

hj

⎛⎝ ⎞⎠, ∀i ∈ I,∀j ∈ J, (30)


j∈J

yijD
0
j +ΩjΥj ≤H

Max
j , ∀i ∈ I, (31)


i∈I

yij ≤ 1, ∀j ∈ J, (32)
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⌈yij⌉
dij

�vj

⎛⎝ ⎞⎠≤T
Max
ij , ∀j ∈ J, (33)

P ε|ε ∉ UE ≤ αj, ∀j ∈ J, (34)

0≤yij ≤xj, xj ∈ 0, 1{ },∀i ∈ I,∀j ∈ J. (35)

Proof. *e ellipsoid uncertainty set is
UE � ai ∈ Rn: ai � ai + Δξ, ξ ≤Ω} , where Δ � 

1/2. *e
constraints max aT

i X≤B of it can be translated as
max aT

i X: (ai − ai)
TΣ−1(ai − ai) ∈ Ω2} . As for Σ is positive,

so it is a convex problem. *erefore, LP can be solved by
Karush–Kuhn–Tucher condition. minF(a∗i ) � −a∗T

i X and
s.t. g(a∗i ) � (a∗i − ai)

TΣ−1(a∗i − ai) −Ω2 ≤ 0. *us, in our
decision-making environment, meaningful solutions to an
uncertain problem are exactly its robust feasible solutions. It
remains to decide how to interpret the value of the objective
(which can also be uncertain) at such a solution. As applied
to the objective, the “worst-case-oriented” philosophymakes
it natural to quantify the quality of a robust feasible solution
x by the guaranteed value of the original objective, that is, by
its largest value supUEE[C2(

Dj: c)]. *us, the best possible
robust feasible solution is the one which solves the opti-
mization problem min+ j∈Jxjcf + maxE[C2(

Dj: c)]} in
the TS-SCC model or which is the same to
infZE: j∈Jxjcf + supUE

E[C2(
Dj: c)]≤ZE} in the TS-

ERC model. *e latter problem is called the robust coun-
terpart of the original uncertain problem. Above all, *e-
orem 2 can be proved. □

3.3. TS-BPRC Model. In the TS-RC model for mixed set of
box and polyhedron (TS-BPRC model), the set of uncertain
requirements is mixed of a box and a polyhedron set, where
the box set is defined by the l∞ norm and the polyhedron set
by the l1. Based on robust optimization theory, the TS-SCC
model is further transformed into a TS-BPRC model with
the domain of uncertainty parameters defined as

UBP � U∞ ∩U1  � UBj ∩UPj 

� ε{ }: ‖ε‖∞ ≤Ψj, ‖ε‖1 ≤Γj 

� ε{ }: εj



≤Ψj, ε{ } ·  εj



≤ Γj .

(36)

Here, Ψj and Γj are uncertain parameters. To simplify
the tedious expression, Λj � min Ψj, Γj , where Λj is set as
security parameters in the mixed intersection robust
counterpart model.

Theorem 3. Under the condition of uncertainty, when the
uncertain parameter is not 0, the key constraints in the TS-
BRC model min+ j∈Jxjcf + maxE[C2( Dj: c)]} is equiv-
alent to them in the TS-SCC model
infZBP: j∈Jxjcf + supUBP

E[C2(
Dj: c)]≤ZBP} . When the

uncertain parameter is 0, the TS-BPRC model degenerates
into a two-stage linear optimization model.

*e first stage of the TS-BPRCmodel is (37)–(39), which
aims to minimize the total cost under uncertain conditions:

infZBP, (37)

s.t. 
j∈J

xjcf + sup
UBP

E C2
Dj: c)]≤ZBP, (38)

xj ∈ 0, 1{ }, ∀j ∈ J. (39)

*e second stage of the TS-BPRC model is (40)–(47),
which aims to minimize the distribution cost while maxi-
mizing the satisfaction of demands:

infC2
Dj: c , (40)

s.t. C D
0
j  + sup

UBP

Λj c
2
v 

i∈I

j∈J

yijD̂jdij

hj

+ 
i∈I


j∈J

xjchyijD̂j
⎛⎝ ⎞⎠≤C2, (41)


i∈I


j∈J

xjc
2
hyijD

0
j + c

2
v 

i∈I

j∈J

yijD
0
jdij

hj

+ c
2
t 

i∈I

j∈J

xi

dij

vi

− t
j
0 ≤C D

0
j , (42)


i∈I

yij ≤ 1, ∀j ∈ J, (43)


j∈J

yijD
0
j + Λj
′

j∈J
yij

Dj ≤H
Max
j , ∀i ∈ I, (44)
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⌈yij⌉
dij

�vj

⎛⎝ ⎞⎠≤T
Max
ij , ∀j ∈ J, (45)

P ε|ε ∉ UB ∩UP(  ≤ αj, ∀j ∈ J, (46)

0≤yij ≤ xj, xi ∈ 0, 1{ },∀i ∈ I,∀j ∈ J. (47)

Proof. General linear programming (LP) is
maxCTX|AX≤B, L≤X≤U . And jaijxj + Γipi ≤Bi,

pi ≥ aij|xj|. Defining P1 � [JL×L; O1×L], +1 � [OL×1; Γ],
K1 � [θL×1; t]: ‖θ‖1 � t , P∞ � [JL×L;O1×L], +∞ � [OL×1;

Ψ],K∞ � [θL×1; t]: ‖θ‖∞ � t , where L is the number of
uncertain parameters . In the TS-BPRC model, the set is
defined asUBP � U∞ ∩U1 . *erefore, the problem of inner
layer maximization can be rephrased as maxξ∈UP Jaij

Xξij: P1,∞ξ + +1,∞ ∈ K1,∞Γ,Ψ}. *en, we can get the
problem min+ maxE[C2(

Dj: c)]} , and the problem
infZBP: supUBP

E[C2(
Dj: c)]≤ZBP} is equivalent. *us, it

can be reformed as infZBP: j∈Jxjcf + supUBP
E[C2

( Dj: c)]≤ZBP} in the first stage and supUBP
Λj(CTX) in the

second stage. In summary, *eorem 3 can be proved. □

4. Simulation

In the case of emergency management, how to allocate
emergency relief materials reasonably and effectively is a
very important and difficult problem. According to the
actual situation, this section takes the material dispatching
system of Aba Prefecture earthquake in Sichuan Province as
the research object and carries out indepth analysis (Fig-
ure 2). *e earthquake has brought a huge impact on the
lives of local people, under the auspices of the government
part of the emergency rescue work. Among them, how to
protect people’s livelihood has become the primary issue.
Specifically, the affected areas received a variety of vegetables
and other materials from all over the country. *e distri-
bution of these materials is very complicated. *e reasons
are as follows: on the one hand, the category of donated relief
materials is single, which cannot be directly distributed to
the affected people. It cannot directly distribute the demand
to retail investors and needs professional personnel to sort,
pack, and deliver. It is almost impossible to operate in the
emergency state, and it cannot be completed. On the other
hand, the donated materials must be distributed within the
fresh-keeping period, and the remaining disposable distri-
bution time is very short without long-distance trans-
portation time. *e most effective way to solve these
problems is to establish a temporary transit center. In the
temporary center sorting and distribution, the efficiency is
relatively high.

In this paper, a TS-SCC model is established to solve
the problem of material supply in emergency, considering
the material classification and variable supply. In the actual
rescue process, the Rescue Department is faced with the
two-stage vehicle path planning problem. *e first stage is
the location problem of temporary storage station, and the

goal is to determine the location node and calculate the
total cost. According to the actual situation of the disaster
area, after comprehensive analysis, the flat and wide sites
in the disaster area are selected as candidate temporary
sites, which are represented by S1, S2, S3, S4, and S5. *ese
temporary storage centers have dual functions: one is
responsible for the screening and sorting of materials and
the other is to provide material reserve services for sub-
sequent scheduling. On the basis of comprehensive con-
sideration of various location factors, the origin of rescue
materials is determined as the transfer yard of the bus
station. *e second stage is path planning. *e goal of the
second stage is to minimize the initial distribution cost,
including material handling cost, transportation cost, and
time cost.

*ere are 5 temporary storage sites in total, which are the
candidate temporary storage sites determined in the first
stage. *ere are 8 demand sites, which are represented by
D1, D2, . . . , D8. In the complex humanitarian logistics sys-
tem, there are 1 material origin, 5 temporary storage sta-
tions, 8 demand points, and any alternative path
corresponds to different transportation costs. In the process
of simulation, in addition to the comprehensive calculation
cost of real-time oil price and actual distance, traffic con-
gestion and time constraints are also involved.

4.1. Related Basic Parameter Data. Basic data information
[34] includes fixed operating costs, demand, and average
vehicle speed of storage stations (Table 2). *e actual dis-
tance between nodes directly obtained through Google Map
is shown in Table 3.

4.2. Results of TS-SCC Model and RC Model. In this section,
we use MATLAB as the programming platform and Gurobi
as the solvers to solve the above models, respectively. *e
results of the TS-SCC model are shown in Table 4. *e
results of the model are affected by the probability distri-
bution. In this section, the common probability distribution
is selected for simulation experiments. With increasing the
mean value of parameters (0.05⟶ 0.15), the total cost of
the model shows an upward trend. Under different distri-
bution functions, the total cost of emergency management is
also very different. *is means that, in the TS-SCC model,
changing the parameters will directly affect the total cost.
However, in the actual emergency environment, the de-
velopment of events is uncertainty, and it is difficult to
obtain sufficient historical data to calculate the specific
distribution function or even to accurately estimate the
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mean value and variance. So, the TS-SCC model in emer-
gency management has a very low feasibility.

*rough MATLAB programming, the following results
are obtained. It can be seen from Table 5 that, with the
increase of safety parameters, the three total costs show a
gradual upward trend. When the SP� 0 (mean value is 0),
the TS-RC is equivalent to the TS-SCC model. In the two-
stage box set TC model, when the security parameters

increase from 1 to 8, the total cost increases from 3.71E+ 04
to 3.78e+ 04, with an increase of 1.887%. In the TS-ERC
model, when the security parameters increase from 1 to 8,
the total cost increases with an increase of 2.695%. In the TS-
RC model for mixed set of box and polyhedron, when the
security parameters increase from 1 to 8, the total cost in-
creases with an increase of 1.617%. *e TS-BPRC model is
more robust.

Figure 2: Location of emergency management.

Table 2: Basic information of temporary inventory site.

Storage sites S1 S2 S3 S4 S5

Distance 41.5 7.1 23.6 9.3 28
Maximum Inventory 1750 1600 1400 1350 1400
Average speed 45 40 40 45 35
Fixed cost 7500 6500 5500 4500 4200
Oil consumption 14.4 14.4 14.4 14.4 14.4
Load capacity 4–6 4–6 4–6 4–6 4–6
Demand sites M1 M2 M3 M4 M5
Nominal demand 700 900 500 400 300
Demand sites M6 M7 M8 — —
Nominal demand 600 800 750 — —

Table 3: Distance between sites.

M1 M2 M3 M4 M5 M6 M7 M8

S1 39.7 6.3 38.2 23.6 30.3 56.4 71.7 60.8
S2 1.1 47.2 3.1 16.4 33.6 60.5 33.9 22.4
S3 21.5 27.7 19.6 4.7 13.8 41.8 53.2 42.3
S4 12.1 58.2 14.7 27.2 45.9 72.7 21.8 10.7
S5 26.1 22.6 24.7 9.3 15.4 43.2 58.1 46.4

Table 4: Results of TS-SCC model.

Distribution Mean Cost Time Mean Cost Time Mean Cost Time
Normal 0.05 8.8933E+ 04 851.2 0.1 8.8912E+ 04 816.5 0.15 8.8931E+ 04 961.9
Poisson 0.05 8.8929E+ 04 813.1 0.1 8.8928E+ 04 909.4 0.15 8.8929E+ 04 893.4
Uniformity 0.05 8.8939E+ 04 903.1 0.1 8.8938E+ 04 896.9 0.15 8.8936E+ 04 865.3
Bernoulli 0.05 8.8901E +0 4 906.5 0.1 8.8924E+ 04 796.6 0.15 8.8930E+ 04 996.1
Index 0.05 8.8926E+ 04 897.6 0.1 8.8929E+ 04 897.4 0.15 8.8926E+ 04 988.4
Gamma 0.05 8.8912E+ 04 602.1 0.1 8.8918E+ 04 906.7 0.15 8.8936E+ 04 978.6
Weber 0.05 8.8937E+ 04 912.4 0.1 8.8929E+ 04 903.4 0.15 8.8933E+ 04 985.3
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4.3. Path Planning for TS-SCC and TS-RC Model.
According to the operation results of the TS-SCC model, the
path planning scheme can be obtained. Materials donated
are gathered from all over the country and transported to
stations by transport vehicles. Due to the implementation of
traffic control, the routes of rescue materials transportation
vehicles are distributed in a radial pattern, and they rush to
the rescue site at the fastest speed. At the same time, in
addition to redistribution of materials, station also serves as
a temporary warehouse to store materials. Under the TS-
SCC model, S2, S3, S4, and S5 was selected as the initial sites
location to undertake the main relief material supply service,
but S1 temporary storage node was not activated.*e second
stage is distribution service, which is represented by dotted
lines. Distribution routes go through almost all feasible
routes while meeting the needs of all designated hospitals.
Careful analysis reveals the following conclusions.

As shown in Figure 3, under the TS-SCC model, the cost
of distribution routing accounts for a large proportion of the
total cost. Although this planning method can ensure stable
supply of materials and meet rescue needs, it still faces some
problems in the specific service path planning. For example,
the cost increases associated with long-distance trans-
portation; circuitous transportation resulting from cross-
distribution routes, which increases costs; unreasonable use
of major temporary storage sites, which increases the cost of
retransshipment; and once uncertainties arise in the actual
rescue process, such as increased demand fluctuations, the
stability and sustainability of the TS-SCC model cannot be
guaranteed. Certification, which makes the logistics service
of relief materials, faces some challenges and difficulties.
*erefore, in the process of rescue, it is necessary to plan
rationally and explore more optimized improvement
strategies, i.e., to optimize the distribution route.

As a whole, three TS-RC models are quite different from
TS-SCC models. In the TS-RC model, S2 is selected. As can
be seen from Figures 4–6, selection of S2 will greatly shorten
the transportation distance of logistics, thus improving the

Table 5: Results of TS-RC model.

SP ε
TS-BRC model TS-ERC model TS-BPRC model

Cost Time Cost Time Cost Time
0 0.05 8.8933E+ 04 419.2 8.8933E+ 04 419.2 8.8933E+ 04 419.2
1 0.05 8.8933E+ 04 420.0 8.8933E+ 04 433.4 8.8933E+ 04 469.7
2 0.05 8.8934E+ 04 413.8 8.8934E+ 04 431.8 8.8934E+ 04 459.1
3 0.05 8.8935E+ 04 409.2 8.8935E+ 04 426.9 8.8937E+ 04 453.0
4 0.05 8.8937E+ 04 418.1 8.8937E+ 04 436.5 8.8939E+ 04 455.5
5 0.05 8.8939E+ 04 419.6 8.8939E+ 04 440.3 8.8940E+ 04 455.5
6 0.05 8.8939E+ 04 424.6 8.8941E+ 04 422.4 8.8941E+ 04 470.3
7 0.05 8.8941E+ 04 426.2 8.8944E+ 04 438.7 8.8943E+ 04 471.9
8 0.05 8.8943E+ 04 416.6 8.8946E+ 04 445.2 8.8944E+ 04 475.0
1 0.10 8.8933E+ 04 432.5 8.8933E+ 04 448.8 8.8933E+ 04 489.0
2 0.10 8.8934E+ 04 420.5 8.8934E+ 04 467.4 8.8935E+ 04 464.8
3 0.10 8.8935E+ 04 423.6 8.8936E+ 04 446.8 8.8938E+ 04 475.1
4 0.10 8.8937E+ 04 422.1 8.8939E+ 04 453.3 8.8939E+ 04 474.9
5 0.10 8.8944E+ 04 423.4 8.8942E+ 04 467.2 8.8940E+ 04 475.5
6 0.10 8.8945E+ 04 426.6 8.8945E+ 04 446.8 8.8942E+ 04 490.0
7 0.10 8.8946E+ 04 428.9 8.8946E+ 04 456.4 8.8942E+ 04 473.1
8 0.10 8.8948E+ 04 430.0 8.8947E+ 04 466.7 8.8943E+ 04 474.5

S1
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S4
S5

M1 M2 M3 M4 M5 M6 M7 M8
→

→

→ →

→

→

→ →
→
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Figure 3: Distribution route of the TS-SCC model.
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Figure 4: Distribution route of the TS-BRC model.
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Figure 5: Distribution route of the TS-ERC model.
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Figure 6: Distribution route of the TS-BPRC model.
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operation efficiency. In detail, the TS-BPRC model is
compared with the other three models. In the initial route
planning of the first stage, the transit proportion is relatively
balanced among the major transfer centers, and the transit
capacity and load pressure of each temporary storage station
are relatively balanced. As can be clearly seen in Figure 6, the
nodes have been deeper into the hinterland of the disaster
area and closer to the demand points, which also make the
path planning more reasonable. In the second-stage plan-
ning, compared with the other two robust corresponding
models, the proportion of long-distance line transportation
is further reduced and the proportion of short-distance
transportation is increased, especially after fully utilizing this
node deep inside the hinterland. Comparatively speaking,
the service proportion in each path tends to be short-haul
route, which bears less cost and therefore increases the
proportion of material supply. As a result, onboard mileage
is more efficient, and delivery routes are more accurate and
fast, showing better optimization performance.

5. Model Sensitivity Analysis

*is section compares and analyses the performance of each
model, including operational efficiency, uncertainty, and
degree of demand fluctuation.

5.1. Model Run-Time Performance Comparison. *is section
analyses the operating efficiency of the four models. To
facilitate comparison and run in the same computer envi-
ronment, the security parameters are set as unique variables,
and the running time of the models is observed.

Figure 7 shows the operational efficiency of three TS-RC
models and TS-SCC model. It can be seen that the TS-SCC
model has the highest operational efficiency, and the overall
running time is much lower than the TS-RC model (green
line). *e effect of volatility on time is significant. On the
whole, there is a clear boundary, and the running time of the
model with low volatility is short.*emain reason is that the
demand parameters can converge quickly. In the compar-
ison of RCmodels, it is found that when the volatility is high,
the time performance of the TS-BRCmodel and the TS-ERC
model fluctuates violently, while TS-BPRC model is rela-
tively robust.*erefore, when solving practical problems, we
can build an appropriate model according to the size of real
data.

5.2. Comparative Analysis of Temporary Node Storage Ratio.
Figure 8 shows the utilization ratio of each temporary lo-
gistics storage site. In the TS-SCC model, S1 and S4 accounts
for a large proportion, and S1 is not used (the proportion of
S1 is 0). In the TS-RC models, due to the difference of
uncertain parameters, the proportion of transshipment is
also variable. In terms of details, the transport ratio of S1
showed an increasing trend. In particular, in the TS-BPRC
model, the proportion of S1 is more than 20%. *e enabling
of site S1 is the biggest difference between the TS-RC model
and the TS-SCC model. As site S1 is deeply rooted in the

hinterland of the target area, it will play a very important role
in adjusting the transportation plan.

From Figure 9, it can be concluded that the temporary
stations S1 and S3 has a downward trend among all stations
compared with the TS-SCC model and the TS-RC model.
*e decrease in the proportion of transshipment in transit
stations indicates that the importance of the stations is
reduced, which in turn reduces the influence in the distri-
bution path of the second stage. Among other sites, S4 has
the lowest fluctuation range and remains basically un-
changed. It is worth noting that the proportion of S2 and S5
transshipment shows an upward trend, and the change of
inventory proportion directly affects the fluctuation of cost
and logistics service level. S2 and S5 will play a greater role in
the TS-RC model.

5.3.9e Impact of Demand Fluctuation on Total Cost. In this
section, we compare and analyze the impact of demand
volatility on the total cost in the four models and explore the
impact of the fluctuation of random parameters on the total
cost under the condition of fixed security parameters
(Ψj � Ωj � 3 or Ψj ∩Γj � 3). *e calculation results are
shown in Figure 10. *e total cost of the TS-SCC model is
higher than that of the two-stage robust corresponding
model. In the robust counterpart model, the increasing trend
is quite different.*e TS-BRCmodel and the TS-ERCmodel
have greater randomness, and the TS-BPRC model has
strong ability to resist uncertainty. Careful observation
shows that the growth rate is slightly different. *e cost of
the TS-SCC model increases sharply, while that of the TS-
BPRC model increases slowly.

5.4. Impact of Security Parameters on Service Level. In this
section, the performance of the model is analyzed through
the level of service (SL). Due to the high demand for
timeliness of material scheduling in humanitarian logistics
management, this section compares the service level of
models through time difference and analyzes the advantages
and disadvantages of different models. *e calculation
formula of service level is as follows:

SL � 1 −
J yij

Djdij/�vij  − tjJ
Dj

tjJ
Dj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 100%, (48)

where I and J are the number of arcs in the model. *e
simulation results under different parameters are shown in
Figure 11.

Figure 11 illustrates the effect of SP on the SL of the
model under the condition of fixed stochastic demand
volatility (ε � 0.15). Fortunately, it can be seen that the
service level tends to increase with the increase of security
level. Safety parameters have good performance. *is partly
compensates for the cost of robustness (increased total cost)
due to uncertainty and also mitigates the loss of reduced
service levels due to demand volatility. Careful comparison
shows that, in TS-BRCmodel, when SP increases from 1 to 8,
logistics service level increases from 89.83% to 93.21% in the
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Figure 9: Inventory change range of the temporary storage site.
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Figure 7: Model operation efficiency comparison.

25.25% 22.47% 18.22% 12.50%

0.00%
12.21% 17.25%

21.91%

32.65% 16.36%
27.83%

15.27%

28.59%
29.71%

15.32%

22.04%

13.51% 19.26% 21.38%
28.28%

0.00

20.00

40.00

60.00

80.00

100.00

TS-SCC TS-BRC TS-ERC TS-MURC

S5
S4
S3

S2
S1

(%)

Figure 8: Inventory proportion of the temporary storage site.
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path planning stage. *e TS-BPRC model has strong ro-
bustness. When SP is increased from 1 to 8, the logistics
service level increased from 90.32% to 94.96% in the path
planning stage. In the process of emergency management,
rapid responsiveness must be paid attention to by managers.
Considering uncertainties, although robust corresponding
models in each two stages can give a more robust route
planning scheme, the performance and application scope of
each scheme is also different. *erefore, emergency rescue

decision-makers must review the situation and work out the
most reasonable path according to local conditions. *is
scheme canminimize the loss caused by delay and ensure the
fairness of caring material distribution, but the logistics cost
of this scheme is the highest among all schemes. Generally,
in the process of public health emergencies, caring materials
are relatively scarce, especially in the early period of public
health emergencies, so it is necessary to control logistics
costs properly. Decision-makers need to weigh the various
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Figure 10: *e influence of demand fluctuation on total cost.
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objectives against the actual situation and trends of the
epidemic and choose the ideal alternative for decision-
making. Ideally, the limited resources of love should be fully
utilized while minimizing all costs to achieve cost savings.

Figure 12 shows the change value of the growth rate of
logistics service level. Based on TS-SCC model, the service
level change trend of other models is compared. When the
level of security parameters increases from 1 to 8, the service
level of TS-BRCmodel and TS-ERCmodel increases by 2.5%
relative to each other, while the increase of TS-BPRC model
is 3.0%.*e rise in service level demonstrates the advantages
of robust optimization, and robust route planning can still be
developed under uncertain conditions. *is has a clear
guiding significance for the emergency management de-
partment to formulate the rescue plan.

6. Conclusion

Due to the emergency, there is a serious shortage of living
materials. In order to ensure the supply of materials in the
incident area, we conducted a study on the issue of hu-
manitarian logistics management. *e research focuses on
the material allocation problem with huge impact, which
aims to carry out reasonable location and path planning for
materials according to the actual situation, so as to minimize
losses and save costs. In this paper, firstly, a two-stage
stochastic chance constrained model is established and
solved by using a solver. Due to the influence of uncertain
demand, this paper further transforms the two-stage sto-
chastic chance constrained model into a two-stage robust
counterpart model. *e validity and practicability of the
model and the algorithm are validated by specific cases.

*e following conclusions are drawn. When the vola-
tility is high, the time performance of the two-stage box set
robust counterpart model and the two-stage ellipsoid set
robust counterpart model fluctuates violently, while the
mixed set robust counterpart model is relatively robust.
Furthermore, the two-stage mixed set robust counterpart
model has strong ability to resist uncertainty. In the two-
stage box set robust counterpart model, the logistics service
level increases from 89.83% to 93.21% in the path planning
stage when the safety parameters increase. *e two-stage
mixed set robust counterpart model does have the strong
robustness. When gradually promoting, the level of logistics
service increases from 90.32% to 94.96% in the path plan-
ning stage.

*e innovation and contribution of this paper are mainly
reflected in the following: how to construct a two-stage
robust counterpart model to discuss uncertain optimization
problems. To start with, in order to improve the satisfaction
of logistics transportation service, a two-stage stochastic
chance constrained model with opportunity constraints is
considered, in which the uncertain set is composed of the
first and second moment of stochastic demand. Unlike the
classical two-stage stochastic problem, this model does not
assume a preknown probability distribution of stochastic
demand. Compared with the stochastic model, this model is
unwillingly to suppose that uncertain demand belongs to a
predetermined set. Moreover, the two-stage stochastic
chance constrained model is equivalently transformed into a
two-stage robust counterpart model. In addition, according
to the universality of the model, we construct three robust
counterpart models with different undefined sets. In the
process of study, this paper considers that the storage node is
fixed, while the actual location of the node may be mobile,
which depends on the source and quantity of the caring
material, as well as the type and quality difference of the
material. *is will also be the starting point or research
direction of future research.
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