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For the cable-bridge coupling model, the dynamic tension of cables is an important parameter to study the vibration
characteristics of the model. Based on this concept, two calculation methods about dynamic tension of cables were introduced
in great detail, and the influences of these two calculation methods on the vibration characteristics of cable-bridge coupling
model were systematically investigated. Firstly, the vibration equation of the cable was derived based on the variational
principle for Hamiltonian, and the vibration equation of the bridge deck was obtained by Newton’s law. +en, the vibration
equation of the cable and bridge deck was transformed into ordinary differential vibration equation by the Galerkin method. In
addition, the differences of the coefficients in the ordinary differential vibration equation obtained by these two calculation
methods about dynamic tension were compared, and a parameter analysis was listed. Finally, the resonance mode of the cable-
bridge coupling model was analyzed by a multiple scales method, and an example analysis was listed. +e results of parameter
analysis show that there are obvious differences in the linear coefficient and nonlinear coefficient of the ordinary differential
vibration equation obtained by these two calculation methods. +e results of example analysis show that, for the cable-bridge
coupling model with 1 : 1 resonance, the amplitude of the model would not be different because of the two calculation methods
about dynamic tension, but the amplitude of the cable would be affected by the calculation method significantly. It can be found
that the research conclusions here can be helpful to the perfection of theoretical modeling and has certain guiding value for
practical engineering.

1. Introduction

Because cables have the characteristics of light-weight, large-
flexibility, and small-damping, those are used in civil en-
gineering, navigation engineering, aerospace engineering,
and other fields usually [1–4]. In civil engineering, from the
investigation of long-span stay-cable bridges, it can find that
large-scale vibration of stay-cables may occur under the
loads of winds, rains, pedestrians, or vehicles [5–7]. In
addition, the vibration characteristics of stay-cables are also
affected by the tower column and bridge deck, which would
make the dynamic behavior of stay-cables be more complex.

For example, when the vibration frequency of stay-cables is
proportional to the vibration frequency of the bridge deck,
the resonance would occur in the cable-bridge coupling
system. And in this condition, even small disturbances
would also let stay-cables generate large displacement.

Scholars have made lots of contributions to the study of
the vibration characteristics of the cable-bridge coupling
model. In 1998, the authors in [8] established the cable-
bridge coupling model and the vibration equation of it is
derived. +e research results showed that, under certain
conditions, the stay-cables may resonate with the bridge
deck, which would bring adverse effects to the safety of the
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bridge. In 2001, the parametric vibration model of stay-
cables was established in [9], and the vibration character-
istics of stay-cables were analyzed.+en, it proposed to apply
dampers on the bridge deck to control the large-amplitude
vibration of stay-cables. In 2003, the cable-bridge coupling
model was established in [10], and the displacement re-
sponse of stay-cables was obtained by the fourth-order
Runge–Kutta method. +e research results showed that the
vibration characteristics of stay-cables and bridge deck are
related to the sag and inclination of the stay-cables. In [11],
the coupling model of bridge deck and double-cables is
established, and the interaction between one cable and the
other cable is further considered. +e research results showed
that, by changing the parameters of one cable, the vibration
characteristics of another cable would be greatly affected; that
is, the coupling interaction between cable and cable is sig-
nificant. In 2012, the continuous nonlinear refined vibration
model of tower-cable-bridge deck was established in [12], and
the influences of frequency ratio of the bridge deck to cables,
amplitude of excitation, force of cables, and damping on the
vibration characteristics of the model were studied. In 2016,
considering the synergistic effects of cable-tower-beam, the
authors in [13] analyzed the parameter vibration mechanism
of cables and calculated the dynamic characteristics of the
bridge deck and cables. +e research results can provide a
theoretical value for the installation of vibration suppression
devices for cables. In 2017, Zhao et al. [14] were concerned
with the temperature effect on the vibration of a cable-stayed
beam, the research results showed that the effect of tem-
perature plays a dominant role on the vibration character-
istics of the cable-stayed beam, and the effect is closely related
with the initial tension force and the stiffness ratio.

For investigating the vibration characteristics of arbitrary
vibration models, such as cables [15, 16], bridges [17, 18], iced
conductors [19, 20], and plates [21–24], the partial differential
vibration equation of those vibration models should be
established firstly. As known for us, for the cable-bridge
coupling model, the dynamic tension of cables is an im-
portant parameter to study the vibration characteristics of the
model. Based on this concept, two calculation methods about
dynamic tension of cables were presented in this paper. Under
the two calculation methods about dynamic tension of cables,
the partial differential vibration equation of the model can be
converted into ordinary differential vibration equation by two
methods. One is to average the dynamic tension of cables over
the span length of cables, and then, the Galerkin method is
used to convert the partial differential vibration equation into
ordinary differential vibration equation directly. +e other is
not to average the dynamic tension of cables over the span
length, and then, the Galerkin method is used. +ere are
different calculation methods about dynamic tension of ca-
bles, the partial differential vibration equation of the cable-
bridge coupling model would be different, and then, the
ordinary differential vibration equation of the model would
also be different. Since the two calculation methods about
dynamic tension both are reasonable and have their own
advantages, whether these two calculation methods about

dynamic tension would affect the coefficients of vibration
equation of the cable-bridge coupling model or lead to the
vibration characteristics of the model to be different has not
been investigated by scholars.

Based on these conclusions above, the influences of the
two calculation methods about dynamic tension on the
vibration characteristics of a cable-bridge coupling model
has been systematically studied in this paper. Firstly, the
cable-bridge coupling model is established, and the vibration
equation of the model is derived in this paper. Second, the
differences of the coefficients in the ordinary differential
equation obtained by the two calculation methods of dy-
namic tension were compared. Furthermore, the resonance
mode of the cable-bridge coupling model is analyzed by the
multiple scales method. Finally, the influence of the two
calculation methods of dynamic tension on the vibration
characteristics of cable-bridge coupling model is further
analyzed. +e research results of this paper can be good for
improving the theoretical modeling and offering some
reference values to the actual engineering.

2. Vibration Equation

In order to facilitate the study and reflect the essence of the
research problem in this paper, the following assumptions
are made:

(1) +e bending stiffness, torsional stiffness, and shear
stiffness of the cable are not considered.

(2) +e static equilibrium configuration of the cable is
represented by parabola.

(3) +e constitutive relation of the cable satisfies
Hooke’s law.

In this paper, the bridge deck is simplified as an
equivalent mass block with certain stiffness. And, based on
this concept, the cable-bridge coupling model can be
established, which is shown in Figure 1.

In Figure 1, y is the static equilibrium configuration of
the cable, ξ is the dynamic displacement of the cable de-
viating from the static equilibrium configuration, θ is the
angle between the cable and the horizontal direction, and X
is the displacement of the bridge deck.

According to [20], it can be obtained that the vibration of
the cable would mainly occur in the y-axis direction (in-
plane), so this paper would only consider the vibration of the
cable in the y-axis direction (in-plane). Based on the vari-
ational principle for Hamiltonian, the following results can
be obtained:

􏽚
t2

t1

δK
V

− δ􏽙 +δW􏼑dt � 0,􏼐 (1)

where KV represents the kinetic energy of the cable, 􏽑

represents the potential energy of the cable, W represents the
work done by the non-conservative forces, t represents the
time, t1 is the initial time, and t2 is the final time.

+e items in equation (1) are as follows:
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where H represents the initial static tension, EA represents
the tensile stiffness, h is the dynamic tension, m is the unit
mass of the cable, ςC is the damping coefficient of the cable, L
is the span length of the cable, and g is the acceleration of
gravity.

By substituting equations (2) into (1), the in-plane vi-
bration equation of the cable can be obtained as follows:

(H + h)
z
2ξ

zx
2 + h

d2y
dx

2 � m
z
2ξ

zt
2 + ςC

zξ
zt

. (3)

According to Newton’s law, the vibration equation of
bridge deck is

M
z
2
X

zt
+ C

zX

zt
+ KX + h � 0, (4)

where K is the equivalent stiffness of the bridge deck, C is the
viscous damping of the bridge deck, andM is the equivalent
mass of the bridge deck.

+e vibration equation of the cable-bridge coupling
model can be obtained by combining equations (3) and (4),
which is

(H + h)
z
2ξ

zx
2 + h

d2y
dx

2 � m
z
2ξ

zt
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,
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⎪⎪⎪⎪⎪⎪⎩

(5)

3. Two Calculation Methods

3.1. 7e First Calculation Method. In order to facilitate the
analysis about vibration characteristics of the cable-bridge
coupling model, the calculation equation of dynamic tension
about the cable should be obtained firstly. +e microelement
length ds on the static equilibrium configuration of the cable
and the microelement length ds’ on the dynamic equilibrium
configuration of the cable are taken for the research object,
respectively (see Figure 2 for details).

+e cable can be regarded as a continuum, and then,
the calculation equation about dynamic tension of the
cable can be obtained according to the continuum theory,
which is

h � EAe(x) �
ds′ + ds( 􏼁 ds′ − ds( 􏼁

ds ds′ + ds( 􏼁

≈
ds′( 􏼁

2
− (ds)

2

2(ds)
2 ≈ EA

dy

dx

zξ
zx

+
1
2

zξ
zx

􏼠 􏼡

2
⎡⎣ ⎤⎦,

(6)

where e(x) is the strain.
Equation (6) is the dynamic tension caused by the

change in the configuration of the cable, and the change in
dynamic tension caused by the vibration of bridge deck is
not considered. If the influence of the vibration of bridge
deck on dynamic tension is considered, equation (2) can be
rewritten as follows:

h1 � EAε ≈ EA
dy

dx

zξ
zx

+
1
2

zξ
zx

􏼠 􏼡

2
⎡⎣ ⎤⎦ +

X

L

⎧⎨

⎩

⎫⎬

⎭. (7)

Equation (7) is the first calculation method of dynamic
tension.

By substituting equation (7) into (5), the vibration
equation of cable-bridge coupling model under the first
calculation method about dynamic tension can be obtained,
which is

θ

y

ξ

X

y x

Figure 1: Cable-bridge coupling model.
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(8)

3.2. 7e Second Calculation Method. In practical engineer-
ing, the axial vibration of the cable is far less than its
transverse vibration; that is to say, the effect of axial inertia
force of the cable can be ignored. Based on this concept,
equation (7) can be averaged over the range of 0 to L; that is,
equation (7) can be rewritten as follows:

h2 � EAε ≈
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Equation (9) is the second calculation method of dy-
namic tension.

By substituting equation (9) into (5), the vibration
equation of the cable-bridge coupling model under the
second calculation method about dynamic tension can be
obtained, which is
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3.3. Differences in Coefficients. According to [20], the vi-
bration characteristics of the cable are mainly affected by the
first-order mode shape. +erefore, the first-order mode
truncationmethod is used here, and the influences of higher-
order mode shape on the vibration behaviors of the cable
would be considered in subsequent research.

According to the first-order mode truncation method,
the dynamic displacement (ξ) of the cable can be written as
the product of time function and mode shape function,
which is

ξ � q(t)ϕ(x). (11)

By substituting equation (11) into (8), based on the
Galerkin method, the ordinary differential vibration equa-
tion of the cable-bridge coupling model under the first
calculation method about dynamic tension can be obtained:

]1€q(t) +]2 _q(t) +]3q(t) +]4q
2
(t) +]5q

3
(t) +]6X +]7Xq(t) � 0,

]8 €X(t) +]9 _X(t) +]10X(t) +]11q(t) +]12q
2
(t) � 0,

⎧⎨

⎩

(12)

where the dot represents the derivative of t and the calcu-
lation equations of coefficients involved in equation (12) are
as follows:

Static equilibrium
configuration

ds

ds′ Dynamic equilibrium
configuration

Figure 2: Microelement diagram of cable.
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In the same way, by substituting equation (11) into (10),
based on the Galerkin method, the ordinary differential
vibration equation of the cable-bridge coupling model under
the second calculation method about dynamic tension can
be obtained:
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+e calculation equations of coefficients involved in
equation (14) are as follows:
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By comparing equations (13) and (15), it can be found
that the coefficients (]3 and ϑ3; ]4 and ϑ4; ]5 and ϑ5; ]11 and
ϑ11; ]12 and ϑ12) in the ordinary differential vibration
equation of cable-bridge coupling model obtained by the
first calculation method about dynamic tension and the
second calculation method about dynamic tension have
obvious differences. +e differences of these coefficients may
lead to the differences in vibration characteristics of the
cable-bridge coupling model, and the differences between
them would also lead to different natural frequencies of the
model.+erefore, from the analysis here, it can also be found
that it is necessary to consider the two calculation methods
about dynamic tension when studying the vibration char-
acteristics of cable-bridge coupling model.
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3.4. Parameter Analysis. From the analysis form in the
section above, it can be seen that there are some differences
in some coefficients of the ordinary differential vibration
equation obtained by the two calculation methods about
dynamic tension. +e differences of some coefficients in
vibration equation of cable-bridge coupling model under the
two calculation methods about dynamic tension are studied
systematically based on the physical parameters in [11]. Also,
based on Matlab, the curves about influences of span length
on coefficients are obtained, which is shown in Figure 3.

It can be seen from Figure 3 that, with the increasing L,
the coefficients (]4 and ϑ4, ]5 and ϑ5, and ]11 and ϑ11) would
increase; with the increasing L, the coefficients (]3 and ϑ3
and ]12 and ϑ12) would decrease; therefore, the coefficients
obtained by the two calculation methods have the same
variation law; that is, these two calculation methods would
not affect the variation law of the coefficients. It can also be
obtained from Figure 3 that when L is greater than 300m,
the ratio of coefficients obtained by these two calculation
methods is a certain value; that is, different calculation
methods of dynamic tension would affect the value of co-
efficients; when L is less than 300m, the ratio of coefficients
obtained by the two methods is a variable. Moreover, with
the increasing L, the ratio of coefficients would increase, and
finally, the ratio would tend to be constant; these two cal-
culation methods would also affect the vibration frequency
of the cable, which may lead to the vibration characteristics
of the cable-bridge couplingmodel to be different.+erefore,
it has certain theoretical significances and engineering values
to study the influence of these two different calculation
methods about dynamic tension on the vibration charac-
teristics of the cable-bridge coupling model. In the following
section, the influence of these two calculationmethods about
dynamic tension on the internal resonance of the cable-
bridge coupling model would also be studied based on a
numerical example.

4. Multiple Scales Method

In practical engineering, when the frequency of the cable is
proportional to the frequency of the bridge deck, it would let
the cable-bridge coupling system generate resonance. +e
resonance would greatly let the amplitude of the cable and
bridge deck be much bigger, which would damage the
stability of structure and threaten the safety of personal.
+erefore, it is necessary to analyze the resonance mode of
the cable-bridge coupling system. In recent decades, many
effective methods have been proposed to solve the nonlinear
vibration equation.+e multiple scales method is a common
method to solve the nonlinear vibration equation and is one
of the effective methods to analyze the nonlinear resonance
mode. Based on this concept, the multiple scales method is
used to solve the resonance mode of the cable-bridge
coupling system here.

From equations (14) and (12), it can be obtained that the
form of vibration equation under the two calculation
methods of dynamic tension is the same even though the

coefficients of some items in the vibration equation are
different. For the form of the vibration equation is exactly
the same, only the solution process of resonance mode of the
cable-bridge coupling system under the first calculation
method of dynamic tension is listed as shown in the fol-
lowing section. And the resonance mode of the cable-bridge
coupling system under the second calculation method of
dynamic tension can be deduced by analogy.

In order to satisfy the solution form of multiple scales
method, equation (12) should be rewritten as follows:

€Q1 + ω2
Q1Q1 � ε ξQ1

_Q1 + ξQ2Q
2
1 + ξQ3Q

3
1 + ξQ4Q2 + ξQ5Q1Q2􏼐 􏼑,

€Q2 + ω2
Q2Q2 � ε ξQ6

_Q2 + ξQ7Q1 + ξQ8Q
2
1􏼐 􏼑,

⎧⎪⎨

⎪⎩

(16)

where Q1 is q(t), Q2 is X(t), and ε is a dimensionless small
parameter. +e calculation formulas of other coefficients are
as follows:

ξQ1 � −
]2
]1

;

ξQ2 � −
]4
]1

;

ξQ3 � −
]5
]1

;

ξQ4 � −
]6
]1

;

ξQ5 � −
]7
]1

;

ξQ6 � −
]9
]8

;

ξQ7 � −
]11
]8

;

ξQ8 � −
]12
]8

;

ω2
Q1 �

]3
]1

;

ω2
Q2 �

]10
]8

.

(17)

According to [20, 25–28], the solution of equation (16)
can be set as

Q1 � Q11 T0, T1( 􏼁 + εQ12 T0, T1( 􏼁 + Ο ε2􏼐 􏼑,

Q2 � Q21 T0, T1( 􏼁 + εQ22 T0, T1( 􏼁 + Ο ε2􏼐 􏼑,

⎧⎪⎨

⎪⎩
(18)

where Q11 and Q21 are the periodic solutions of the system,
Q12 andQ22 are the modified solutions of the system,O(ε2) is
a higher-order small quantity, and T0 and T1 are two time
scales (T0 � t and T1 � εt).
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Figure 3: Influences of span length on coefficients: (a) coefficients of ]3 and ϑ3; (b) coefficients of ]4 and ϑ4; (c) coefficients of ]5 and ϑ5; (d)
coefficients of ]11 and ϑ11; (e) coefficients of ]12 and ϑ12.
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+e operator formula is introduced, which is

D0 �
z

zT0
,

D1 �
z

zT1
.

(19)

By substituting equations (18) and (19) into equation
(16) and equating the coefficients of ε0 and ε1 to zero in-
dependently, it can be obtained that

ε0:

D
2
0Q11 + ω2

Q1Q11 � 0,

D
2
0Q21 + ω2

Q2Q21 � 0,

⎧⎪⎨

⎪⎩

(20)

ε1:

D
2
0Q12 + ω2

Q1Q12 � − 2D0D1Q11 + ξQ1D0Q11 + ξQ2Q
2
11 + ξQ3Q

3
11 + ξQ4Q21 + ξQ5Q11Q21,

D
2
0Q22 + ω2

Q2Q22 � − 2D0D1Q21 + ξQ6D0Q21 + ξQ7Q11 + ξQ8Q
2
11.

⎧⎨

⎩

(21)

According to the solvability condition of differential
equation, the solution of equation (20) can be set as follows:

Q11 � AQ1 T1( 􏼁exp iωQ1T0􏼐 􏼑 + CC,

Q21 � AQ2 T1( 􏼁exp iωQ2T0􏼐 􏼑 + CC,

⎧⎪⎨

⎪⎩
(22)

where AQ1 is the amplitude of the cable, AQ2 is the amplitude
of the bridge deck, i is the imaginary unit, and CC is
conjugate terms.

D
2
0Q12 + ω2

Q1Q12 � − 2iωQ1AQ1′ exp iωQ1T0􏼐 􏼑 + ξQ1AQ1iωQ1 exp iωQ1T0􏼐 􏼑+

ξQ2 A
2
Q1 exp 2iωQ1T0􏼐 􏼑 + AQ1AQ1􏽨 􏽩+

ξQ3 A
3
Q1 exp 3iωQ1T0􏼐 􏼑 + 3A

2
Q1AQ1 exp iωQ1T0􏼐 􏼑􏽨 􏽩+

ξQ4AQ2 exp iωQ2T0􏼐 􏼑 + ξQ5

AQ1AQ2 exp i ωQ1 + ωQ2􏼐 􏼑T0􏽨 􏽩+

AQ1AQ2 exp i ωQ1 − ωQ2􏼐 􏼑T0􏽨 􏽩

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ CC,

D
2
0Q22 + ω2

Q2Q22 � − 2iωQ2AQ2′ exp iωQ2T0􏼐 􏼑+

ξQ6AQ2iωQ2 exp iωQ2T0􏼐 􏼑 + ξQ7AQ1 exp iωQ1T0􏼐 􏼑+

ξQ8 A
2
Q1 exp 2iωQ1T0􏼐 􏼑 + AQ1AQ1􏽨 􏽩 + CC,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where “’” in equation (23) represents the derivation of the
time scale T1.

According to equation (23), there would be a 1 :1 res-
onance mode in the cable-bridge coupling system. In the
following section, the influence of the two calculation
methods about dynamic tension on the resonance of the
cable-bridge coupling system would be analyzed.

5. Example Analysis

When equivalent stiffness of bridge deck is K� 5×106N/m,
equivalent mass of bridge deck isM� 6.13×105 kg, tension is
H� 105.88 N, and span length L is 300m. At this time, there is

a 1 :1 resonance mode in the cable-bridge coupling system
under the first calculation methods of dynamic tension.

When equivalent stiffness of bridge deck is K� 5×106N/
m, equivalent mass of bridge deck is M� 4×105 kg, tension
isH� 105.88 N, and span length L is 300m. At this time, there
is a 1 :1 resonance mode in the cable-bridge coupling system
under the second calculation methods of dynamic tension.

When equivalent stiffness of bridge deck is K� 5×106N/
m, equivalent mass of bridge deck is M� 5×105 kg, tension
is H� 1.25×106N, and span length L is 300m. At this time,
there is no resonance mode in the cable-bridge coupling
system under the two calculation methods of dynamic
tension.
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Supposing that the initial displacement of the cable is
0.1m and that of the bridge deck is 0.05m. According to
Matlab, the displacement response curves of the cable-bridge
coupling system under the two calculation methods of
dynamic tension can be obtained, which is shown in Fig-
ures 4 and 5.

From Figure 4, it can be obtained that the beat frequency
of displacement response would be different due to the
differences of the calculation methods of dynamic tension.
+e amplitudes of the bridge deck under the two calculation
methods of dynamic tension are 0.05m; the amplitude of the
cable under the first calculation method of dynamic tension
is 0.366m, and the amplitude of the cable under the second
calculation method of dynamic tension is 0.224m, which is a
noteworthy phenomenon. +e reason for this phenomenon
can be explained as follows: amplitude is a form of energy;
that is, when the resonance occurs in the cable-bridge

coupling system, the energy of the cable-bridge coupling
system is certain, and the energy would not be different due
to the different calculation methods about dynamic tension.
However, the second calculation method about dynamic
tension has ignored the inertial force on the cable; that is to
say, it has ignored a part of energy, which would make the
amplitude of the cable decrease.

From Figure 5, it can be obtained that when the cable-
bridge coupling system does not meet the 1 :1 resonance
condition, the displacement response curves obtained by the
first calculation method about dynamic tension and the
second calculation method about dynamic tension are al-
most the same; that is, any calculation method of dynamic
tension is feasible for the nonresonance condition.

+erefore, it is reasonable to choose the first calculation
method of dynamic tension to solve the displacement re-
sponse of the cable due to the large energy generated by the
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Figure 4: Displacement response (with 1 :1 response mode): (a) the first calculation method of dynamic tension; (b) the second calculation
method of dynamic tension.
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Figure 5: Displacement response (without 1 :1 response mode): (a) the first calculation method of dynamic tension; (b) the second
calculation method of dynamic tension.
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resonance (the amplitude would also be large) when ana-
lyzing the resonance of the cable-bridge coupling system.
For the cable-bridge coupling system without resonance, the
above two calculation methods are reasonable to solve the
displacement response of the cable.

6. Conclusion

Based on the theoretical analysis and numerical simulation,
the influences of the two calculationmethods about dynamic
tension of cables on the linear coefficient and nonlinear
coefficient in the ordinary differential vibration equation are
analyzed. Also, the displacement response of the cable-
bridge coupling model under the two calculation methods
about dynamic tension is compared. +e following con-
clusions can be listed:

(1) +ere are obvious differences in some coefficients in
the ordinary differential vibration equation of the
cable-bridge coupling model obtained by the two
calculation methods about dynamic tension. Because
the vibration frequency of the cable is dominated by
coefficients ]3 and ϑ3, the differences of coefficients
]3 and ϑ3 would make the vibration characteristics of
cable-bridge coupling model be different.

(2) When the L is greater than 300m, the ratios of
coefficients obtained by these two calculation
methods all are certain values which range from 1.5
to 2.0; while when the L is less than 300m, the ratio
of coefficients ]3 and ϑ3 is a change value, which
increases with the increasing L and finally tends to be
1.62.

(3) +e energy of the cable-bridge coupling model is
certain, and the energy would not be different due to
the different calculation methods about dynamic
tension. However, the second calculation method
about dynamic tension has ignored the inertial force
on the cable; that is to say, a part of the energy is
ignored, which would reduce the amplitude of the
cable.

(4) For the cable-bridge coupling model with 1 :1 res-
onance mode, because the energy generated by 1 :1
resonance is large (the amplitude of cables would be
large), it is reasonable to choose the first calculation
method of dynamic tension to solve the displace-
ment response of the cable.

(5) For the cable-bridge coupling model without a
resonance mode, because the energy generated by
nonresonance mode is small (the amplitude of cables
would be small), these two calculation methods
about dynamic tension both are reasonable to solve
the displacement response of the cable.

+e influence of two calculation methods about dynamic
tension on the vibration characteristics of the cable-bridge
coupling model has been considered in this paper, and then,
it can be found that the conclusions here can be helpful to
the perfection of the cable-bridge coupling model and have
some guiding value for practical engineering.
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