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A linear magnetization model is built to replace the Jiles–Atherton model in order to describe the relationship between the
magnetic field intensity and the magnetization intensity of the giant magnetostrictive vibrator (GMV).-e systematic modeling of
the GMV is composed of three aspects, i.e., the structural mechanic model, the magnetostrictive model, and the Jiles–Atherton
model. -e Jiles–Atherton model has five parameters to be defined; hence, its solution is so complex that it is not convenient in
application. -erefore, the immune genetic algorithm (IGA) is applied in the identification of the five parameters of the
Jiles–Atherton model and it showed a higher stability compared with the identification result of the differential evolution al-
gorithm (DEA). -e identification parameters of the two algorithms were employed, respectively, to calculate the excitation force
and it was found that the relative error of IGAwas evidently smaller than that of DEA, indicating that the former was more reliable
than the latter. According to the identification results of IGA and based on the least square method (LSM), curve-fittings to the
magnetic field intensity and magnetization intensity were conducted by using the linear function. And the linear magnetization
model was built to replace the Jiles–Athertonmodel. Research results show that the linear model of the GMV can be established by
combining the linear magnetization model with the structural mechanic model as well as the giant magnetostrictive model. -e
linear magnetizationmodel, which has great engineering application value, can be applied in the open-loop control of the vibrator.

1. Introduction

Giant magnetostrictive material (GMM) is a functional
material with superior performance and outstanding ad-
vantages, such as large range of magnetostrictive strain, high
electrical motor conversion efficiency, quick response, high
intensity of power, weak driving magnetic field, good fre-
quency performance, and high Curie point [1]. -e GMV,
developed with the application of GMM, canmake up for the
deficiencies of the mechanical vibrator. For instance, it is
difficult to meet the inherent frequency of the components
with high rigidity as a consequence of its vibration frequency
below 200Hz [2]. -e excitation force cannot be regulated
smoothly once the vibration frequency is fixed. -e reli-
ability is low and the service life is short with the application

of DC motor as the driving force. However, for a rather long
period of time, the mechanical vibrator dominates in the
field of vibration stress relief (VSR). -erefore, the research
and development of the GMV is of great value to the further
technological promotion of VSR and the acceleration of the
updating of both the VSR equipment and the industry as
well.

In recent years, in the application of GMM, the majority
of researchers focused their study on giant magnetostrictive
microdisplacement actuator [3], and little attention was
given to the study of the GMV. Meng et al. [4] and Wang
et al. [5] optimized the vibrator structure and the magnetic
circuit design. -ey analyzed the magnetic field homoge-
neity of different magnetic circuits but did not mention the
giant magnetostrictive model yet. -e modeling of GMV
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involves three aspects: structural dynamics model, magne-
tization model, and magnetostrictive model which describes
the relation between magnetization intensity and magne-
tostrictive coefficient and can be built with quadratic domain
transformation model [6]. -e magnetization model, which
describes the relation between magnetic field intensity and
magnetization intensity, can be built with Jiles–Atherton
model [7]. Although the Jiles–Atherton model has the ad-
vantage of clear physical meanings, it has five unidentified
parameters. As a consequence of its complex solution
process, it is inconvenient for engineering application. In
order to increase the local research ability, Cao et al. [8]
adopted the strategy of combining the genetic algorithm and
trust region algorithm and took the simulation method to
identify the parameters of the Jiles–Atherton model. -e
identification results are found to be close to the partial
known parameters after comparison. Knypinski et al. [9] and
Rong et al. [10] studied the identification of parameters of
the Jiles–Atherton model using the particle algorithm.
Unfortunately, these abovementioned algorithms adopted
the simulating data to replace the testing data, compared the
identification result with the known parameters; however,
for the given GMM, the undetermined parameters are re-
lated to the magnetic field; hence, the above identification
results cannot be used directly.

In this paper, IGA was applied to identify the five pa-
rameters of the Jiles–Atherton model. -e identification
results of IGA and DEA were compared to verify the reli-
ability of the parameters. -e linear magnetization model
was built to replace the Jiles–Atherton model based on the
identification results of IGA and LSM and combining the
fitting curve of the magnetic field intensity and magneti-
zation intensity with linear function. -e linear model of the
GMV was built with the combination of linear magneti-
zation model, structural dynamic model, and magneto-
strictive model.

2. Overall Structure of the GMV

-e GMV mainly consists of the drive coil, coil skeleton,
GMM rod, magnetic conductive cover, magnetic conductive
outer wall, output rod, pretightening spring, adjustment
bolt, radiator, support plate, upper cover, lower end cover,
tension bolt, housing and base, etc., and its structure is
shown in Figure 1. Among them, GMM rod, magnetic
conductive cover, and magnetic conductive outer wall form
a close magnetic circuit. -e pretightening spring exerts
prepressure stress on the GMM rod, and the stress can be
adjusted by the bolt so that it can give the most appropriate

stress on the GMM rod to obtain the largest magnetostrictive
coefficient [11]. To utilize the second harmonic generation
(SHG) of the GMM [12], the bias magnetic field is not set
and the coil and magnetic circuit structure is simplified. -e
drive coil adopts a scheme of reducing the number of turns,
increasing the wire diameter, and driving with high electric
current to improve its dynamic performance.

Figure 2 shows themagnetic field intensity-magnetostrictive
coefficient curve under different prepressure stresses [13]. -e
optimal pretightening force is the basis of GMM rod design.

Figure 3 shows the relationship among the pretightening
stress of the GMM bar, the magnetic field intensity, and the
electromechanical coupling coefficient [14]. As can be seen
from Figure 3, when the pretightening stress is 10Mpa, the
maximum magnetostrictive coefficient is 1000 ppm and the
electromechanical coupling coefficient is 0.6.

-e main structural parameters of the GMV are shown
in Table 1.

3. System Model of the GMV

3.1. Magnetostrictive Model and Magnetization Model. In
real GMM, the electromechanical coupling is very com-
plicated under the effect of alternating magnetic field.
However, when applying a certain pretightening stress on
the direction of giant magnetostrictive rod and considering
that the material crystals prefer growing in the axial di-
rection, the GMMmagnetic domain will distribute along the
tangential and preferred direction of magnetization; at this
time, the relation between magnetostrictive coefficient of the
GMM rod and magnetization intensity is approximately the
quadratic domain transformation model based on the en-
ergy [15]:

λ �
3
2

λs

M
2
s

M
2
, (1)

where Ms is the saturated magnetic field intensity, λs is the
saturated magnetostrictive coefficients, and M is the mag-
netization intensity.

-e micromagnetic theory holds that the domain of
ferromagnetic material varies in structure with form and
size. In addition, the stress does not distribute evenly, which
makes the movement of the domain wall and the process of
magnetization irreversible and leads to the containing of the
pressure-stabilized state in the material energy free moving
equation, so that it will cause energy loss in the magneti-
zation process. Based on Weise molecular field theory and
micromagnetics, Jiles and Atherton built theoretically the
Jiles–Atherton model of ferromagnetic material [16]:
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(2)

where δ is related to the magnetic field intensity H, when H

increases, δ � 1, when H decreases, δ � −1; σ0is the prestress
of the GMM rod. In the Jiles–Atherton model, the unde-
termined parameters are as follows: domain and wall in-
teraction coefficientα, irreversible loss coefficientk,
reversible coefficientc, anhysteretic magnetization form
factor coefficienta, and saturated magnetization
intensityMs.

3.2. Structural Dynamic Model of the GMV. Without taking
into consideration the magnetic stagnant effect, the linear
constitutive piezomagnetic equation of GMM is [17]

ε � σS
H

+ d33H, (3)

where ε is the magnetostrictive strain, SH is the smooth
coefficient, σ is the stress, d33 is the piezomagnetic coeffi-
cient, and H is the magnetic field intensity.

When GMM works under dynamic magnetic field,
hysteresis nonlinearity will exist. -e second item of the
linear piezomagnetic equation is presented by quadratic
domain transformation model, and according to all these,
the nonlinear piezomagnetic equation can be deduced [18]:

ε � σS
H

+ λ. (4)

When considering themass and damper, formula (4) can
be written as nonlinear piezomagnetic equation [19], in-
cluding inertia item and damper item:
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(5)

where xr is the expansion and contraction quantity of the
GMM bar.

-e upper end of the GMM rod bears the inertia of rear
mass, and the bottom bears the output rod reaction force.
Since the forces are dynamic, the mass of the output rod, the
base, the damper, and the rigidity should all be taken into
consideration. -e stress of the GMM rod consists of both
the rear mass inertia and the output force of itself, namely,

Fr + Fa � σ + σa( Ar,

Fa � ma €xr,

δa � FaA
−1
r ,

⎧⎨

⎩ (6)

where Fr is the output force of the GMM rod, Fa is the
inertial force of the rear mass, σ is the magnetostrictive
stress, σa is the inertial stress of the rear mass, and Ar is the
cross sectional area of the GMM rod.

According to formula (4), the magnetostrictive stress can
be written as

σ � E
H ρl

2
r

3E
H

€ε +
cd

E
H

_ε + ε − λ . (7)

Based on formulas (3) and (4), the output force Fr of the
GMM rod can be written as

Fr �
ρArlr
3

€xr
+

cdAr

lr
_xr +

ArE
H

lr
xr − ArE

Hλ, mr �
ρArlr

3
, cr �

cdAr

lr
, kr �

ArE
H

lr
. (8)

According to mechanic theory, the equilibrium between
the GMM rod and the output rod is

ma + mr(  €xr + cr _xr + krxr − ArE
Hλ � − mo + mb(  €xr + co _xr + ks + ko( xr . (9)
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By adjusting formula (9) and using Laplace transfor-
mation, we obtain the vibrator displacement equation as
follows:

xr �
ArE

Hλ
mts

2
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,
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(10)

where s is the Laplace operator, mt is the total mass, ct is the
total damper, and kt is the total stiffness.

-e excitation force and the reaction force of the output
rod are equal; however, they are in opposite direction, so

Fv � mo + mb(  €xr + co _xr + ks + ko( xr. (11)

By using Laplace transformation for formula (8), we
obtain

Fv � mo + mb( s
2

+ cos + ks + ko(  xr. (12)

Substituting formulas (7) and (10) into (9), we obtain

Fv � mes
2

+ cos + ke xr,
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ke � ks + ko,
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(13)

where me is the equivalent mass and ke is the equivalent
stiffness.

-e inherent frequency of the vibrator and the damping
ratio, respectively, are

fn �
1
2π

����������������
kr + ks + ko

ma + mr + mo + mb



, (14)
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2
�����������������������������

ma + mr + mo + mb(  kr + ks + ko( 

 .
(15)

From formulas (14) and (15), we obtain the inherent
frequency of the vibrator fn � 1742Hz, and the damping
ratio ζ � 0.5.

With quadratic domain transformation model (1),
Jiles–Atherton model (2), displacement model (10), and
excitation force model (13), we can build a vibrator system
model, and its structure is shown in Figure 4.

As shown in Figure 4, the system model consists of the
hysteresis nonlinearity model and the second-order linear
system model in series, the input is the driving current, and
the output is the displacement and the force. -ere are five
unidentified parameters to be identified and obtained in the
Jiles–Atherton model.

3.3. Discrete Transformation of the Continuous Model.
-e displacement and the excitation force of the vibrator can
be obtained by applying the quadratic domain transfor-
mation model, the Jiles–Atherton model, and the dis-
placement and excitation force model. By using inverse
Laplace transformation of equation (10), we obtain the
differential equation of the oscillator displacement model as
follows:

mt €xr + ct _xr + ktxr � ArE
Hλ, x �

xr

ArE
H( 
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ArE
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T

.
⎧⎨

⎩

(16)

In formula (16), defining xr as the output vector, we
obtain the continuous-time state-space equation of the
displacement:

_x � A1x + B1λ,

xr � C1x.
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Transforming the excitation force formula (13), we write
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Take X as the state variable and Fv as the output vector,
from formulas (19) and (20), and we obtain the continuous-
time state-space expression of the excitation force as follows:

X � X1 X2 
T
,

_X � A2X + B2λ,

Fv � C
T
2 X + D2λ,
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Formulas (17) and (21) are the expressions of the vi-
brator displacement and excitation force, and by discrete
transforming of these two formulas, respectively, we obtain
the corresponding discrete-time state-space expression for
displacement and excitation force as follows:
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where Ts represents the sampling period.

4. Identification Principle and IGA

4.1.PrincipleofParameter Identification. In the Jiles–Atherton
model, the 5 parameters to be identified, i.e., α, k, c, a and
Ms, can be presented as

θ � α k c a Ms . (24)

-e identification of the parameters of the Jiles–Atherton
model can be regarded as a minimum optimization and its
objective function is as follows:

e(k, θ) � Fv(k) − Fv(k, θ),

E(θ) �
1
S



S

k�1
e
2
(k, θ)⎡⎣ ⎤⎦,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

li ≤ θi ≤ ui, (25)

where k is the sampling time, S is the total number of sample,
Fv(k) is the measured value, Fv(k, θ) is the calculated value,
e(k, θ) is the error of the excitation force, θi is vector ith of
parameter θ, and li, ui is the top and bottom limit of θi,
respectively.

4.2. Immune Genetic Algorithm. -e evaluation function is
judged by the adaptive value using the floating-point
encoding scheme. -e larger the adaptive value is, the better
the individual will be. -e adaptive value is the key infor-
mation of the genetic operation. According to the problem
to be solved, the estimation function [20] can be defined by
the compound function in formula (25):

f C
e
G(  �

1
0.1 + E(θ)

, (26)

where G is the population algebra and eis the individual
sequence number.

Cross probability Pc and mutation probability Pm, which
are key factors affecting the genetic behavior and algorithm
performance, play an important role in the convergence of
algorithm. -e larger the Pc is, the faster the new individual
is reproduced and the higher the probability of damaging the
genetic pattern. On contrary, the smaller Pc is, the slower the
search is, even close to a standstill [21]. If Pm is too small, it is
not apt to reproduce new individual; however, if Pm is too
large, it will become a complete random searching method.
To overcome the abovementioned deficiencies, self-adaptive
strategy is adopted, the population similarity is represented
by information entropy, and cross probability Pc and mu-
tation probability Pm are regulated dynamically. -e in-
formation entropy [22] is calculated at first:

E(p) �
1
N



N

n�1
Ei(p), (27)

where N is the number of the total gene, n is the sequence
number, p is the population quantity, and Ei(p) is the
information entropy of the ith gene:

Ei(p) � 

Ni

ni�1
−pi,nlog

pi,n

Ni
, (28)

where Ni is the quantity of gene i and pi,n is the probability
that the value n of gen i appears.

-e similarity of the population is as follows:

A(p) �
1

1 + E(p)
. (29)
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A(p) represents the overall degree of the population
similarity, satisfying A(p) ∈ 0, 1{ }, the larger the value is, the
higher the similarity of the population will be, and when it
equals to 1, it means that the antibodies of the two pop-
ulations are totally the same [23].

-e adaptive strategy dynamically adjusts the cross
probability Pc and the mutation probability Pm according to
the population diversity. When the individual adaptive
values tend to converge, Pc and Pm will increase appro-
priately; and when the adaptive values disperse, Pc and Pm

will decrease appropriately, as shown in the following
formula:

pc � e
2[A(p)− 1]

,

pm � 0.1e
2[A(p)− 1]

.

⎧⎨

⎩ (30)

4.3. First Identification Results. In the process of identifi-
cation, the excitation current increased in the range of 1～
30A at a step size of 0.3 A, and the driving frequency in-
creased in the range of 1～400Hz at a step size of 2Hz. -e
output pulse of each frequency point was repeated for 50
cycles.

-e largest excitation force of each cycle is collected, the
average excitation force of the 50 cycles is calculated, and 100
sets of data are collected as sample each time. -e initial
setting of the population size is p � 100, and the maximum
number of iteration is jmax � 600. Taking 100 sets of data as
samples, the noise interference is temporarily ignored, that
is, the noise variance σ2 � 0. DEA and IGA were adopted,
respectively, to identify the parameters. -e adaptive values
are calculated uniformly with formula (26). -e cross
probability of DEA is Pc � 0.75, and the transformation
operator of DEA is F � 0.5. -e cross probability of IGA is
Pc � 0.6, and the transformation operator of IGA is
Pm � 0.05.To evaluate the identification effect of the

algorithm, in addition to the objective function, the error of
the excitation force was also taken into consideration. -e
measured excitation force was taken as the true value, and
the calculated excitation force was taken as the theoretical
value; hence, the relative error of the excitation force is
expressed as

RF �
Fv(k) − Fv(k, θ)

Fv(k)




× 100%. (31)

In which, RF is the relative error of the excitation force,
Fv(k) is the measured excitation force, and Fv(k, θ) is the
calculated excitation force.

-e first identification data of DEA and IGA are shown
in Table 2, where jcis the convergence generation. By
comparison and analysis of the data in Table 2, the objective
function values of DEA and IGA are 0.873 and 0.635, re-
spectively. -eir difference is 0.238, and the relative value is
37% lower. As for the relative error of excitation force, it is
4.938% for IGA, which is lower than 5%; however, it is as
high as 13.625% for DEA. When comparing the number of
iteration, only the convergence generation of DEA is smaller
than that of IGA. It needs further observation to compre-
hensively assess the advantages and disadvantages of the
algorithms and the parameter identification results.

-e objective function and identification parameters of
the iteration process are shown in Figure 5. Figure 5(a)
shows the objective iterating process. In the first 150 gen-
erations, DEA had the largest descending gradient; then, it
started to slow down. From about the 500th generation, it
changed little. For IGA, however, its gradient generally kept
a descending trend from the beginning to the end of iter-
ation and gradually approached the mimimal value, and its
result was much smaller than that of DEA. To further
compare the iterative process of the five parameters, the
changing range was very large for the first 200 generations,
indicating that the algorithm had a comparatively strong

0.80

0.64

0.48

0.32

0.16

0.00
10 20

30
40

50
60

70
80 0.0

2.5
5.0

7.5

σ (MPa)
10.0

12.5
15.0

k33

H (kA . m –1)

0MPa
7MPa

10MPa
14MPa

Figure 3: Relationship among pretightening stress, magnetic field strength, and electromechanical coupling coefficient.
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global search ability, the evolution of the population was
very active in the early period, and after about 240 gener-
ations, the change of each parameter tended to stagnate, after
the 300th generation, except for parameter a, the other
parameters did not change anymore. Combining with the
iterative process of the objective function, it can be inter-
preted that the premature phenomenon appeared in the
population, and the result was trapped into regional optimal
solution. However, for IGA, except for parameter Ms, it
started to converge stably from the 150th generation, no
matter ascending or descending, the gradient was relatively
moderate, and it approached gradually to the stable value,
and till about the 350th generation; the current value basi-
cally reached about 90% of the final value. However, the
evolution did not stagnate, the iteration changed from global

search to region search, and till the 550th generation, the
iteration process got the optimal solution.

4.4. Repeated Identification Results. In order to identify the
duplicability and stability of the algorithms, the identifica-
tion was repeated four times on the basis of the first
identification, and the data can be found in Tables 3 and 4.
Comparing the data in Tables 3 and 4, the mean value E(θ)

of DEA is as high as 0.917, and the mean value j is 252;
however, for IGA, the mean value E(θ) is only 0.615 and the
mean value j is 332. It means that DEA can be easily trapped
in the regional optimal solution and shows an obvious
population premature phenomenon. -e variances of the
five parameters of IGA are all smaller than those of DEA,

Table 1: Main structural parameters of the GMV.

Item Symbol Unit Value
Length of the GMM rod lr mm 100
Diameter of GMM rod Dr mm 30
Young’s modulus of GMM rod EH GPa 60
Stiffness coefficient of GMM rod kr N/m 4.2×108

Damping coefficient of GMM rod cr N·s/m 2.1× 104

Density of GMM rod ρ kg/cm3 9.25
Internal damping coefficient of GMM rod cd N·s/m2 3×106

Preload spring stiffness ks N/m 3.5×105

Damping coefficient of output rod co N·s/m 2.2×105

Stiffness coefficient of output rod ko N/m 1.8×109

Mass of output rod mo kg 0.4
Mass of base mb kg 6.8
Mass of rear ma kg 11.4

Jiles–Atherton
model

Linear system model

Quadratic 
domain 

transformation 
model

Displacement 
model

M λ

Excitation 
force model

xr

FvIdentification 
of parameters
α, k, c, a, Ms Hysteresis 

nonlinear model

HIw NwIw/lr

Electromagnetic
conversion

Figure 4: System model structure diagram of the GMV.

Table 2: First identification data.

Parameter Unit Min Max DEA IGA
Ms A/m 5.000×105 7.000×105 5.632×105 6.293×105

α − 0.010 0.090 0.057 0.076
k A/m 1.000×103 6.000×103 2.933×103 3.308×103

c − 0.100 0.400 0.141 0.167
a A/m 4.000×103 8.000×103 6.254×103 7.098×103

RF % − − 13.625 4.938
E(θ) − − − 0.873 0.635
jc − − − 234 321

8 Discrete Dynamics in Nature and Society
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Figure 5: Iterative process of objective function and identification parameters. (a) Objective function E(θ).(b) Irreversible loss coefficient k.
(c) Reversible coefficient c. (d) Shape coefficient of magnetization without hysteresis a. (e) Saturation magnetization Ms. (f ) Domain wall
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indicating that the identification data of the former have
better duplicability and stability.

-e average value of the five parameters was substituted
into the model to calculate the excitation force and then was
compared with the measured excitation force. -e relative
error of the excitation force was calculated, respectively, as
shown Figure 6. Comparing the measured excitation force
and calculated excitation force, the absolute error of IGA is
much smaller than that of DEA. -e error of the former is
relatively large only when the current is less than 10A, while
the latter has a large error in all the range of excitation
currents. -e maximum relative error of DEA is 13%;
however, the maximum relative error of IGA is lower than
5%. Hence, the result of IGA exhibits a better reliability.

-e above identification results were obtained without
considering noise interference. However, in the real test
system, noise interference does exist definitely. -erefore,
noise interference was added, namely, noise variance
σ2 � 0.1, then random identification was made for 20 times,
and the data are shown in Table 5. -e results show that,
even in the case of noise interference, the identification
results are consistent with those in Table 4, so the average
value of the identification results of IGA is taken as the
model parameter.

5. Local Linearizationand theApplicationof the
Magnetization Model

5.1. Characteristics of Hysteresis Loops. Based on the pa-
rameter identification results of the Jiles–Atherton model,
the magnetization strength and magnetic field intensity at
different frequencies are calculated, and the magnetic field
intensity-magnetization intensity curve of 300Hz and
400Hz is plotted, respectively, as shown in Figure 7. When
the frequency is 300, the magnetic field intensity is calculated
in the case of magnetic field saturation, and the rise and fall
of the magnetization process are expressed separately,
forming the maximum magnetic hysteresis line. Comparing
the 300/400Hz hysteresis line, when the frequency is 300Hz,
the magnetic field intensity is approximately linear with the
magnetization intensity in the range of 0 to 125 kA/m, and
when the frequency is 400Hz, the magnetic field intensity is
better in the range of 0 to 100 kA/m. In the linear range, the
slope of the curve remains almost constant, and these
characteristics can be used for the curve-fitting of the
magnetization and description of the approximate linear
relationship between the magnetic field intensity and the
magnetization intensity in the unsaturated state.

-rough the analysis of the GMM rod magnetization
intensity-magnetic field intensity curve, the shape of the
hysteresis return line is found to be related to the magne-
tization frequency.-e lower the frequency is, the higher the
linearity will be. It can be inferred that the hysteresis ring in
the excitation frequency and excitation current range is
included in Figure 7, and the lower the frequency is, the
smaller the current and the narrower the hysteresis ring will
be.

5.2. Linearization of Magnetization Model. Analyzing the
characteristics of the hysteresis curve, the magnetic field
intensity in the range of 0 to 100 kA/m is approximately a
straight line when the frequency is below 400Hz. According
to the Jiles–Atherton model, the magnetic field intensity and
magnetization intensity are calculated (see Table 5). By
selecting the linear function and using the least square
method to fit the curve, we get the approximate expressions
of the magnetic field intensity as well as the magnetization
intensity.

Since within a certain range, the magnetization curve
approximates a linear relationship; thus, the fitted curve is
surely a linear function:

M � a + bH, (32)

where a and b are the constants to be determined.
Since the problem is boiled down to a polynominal

problem, from formula (32), it can be concluded that the
corresponding normal equation is
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. (33)

Solve equation (33) with the data in Table 5, and it finds
a � −5.8 and b � 7.07. Substituting aand b into formula (32),
we get the linearization model as follows:

M � −5.8 + 7.07H,

λ � 6.085 × 10− 15
M

2
.

 (34)

In equation (34), the relationship betweenmagnetization
intensity and magnetic field intensity is linear. Since the
excitation force outputs only when the magnetic field rises,
the magnetic field intensity and magnetization intensity are
single-value functions, as shown in Figure 8(a). -en,
according to equation (1), the relationship curve between
magnetic field intensity and magnetostriction coefficient is
drawn, as shown in Figure 8(b).

5.3. Engineering Applications of Magnetization Models.
Excitation current iw(t) is a nonsinusoidal function; it can be
unfolded with the Fourier series by taking the first four
phases approximation:

iw(t) �
Iw

2
+
4Iw

π2 cos ωt +
1
9
cos 3 ωt +

1
25

cos 5 ωt ,

(35)

where ω is the angle frequency, Iw is the amplitude of the
excitation current, and t is the time.

Since the response time of the GMM rod can reach 1ms,
the time delay can be ignored. -e magnetic field intensity
and the magnetostrictive coefficient are considered to be
synchronical, and the excitation current and magneto-
striction are considered to be frequency-synchronical. And
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Table 3: Repeated identified data of DEA.

Parameter No. 1 No. 2 No. 3 No. 4 Mean Variance
Ms 5.486×105 5.536×105 5.726×105 5.801× 105 5.637×105 1.70E+ 8
α 0.063 0.071 0.067 0.062 0.066 1.27E− 5
k 2598 2389 2842 2761 2647.5 3.00E+ 4
c 0.126 0.211 0.196 0.137 0.168 1.34E− 3
a 6215 6713 6924 6837 6672.25 7.53E+ 4
jc 237 198 269 305 252.25 1.56E+ 3
E(θ) 0.931 0.876 0.964 0.898 0.917 1.11E− 3

Table 4: Repeated identified data of IGA.

Parameter No. 1 No. 2 No. 3 No. 4 Mean Variance
Ms 6.287×105 6.272×105 6.283×105 6.285×105 6.282×105 3.37E+ 5
α 0.083 0.079 0.081 0.078 0.080 3.69E− 6
k 3287 3339 3342 3296 3316 6.12E+ 2
c 0.154 0.163 0.171 0.162 0.163 3.63E− 5
a 7082 7071 7098 7091 7085.5 1.02E+ 2
jc 337 349 319 325 332.5 1.33E+ 2
E(θ) 0.592 0.613 0.621 0.635 0.615 2.42E− 4
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Figure 6: Excitation force and its relative error. (a) Calculated value and measured value of excitation force.(b) Relative error of excitation
force.
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the relation between excitation current and magnetostrictive
coefficient is as follows:

H(t) � 1050iw(t),

iw(t) � 30 1 − e
− t/τ

 ,

⎧⎨

⎩ (36)

where τ is the time constant of the driving coil.
-e output force of GMM rod must be applied to the

system of mass-damping-spring, and only after vibration
transmission can it generate excitation force. -e relation
between the magnetostrictive coefficient and the excitation
force is as follows:

Fv(t) �
7s

2
+ 227 × 103s + 1.8 × 108

19s
2

+ 248 × 103s + 2.22 × 108
E

H
Arλ(t). (37)

According to equations (35)–(37), the data in Table 6 are
applied to calculate the excitation force corresponding to the
excitation current and draw the relationship curve of the
two, as is shown in Figure 9(a). Obviously, when the ex-
citation current is a discrete point, the excitation force is also
discrete, but their variation trend is consistent and their
relationship is approximately linear.

Applying formulas (35)–(37) to the open-loop control of
GMV, we can plot excitation force curves under different

Table 5: Repeated identified data of IGA considering noise interference.

Parameter Ms α k c a jc E(θ)

No. 1 6.263×105 0.078 3306 0.158 7068 339 0.667
No. 2 6.266×105 0.078 3307 0.158 7069 340 0.668
No. 3 6.270×105 0.078 3308 0.158 7070 342 0.669
No. 4 6.273×105 0.078 3309 0.159 7071 343 0.670
No. 5 6.277×105 0.079 3310 0.159 7072 344 0.671
No. 6 6.278×105 0.079 3312 0.159 7073 345 0.672
No. 7 6.280×105 0.080 3313 0.160 7074 346 0.673
No. 8 6.281× 105 0.080 3314 0.160 7075 347 0.674
No. 9 6.282×105 0.081 3315 0.161 7076 348 0.675
No. 10 6.284×105 0.081 3316 0.161 7077 349 0.676
No. 11 6.285×105 0.082 3317 0.162 7079 350 0.678
No. 12 6.286×105 0.082 3318 0.162 7081 352 0.679
No. 13 6.287×105 0.082 3319 0.163 7082 354 0.680
No. 14 6.289×105 0.083 3320 0.164 7084 356 0.681
No. 15 6.290×105 0.084 3328 0.164 7085 358 0.684
No. 16 6.291× 105 0.085 3335 0.165 7086 359 0.686
No. 17 6.293×105 0.086 3336 0.165 7088 360 0.687
No. 18 6.294×105 0.087 3340 0.166 7089 361 0.688
No. 19 6.295×105 0.088 3345 0.167 7090 362 0.690
No. 20 6.296×105 0.089 3352 0.169 7091 365 0.692
Mean 6.283×105 0.082 3321 0.162 7093 351 0.678
Variance 8.73E− 5 1.16E− 5 175.4 1.01E− 5 53.7 59.8 5.7E− 5
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Figure 7: Magnetic field intensity-magnetization curve.(a) 300Hz. (b) 400Hz.
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excitation frequencies and excitation currents, as shown in
Figure 9(b). -e general trend is that the excitation force
increases with the increase of the excitation current; how-
ever, the degree of linearity is different. When the excitation
current is below 5A, the changing rate of the excitation force
is relatively small; especially when the current is in the range
of 1.0 A to 1.2 A, the excitation forces are 51N and 130N,
respectively, and the weak excitation force is due to the
insensitivity of the GMM to the change of lowmagnetic field
intensity and due to the existence of nonlinear dead zone
[24].

When the current is increased to more than 5A, the
changing rate of the excitation force is large, and when the

vibration current is below 20A, a good linearity can be kept.
When the excitation current is above 20A, the changing rate
of the vibration force is different from that in the range of 5
～20A, showing the characteristics of local linearization.
However, generally, when the excitation current is in the
range of 2.5～30A, the magnetic field intensity is in the
range of 1.5～31.5 A/m, the corresponding magnetization
intensity is 12.9～216.9 A/m, and the excitation force can be
adjusted in the range of 0.343～10 kN, which indicates that
the linear magnetized model can accurately describe the
relationship between magnetic field intensity and magne-
tization intensity. Compared with the Jiles–Atherton model,
the linear magnetized model is easy to be solved and is
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Figure 8: Magnetization model and magnetostrictive model curve. (a) Magnetic field intensity-magnetization.(b) Magnetization-mag-
netostriction coefficient.

Table 6: Value of the magnetic field intensity and magnetization.

i Hi Mi H2
i HiMi

1 5 15 25 75
2 10 48 100 480
3 15 113 225 1695
4 20 166 400 3320
5 25 179 625 4475
6 30 203 900 6090
7 35 246 1225 8610
8 40 279 1600 11160
9 45 308 2025 13860
10 50 344 2500 17200
 275 1901 38500 66965
11 55 386 3025 21230
12 60 422 3600 25320
13 65 459 4225 29835
14 70 486 4900 34020
15 75 539 5625 40425
16 80 602 6400 48160
17 85 618 7225 52530
18 90 624 8100 56160
19 95 659 9025 62605
20 100 705 10000 70500
 775 5500 65125 440875
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convenient for engineering application. To sum up, the
linear model of vibrator can be built with the combination of
the linear magnetization model, the structural dynamic
model, and the magnetostrictive model.

6. Conclusion

In this paper, DEA and IGA are adopted, respectively, to
identify the five unidentified parameters of the
Jiles–Atherton model. After comparison, it is found that
the average value of the objective function of DEA is as
high as 0.917, the average value of convergence generation
is 252, while the average value of the objective function of
IGA is only 0.615, and the average of convergence gen-
eration is 332, indicating that the performance of IGA is
more duplicable and stable. Substituting the identification
parameters of the two algorithms into the Jiles–Atherton
model, respectively, and the relative error of the excitation
force of DEA is found to be as high as 13%, while the
relative error of IGA is less than 5%. It shows that the
identification result of IGA has a better reliability than
that of DEA. According to the identification result of IGA
and based on the least square method, the linear function
is used for the curve-fitting of magnetic field intensity and
magnetization intensity, and a linear magnetization
model is established to replace the Jiles–Atherton model.
When the excitation current is in the range of 2.5～30 A,
the magnetic field intensity is in the range of 1.5～31.5 A/
m, the magnetization intensity is in the range of 12.9～
216.9 A/m, and the excitation force can be adjusted in the
range of 0.343～10 kN, which shows that the linear model
of GMV can be established with the combination of the
linear magnetization model, the structural dynamic
model, and the magnetostrictive model. -e linear
magnetization model can be applied to the open-loop
control of the vibrator, and it has engineering application
value. Based on this, the online identification method [25]

can be further explored to expand the application range of
parameter identification.
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