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In order to study the influence of dynamic wind on the nonlinear galloping characteristics of iced transmission lines, an external
excitation load is added to the governing equation of iced transmission lines under the condition of stable wind, and a new forced
self-excited system has been established. .e frequency-amplitude relationship of the forced self-excited system under weak
excitation and strong excitation is obtained by using the multiple-scale method..e principal resonances and superharmonic and
subharmonic resonances of the forced self-excited system have also been analyzed..e results show that, in the forced self-excited
system under strong excitation, when the excitation frequency is close to the integral and fractional times of the natural frequency,
it is easier to produce 1/2-order subharmonic resonance, 2-order superharmonic resonance, and 3-order superharmonic res-
onance. In addition, numerical techniques provide bifurcation diagrams of different control parameters, which are able to
highlight the effects of the simultaneous presence of the sources of excitation. When the control parameters (wind velocity,
excitation amplitude, tuning parameter, tension, and Young’s modulus) change, the response amplitudes of the principal
resonance and harmonic resonance will have multivalues, jump phenomenon, and hardening behavior. .e control parameters
can be used as a reference for engineering design. More importantly, as a combination of the Duffing equation and the Rayleigh
equation, the forced self-excited system also has high theoretical research value.

1. Introduction

.e cross section of the transmission lines would change
from circular cross section to crescent or D-shape cross
section under complex climatic conditions such as snow
rime, sleet, and freezing rain [1, 2]. .us, the iced trans-
mission lines are prone to galloping under wind load [2].
Long-time and continuous galloping of transmission lines
will lead to fatigue failure of structures and poses a signif-
icant threat to the safety and serviceability of these structures
[2, 3]. In this case, short circuit, frequent tripping, broken
strand or wire, and other accidents will be likely to often
occur in the transmission line structure [4, 5]. In order to
investigate the galloping of iced transmission lines, Den

Hartog [6] proposed the vertical galloping mechanism,
indicating that galloping mainly occurred in the vertical
direction. .e vertical galloping mechanism is based on the
linear theory, and in fact, the span length of transmission
lines is much larger than the diameter of transmission lines,
so the transmission lines actually belong to the cable
structure, which would show obvious nonlinear behaviors
when they are affected by gravity and external forces [7]. In
addition, like the transmission line, the span of the stay cable
is much larger than its diameter. .erefore, both trans-
mission lines and cables belong to the cable structure.

In recent years, many scholars have studied the non-
linear dynamic behavior of cables under external excitation.
.e cables in stayed bridges had one fixed end, and the other
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end was subjected to harmonic vertical excitation. At first,
through the method of experiment and finite element, Lee
and Perkins [8] found the pure planar response, internally
resonant nonplanar response, and quasi-periodic responses.
Hu and Pai [9] used the 3D motion analysis system in this
experiment, and this experiment had observed and studied
the subharmonic and superharmonic resonances, period-
doubling bifurcations, hardening nonlinearity effect, and
complex traveling vibrations of cables. Under in-plane and
out-of-plane harmonic loads, Gattulli et al. [10] used ana-
lytical and finite element models to study the modal in-
teraction of cables in both planar and spatial responses and
validated the simplifying kinematic assumptions introduced
in the analytical models. In [8–10], the nonlinear vibration of
the cable was studied by the method of experiment and finite
element. However, there is no qualitative analysis on the
vibration form of the cable. Next, through the method of
perturbation and numerical method, Nielsen and Kirke-
gaard [11] obtained the approximate solutions of the cable
subjected to superharmonic excitation by the averaging
method. And Nielsen discussed the influences about com-
bined harmonics and superharmonics’ effect on vibration
characteristics of the cable, but he did not take the influence
of curvature and small deformation of the cable structure
into consideration. Srinil and Rega [12] compared nonlinear
modal interactions in shallow horizontal cables with kine-
matically noncondensed vs. condensed modeling, under
simultaneous primary external and internal resonances. And
nonlinear dynamic configurations and tensions were also
examined. .e inclined cable is subjected to a uniformly
distributed harmonic load; Rega and Srinil [13] solved
partial differential equations by using multimode dis-
cretization and a second-order multiple-scale method and
found that the hybrid modal interactions undergo several
kinds of bifurcations and nonlinear phenomena along with
meaningful transition from periodic to quasi-periodic and
chaotic responses. Luongo and Zulli [14] analyzed the effect
of wind flow simultaneously with rain of the stay cable and
studied the interactions between in-plane and out-of-plane
motions through bifurcation diagrams..e bifurcations and
chaotic dynamics of parametrically and externally excited
suspended cables were also investigated in [15]. In [12–15],
some scholars studied the nonlinear dynamic effects of
different modes on the cable, the coupling vibration of the
multidegree of freedom of the cable, the bifurcation analysis
of the cable, and the quasi-periodic and chaotic responses of
the cable. However, the dynamic response of cables, under
the nonsteady wind conditions, has not been studied.
Moreover, some scholars also studied the aeroelastic in-
stability of stay cables. And the rain-wind-induced vibration
[16] and the dry galloping [17] of the stay cable fall under the
problems of aeroelastic instability. As is known to all, it is
believed that this aeroelastic instability problem is due to the
formation and oscillation of a water rivulet on the upper
cable surface, which changes the cable aerodynamics and
absorbs energy into the system. Vo et al. [18] confirmed that
deformations of the stay cable have a significant influence on
the bending aeroelastic instability of the structure by ex-
periments. Huang et al. [19] solved the governing equations

for the structure of the suspended cable-stayed beam by
using the normal form and the multiple-scale method and
found deformations of the stay cable have a significant
influence on the bending aeroelastic instability of the
structure. In [16–19], some scholars studied the rain-wind-
induced vibration, ice galloping, and dry galloping of the
stay cable and the influence of the deformations of the stay
cable on the aerodynamic stability of the cable. .e trans-
mission line is also a cable structure because the trans-
mission line is easy to icing, resulting in irregular cross-
section shape..erefore, iced transmission lines are prone to
galloping under the excitation of wind load. However, the
nonlinear vibration characteristics of iced transmission lines
under the influence of dynamic wind are rarely studied.
Additionally, Zulli and Luongo [20, 21] considered the
dynamics of two towers exposed to turbulent wind flow and
linked by a nonlinear viscous device. .ey stated the steady
component of the wind is responsible for self-excitation,
while the turbulent part causes both parametric and external
excitations in a specific resonance condition.

Based on the analysis of [8–19], few scholars have studied
the influence of dynamic wind on transmission lines. And
based on the influence of dynamic wind on the dynamic
response of the structure in [20, 21], this paper systematically
studies the influence of dynamic wind on the nonlinear
galloping characteristics of iced transmission lines. .e
transmission line is a flexible and elastic cable structure. And
the governing equations of the transmission line contain
quadratic and cubic nonlinear terms [22], in which the
quadratic term is related with the initial curvature of the
conductor and the cubic term is related with the axial
stretching of the conductor [23, 24]. .erefore, the dynamic
wind is added to the governing equation with quadratic and
cubic nonlinear restoring force terms to form a new forced
self-excited system. .e results show that the principal
resonance under weak excitation and the increase in wind
velocity or excitation amplitude will enhance the hardening
behavior and nonlinear characteristics of the system and will
have the multivalue and jump phenomenon. Moreover, the
results turn out that increasing the tension and Young’s
modulus properly can reduce the resonance peak value of
the principal resonance and harmonic resonance. .e
conclusions obtained by this paper will be helpful for the
nonlinear galloping analysis of iced transmission lines and
also give some references to practical engineering..is paper
is organized as follows: in Section 2, we present a mathe-
matical formulation of the iced transmission lines. In Sec-
tions 3 and 4, the principal resonance and the harmonic
resonance are, respectively, discussed by using themethod of
multiple scales. A detailed summary of the results is pre-
sented in Section 5.

2. Dynamic Model of Iced Transmission Lines

Most of high-voltage transmission lines can be equivalent
to equal-height transmission lines in plain areas. .ere-
fore, single-span equal-height transmission lines with two
fixed supports are considered in this paper. .e me-
chanical model of single-span iced transmission lines is
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established as shown in Figure 1, and it is considered that
the wind is along the z-axis direction as shown in Figure 2.
.e transmission lines are assumed to be homogenous and
linear elastic with negligible torsional, bending, and shear
stiffness. Considering the transmission lines have a small
initial sag-to-span ratio (less than 1 : 8) and low static
strain, the associated static equilibrium configuration of
the transmission lines can be described through the pa-
rabola y � 4d [s/L−(s/L)2] (s is the curvilinear abscissa; L is
the span length; and d is the sag) [25]. .e initial static
equilibrium configuration of the transmission lines under
gravity is ξ1, and when the static equilibrium configura-
tion of the transmission lines changes under the action of
other external loads, the corresponding dynamic equi-
librium configuration becomes ξ2.

Figure 1 is the model of singe-span equal-height
transmission lines, and in Figure 1, u(s, t) and v(s, t) are
the displacements measured from the dynamic equilib-
rium configuration in the x-axis and y-axis directions,
respectively, and p∗ cos(Ωt) is the forced excitation
load.

In order to facilitate the study of the aerodynamic loads
of iced transmission lines, it is assumed that the iced shape
of the transmission line is crescent. Figure 2 is the model of
the cross section of iced transmission lines, Figure 2(a) is
the physical model of the transmission line cross section,
and Figure 2(b) is the force analysis model of the trans-
mission line cross section; O1z2 is the axis of symmetry of
the cross section of iced transmission lines, O1z1 is the
direction in which the horizontal wind acts on the trans-
mission line during vibration,O1z is the horizontal axis, α is
the wind attack angle, α0 is the initial wind attack angle, αt is
the relative wind attack angle, U is the horizontal wind
velocity,U0 is the relative wind velocity, and _v is the vertical
galloping velocity.

From Figure 2, it can be obtained that

tan(α) �
_v

U
≈ α. (1)

.e relative wind acts on the iced transmission lines,
which results in an air drag (FD) along the relative wind
direction and an upward air lift (FL) perpendicular to the
relative wind direction [26]; therefore, it can be obtained that

Fy � FL cos(α) − FD sin(α). (2)

Considering the small deformation, that is, sin (α)≈ α
and cos (α)≈ 1, equation (2) can be simplified as follows:

Fy � FL − αFD. (3)

According to fluid-induced vibration theory, the ex-
pressions of FL and FD can be listed [26]:

FL �
1
2
ρU

2
DCL, (4a)

FD �
1
2
ρU

2
DCD, (4b)

where CL is the aerodynamic lift coefficient, CD is the
aerodynamic drag coefficient, ρ is the air density, and D is
the diameter of the transmission line.

Substituting equations (4a) and (4b) into (3), based on
Taylor’ law, the aerodynamic coefficients in the y-axis di-
rection can be fitted with a cubic nonlinear curve:

Cy � C0 + A′α + B′α3 + C′α2, (5)

where C0, A′, B′, and C′ are undetermined coefficients
related to the aerodynamic loads.

According to equations (2)–(4a) and (4b), it can be
obtained that

Fy �
1
2
ρU

2
DCy. (6)

Under the continuous excitation of themean wind, when
the inertia force generated by the vibration of the trans-
mission line is greater than the viscous force of the system,
the energy of the system will continue to increase. When the
energy input from the outside is equal to the energy dis-
sipated by the system, the transmission line will have self-
excited vibration with constant amplitude. However, in
practice, dynamic wind is unstable. Based on this concept,
the mean wind (U) in Figure 2(b) is replaced by dynamic
wind (􏽢U), and then the iced transmission line is excited by
dynamic wind. In fact, dynamic wind (􏽢U) can be expressed
as the superposition of mean wind (U) and fluctuating wind
(􏽥u(t)):

􏽢U � U + 􏽥u(t). (7)

.e harmonic superposition method can be used to
simulate the fluctuating wind, and the random process of
fluctuating wind can be simulated by spectral decomposi-
tion. .en, it can be obtained that

􏽢U � U + 􏽘
∞

i�1
Ui cos Ωit + ϕi( 􏼁, (8)

where Ui is the amplitude, Ωi is the circular frequency, and
ϕi is the phase difference.

Substituting equation (8) into equation (6), the vertical
aerodynamic lift of dynamic wind can be obtained:

Fy1 �
1
2
ρ D 􏽢U

2
Cy �

1
2
ρD U

2
+ 2U 􏽘

∞

i�1
Ui cos Ωit + ϕi( 􏼁 + 􏽘

∞

i�1
Ui cos Ωit + ϕi( 􏼁⎡⎣ ⎤⎦

2
⎧⎨

⎩

⎫⎬

⎭Cy. (9)
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After neglecting the high-order terms of equation (9), it
can be obtained that

Fy1 �
1
2
ρDU

2
+ ρDU 􏽘

∞

i�1
Ui cos Ωit + ϕi( 􏼁⎡⎣ ⎤⎦Cy. (10)

Substituting equation (5) into (10), it can be obtained
that

Fy1 � 􏽥a _v + 􏽥b _v
3

+ 􏽥c _v
2

+ 􏽥d + ρDU 􏽘
∞

i�1
Ui cos Ωit + ϕi( 􏼁 · C0 + A′α + B′α3 + C′α2􏼐 􏼑, (11)

where

􏽥a �
ρUDA′

2
,

􏽥b �
ρDB′
2U

,

􏽥c �
ρDC′
2

,

􏽥d �
1
2
ρU

2
DC0.

(12)

In equation (11), ρ and D denote the air density and the
diameter of the transmission line, respectively;U denotes the
wind velocity; and C0, A′, B′, and C′ are related to the
aerodynamic force of the iced transmission line, which can
be determined by the experiment. .e initial wind attack

angle and icing shape of the transmission line remain un-
changed, and the quasi-static assumption is adopted [27];
then, C0, A′, B′, and C′ are constant. Since ρ and D are also
constants, the coefficient (􏽥c) is a constant. .e fitting co-
efficient (􏽥c) does not change with the wind velocity (U), so
coefficient (􏽥c) is also a constant term. And the coefficient (􏽥d)
does not change with the vertical galloping velocity ( _v), so
the coefficient (􏽥d) is equivalent to adding extra weight on the
iced transmission line. And the coefficient (􏽥d) has nothing to
do with the generation of transmission line galloping, so we
can ignore the coefficient (􏽥d). .erefore, coefficients (􏽥c) and
(􏽥d) of aerodynamic load are not considered in this paper.

In equation (11), the expression
(ρ DU 􏽐

∞
i�1 Ui cos(Ωit + ϕi) · (A′α + B′α3 + C′α2)) is a

parametric excitation term in the system, and the expression
(ρ DU 􏽐

∞
i�1 Ui cos(Ωit + ϕi) · (C0)) is an external excitation

term in the system. As the coefficient (C0) is larger than the
coefficients A′, B′, and C′, only the external excitation

L

x (u)
O

y (v)

s
ds

p∗cos (Ωt) d

ξ1

ξ2

Figure 1: .e model of singe-span equal-height transmission lines.
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Figure 2: .e model of the cross section of iced transmission lines. (a) Physical model. (b) Force analysis model.
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(ρ DU 􏽐
∞
i�1 Ui cos(Ωit + ϕi) · (C0)) is considered in the fol-

lowing paper. .e stable part of dynamic wind is injected into
the transmission line to generate self-excited vibration, and the
unstable part will cause external excitation [20, 21]. Based on
this concept, the self-excitation term in equation (11) can be
simplified into Fy � 􏽥a _v + 􏽥b _v3 because it does not consider
coefficients (􏽥c) and (􏽥d) of aerodynamic load; additionally, the
external excitation term in equation (11) can be simplified into
Fyu � ρ DU 􏽐

∞
i�1 Ui cos(Ωit + ϕi) · (C0) � −p∗ · cos(Ωt)

without considering the parametric excitation term; then, the
vertical aerodynamic force of dynamic wind is

Fy1 � Fy + Fyu � 􏽥a _v + 􏽥b _v
3

− p
∗

· cos(Ωt). (13)

According to the nonlinear vibration theory, when the
response contains subharmonic and superharmonic com-
ponents, the relationship between the restoring force term
and the displacement of the system is a nonlinear closed

curve, which has obvious nonlinear hysteresis characteris-
tics. .e simplified vertical aerodynamic force Fy1 � Fy +

Fyu � 􏽥a _v + 􏽥b _v3 − p∗ · cos(Ωt) of dynamic wind includes the
external excitation term Fyu � −p∗ · cos(Ωt) and the
Rayleigh damping term Fy � 􏽥a _v + 􏽥b _v3. .e Rayleigh
damping, quadratic, and cubic nonlinear restoring force
terms constitute the nonlinear hysteresis force of the system.

Den Hartog found that the horizontal amplitude of iced
transmission lines was much smaller than the vertical am-
plitude, indicating that galloping mainly occurred in the
vertical direction. Based on this concept, only the galloping
in the vertical direction for iced transmission lines is con-
sidered in this paper. According to Benedettini and Rega
[23], it can be seen that, under the action of dynamic wind,
the governing equation of the vertical movement of the
transmission line is

Hv′ + ES y′ + v′( 􏼁 􏽚
l

0

y′v′ + v′2

2
⎡⎣ ⎤⎦dx

⎧⎨

⎩

⎫⎬

⎭ − Fy + p
∗

· cos(Ωt) − μ _v � m€v , (14)

whereH is the tension of the transmission lines, E is Young’s
modulus of the transmission lines, and S is the cross-
sectional area of the transmission line. v′ is the first de-
rivative of the vertical motion function with respect to x, y′
is the first derivative of the parabolic equation with respect to
x, _v and €v are the first derivative and second derivative of the
vertical motion function with respect to time t, respectively,
μ is the structural damping, andm is the self-weight per unit
unstretched length.

.e displacement v(x, t) in equation (14) can be written
as

v(x, t) � f(x)q(t),

p
∗

� f1(x)p,
(15)

where f(x) � sin(nπx/L) is the modal function of iced
transmission lines. Let n� 1, the single-mode discretization
is adopted [28], and the research is mainly focused on the
first-order mode. In addition, uniform distributed load
(p∗) in the vertical direction is considered, f1(x) � 1 is the
modal function of external excitation, and q(t) is the time
function.

Based on the Galerkin method, equation (15) is
substituted into equation (14) to obtain the nonlinear partial
differential equation:

€q + ω2
q + c1q

2
+ c2q

3
+ μ∗ − c3( 􏼁 _q + c4 _q

3
� p cos(Ωt).

(16)

Equation (16) is the nonlinear galloping governing
equation, which includes aerodynamic load and external
excitation. .e parameters in equation (16) are

ω2
�

1
m

I0

Im

,

c1 � 12
dES

ml

I1

Im

,

c2 �
ES

2ml

I2

Im

,

μ∗ �
μ
m

,

c3 �
􏽥a

m
,

c4 �
􏽥b

m

Ib

Im

,

p �
p
∗

m

Ip

Im

,

(17)

where

I0 � H 􏽚
l

0
f′ · f′dx + 64

d2ES

l
5 􏽚

l

0
fdx􏼠 􏼡

2

,

I1 � 􏽚
l

0
f′

2dx 􏽚
l

0
fdx,

I2 � 􏽚
l

0
f′

2dx􏼠 􏼡

2

,

Im � 􏽚
l

0
f
2dx,

Ib � 􏽚
l

0
f
4dx,

Ip � 􏽚
l

0
ff1dx.

(18)
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Equation (16) contains the first-order and third-order
nonlinear damping terms and the second-order and the
third-order nonlinear restoring force terms of q. .e
aerodynamic loads in the system include the first-order and
third-order terms, which are consistent with the damping
term of the Rayleigh function (Rayleigh damping). .e
aerodynamic loads are presented in the form of the Rayleigh
damping in the nonlinear galloping equation. Moreover, the
nonlinear restoring force term is consistent with the Duffing
function (quadratic and cubic terms). .erefore, equation
(16) can be regarded as the combined form of the Duffing
equation and the Rayleigh equation. Furthermore, there is
an external excitation (p cos(Ωt)) in equation (16), which
excites strong resonance for the system of iced transmission
lines. As a result of different frequencies of external exci-
tation, the form of resonance can be divided into the
principal resonance of weak excitation and the harmonic
resonance of strong excitation.

3. Principal Resonance of the Weak
Nonlinear System

.is section discusses the principal resonance of the forced
self-excited system, in which the excitation frequency Ω is
equal to the natural frequency ω. .e multiple-scale method
is used to obtain the approximate expression of the fre-
quency-amplitude response under weak excitation, where
due to the inclusion of quadratic and cubic nonlinear terms,
the aerodynamic coefficient of the aerodynamic loads in the
system also includes the first-order and third-order terms. It
is generally considered that the damping and nonlinear
terms have little effect on the system. According to [10, 20],
the solution form of small parameter (ε) is

q � εq,

μ∗ � εμ,

_q � ε _q,

_q
3

� ε _q,

p � εp,

(19)

where q, μ, and _q are new variables of the system.
In order to make the equation easy to express, q, μ, and _q

are still used to represent q, μ, and _q. Substituting equation
(19) into equation (16), it can be obtain that

€q + ω2
q + ε c1q

2
+ c2q

3
+ μ∗ + c3( 􏼁 _q + c4 _q

3
􏽨 􏽩 � εp cos(Ωt).

(20)

.e multiple-scale method has been discussed, and q is
set as

q � q0 + εq1. (21)

.e partial differential operator symbol and the fre-
quency of external excitation are

DT � D0T0 + ε D0T1 + D1T0( 􏼁,

Ωt � ωT0 + εσT1.
(22)

In equation (22), σ is the tuning parameter of the ex-
citation frequency, and substituting equations (21) and (22)
into equation (20) and equating coefficients of like powers of
εn (n� 0, 1) led to the following linear ordinary equations,
respectively:

D
2
0q0 + ω2

q0 � 0, (23a)

D
2
0q1 + ω2

q1 � − D0
2
q1 + 2D0D1q0 + c1q0

2
+ c2q0

3
􏽨

+ μ + c3( 􏼁D0q0 + c4 D0q0( 􏼁
3

− p cos(Ωt)􏽩.

(23b)

In equations (23a) and (23b), Dk is the partial derivative
of Tk, and the solution of equation (23a) is

q0 � A T1( 􏼁e
iωT0 + A T1( 􏼁e

− iωT0 , (24)

where A (T1) can be defined as

A T1( 􏼁 �
1

2a T1( 􏼁exp iβ T1( 􏼁􏼂 􏼃
, (25)

where a (T1) and β (T1), respectively, represent the amplitude
function and phase function of the system. Substituting
equations (24) and (25) into equation (23b), it can be ob-
tained that

D1A �
3ic2

2ω
A

2
A −

3c4

2
ω2

A
2
A −

μ + c3

2
A −

ip

4ω
e

iσT1 . (26)

Substituting equation (25) into equation (26), it can be
obtained that

_a �
− μ + c3( 􏼁

2
a −

3
8
c4ω

2
a
3

+
p

2w
sin σT1 − β( 􏼁, (27a)

a _β �
3c2

8ω
a
3

−
p

2ω
cos σT1 − β( 􏼁. (27b)

Introduce c � σT1 − β to acquire the steady-state solu-
tion of the amplitude and phase of equations (27a) and
(27b), let D1A � 0, and obtain the frequency-amplitude
equation by eliminating c:

p
2

4ω2
a
2 � σ −

3c2a
2

8ω
􏼠 􏼡

2

+
μ + c3

2
+
3ω2c4a

2

8
􏼠 􏼡

2

. (28)

According to on-site observations, the icing of crescent
shaped is a common ice type with galloping. In addition, the
parameters of iced transmission lines can be obtained by the
experiment. In order to facilitate analysis and comparison, as
shown in Table 1, the geometrical parameters, material
parameters, and related aerodynamic parameters are cited in
[29].

It is necessary to verify the correctness of the approxi-
mate solution of the frequency-amplitude equation before
discussing the principal resonance of the forced self-excited
system. As shown in Figure 3, the tuning parameter σ � 0,
and the excitation amplitude (p)-response amplitude (a)
curve of equation (28) is drawn by mathematical software
Maple. In this paper, the curve of Figures 4 and 13 is also
drawn by Maple. .e actual unit of response amplitude ism,
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and the unit of excitation amplitude (p∗) is N/m. It is worth
noting that the excitation amplitude (p) is obtained by
substituting excitation amplitude (p∗) into equations (17)

and (18). And the definition of the unit of excitation am-
plitude (p, p∗) and response amplitude (a) in the figure is
consistent with Figure 3, respectively. In addition, the

Table 1: .e physical parameters of the transmission line.

Parameter Symbol Unit Value
Tension H N 30,000
Span L m 125.88
Young’s modulus E N/mm2 47 803.3
Diameter D M 0.0286
Mass per unit length m Kg/m 2.379
Traverse area S mm2 423.24
Air mass density ρ Kg/m3 1.2929
Wind velocity U m/s 4.0
Sag d m 1.5432
Vertical damping μ — 0.0005
Aerodynamic parameters A′ — −0.1667
Aerodynamic parameters B′ — 8.3581
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Figure 4: .e frequency-amplitude curve of principal resonance. (a) Different velocities. (b) Different excitation amplitudes.
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Figure 3: .e principal resonance curve of excitation amplitude (p) and response amplitude (a).
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excitation amplitude (p� 2, 4, 6, 8, and 10) is substituted into
equation (16), and the maximum positive amplitude of
points a1, a2, a3, a4, and a5 is obtained by using Runge–Kutta
function in MATLAB [7].

As shown in Figure 3, the frequency-response curves are
presented, so some numerical solutions could be provided in
these curves to show the good agreements between the
perturbation solutions and numerical ones. When the re-
sponse amplitude is greater than 2, the error of the analytical
solution will increase with the increase in excitation am-
plitude. In Figure 3, when the response amplitude is greater
than 2, the error between the numerical solution and the
analytic solution increases from 2.98% for p � 6 to 5.42% for
p � 10. However, the frequency-amplitude curve can still be
used for analysis.

In order to analyze the influence of wind velocity, ex-
citation amplitude, and tension on the principal resonance
of the forced self-excited system of iced transmission lines,
the frequency-amplitude curve of equation (28) is drawn by
Maple as shown in Figures 4–7. In the forced self-excited
system, the change of excitation frequency always leads to
complex resonance. .en, let the excitation frequency Ω�ω
in Figures 4–7. As the response amplitudes in equation (28)
are in the form of a2 or the higher power of a, the response
amplitude (a) of the frequency-amplitude curve is axi-
symmetric with respect to tuning parameters (σ). In order to
show the change of response amplitude intuitively, only the
areas (a＞ 0) are taken for analysis, and the frequency-
amplitude curve in this paper also takes the areas (a＞ 0). In
Figure 4 and Figures 6–12, the steady-state solution and
unsteady-state solution are studied. If the partial derivative
(zW(σ, a, p)/za) of the curve is positive, it means that the
curve is stable; if the partial derivative (zW(σ, a, p)/za) of
the curve is negative, it means that the curve is unstable. And
the solid lines indicate the stable steady-state solution, and
dashed lines indicate the unstable steady-state solution [20].

Figure 4(a) shows the characteristics of response am-
plitude of principal resonance under different wind veloc-
ities with the excitation amplitude p∗ � 0.187N/m.With the
increase in wind velocity, the frequency-amplitude curve of
principal resonance shifts to the right, showing an obvious
hardening behavior; and there are phenomena of multivalue
and jump; the peak value of response amplitude increases
from P4 at U� 4m/s to P20 at U� 20m/s; the instability
intervals of the frequency-amplitude curve also increase
gradually, from interval S1 with U� 8m/s to intervals S2, S3,
and S4 with U� 12, 16, and 20m/s, respectively. It can be
seen from Figure 4(a) that, with the increase in wind ve-
locity, the resonance region becomes wider, and the region
of multivalue of the curve increases; in a given tuning pa-
rameter region, the number of steady-state solutions in-
creases from one to three. .e multivalue of the response
curve due to the nonlinearity is of significance from the
physical point of view because it leads to jump phenomena.
.ese results indicate that the behavior of iced transmission
lines with increasing wind velocity is significantly nonlinear.

Besides the wind velocity, the excitation amplitude also
has a great influence on the response amplitude. Figure 4(b)
shows the effect of the excitation amplitude on the

frequency-amplitude curve of principal resonance with wind
velocityU� 4m/s..e resonance curve tends to expand, and
the peak value of response amplitude increases as the ex-
citation amplitude increases.

In order to analyze the influence of tension and sag on the
principal resonance of the forced self-excited system under the
same line parameters and the same aerodynamic load, Figure 5
provides the frequency-amplitude curve under different ten-
sions (p∗ � 0.934N/m; U� 4m/s). According to the relation
(d � (mgl2/8H)) between sag and tension [25], the frequency-
amplitude curves with tensionH� 15,000–70,000N in Figure 5
are obtained byMaple, respectively. As shown in Figure 5(a), as
the tension increases from 15,000N to 30,000N, the frequency-
amplitude curve is extended, and the peak value of response
amplitude increases. However, as shown in Figure 5(b), as the
tension increases from 30,000N to 70,000N, the frequency-
amplitude curve appears to shrink inward, and the peak value
of response amplitude decreases.

When the tension H changes from 15,000N to 70,000N,
the sag d decreases, and the structural stiffness of the
transmission line system increases. However, the response
amplitude of the forced self-excited system increases first
and then decreases. .erefore, in engineering applications,
the galloping amplitude of iced transmission lines will re-
duce effectively by changing the tension appropriately.

In order to figure out the influence of Young’s modulus
on the principal resonance of the forced self-excited system
under the same line parameters and the same aerodynamic
load, Figure 6 analyzes the nonlinear characteristics of re-
sponse amplitude under different Young’s moduli with p∗ �

0.934N/m and U� 4m/s.
As shown in Figure 6(a), as Young’s modulus increases

from 9560.7N/mm2 to 2,390,169N/mm2, the peak value of the
frequency-amplitude curve of principal resonance decreases,
and the resonant regions are obviously reduced. When
Young’s modulus is in this range E� 239,016.5–478,033N/
mm2, the frequency-amplitude curve of principal resonance
shifts to the right, showing the nonlinear characteristics of
hardening behavior, and there are phenomena of multivalue
and jump.

As shown in Figure 6, as the tension increases from
20,000N to 50,000N, the peak value of the frequency-amplitude
curve decreases. And with the increase in tension and response
amplitude, the possibility of multivalue and jump phenomena
increases. To this end, in engineering applications, the galloping
amplitude of iced transmission lines will reduce by increasing
Young’s modulus of iced transmission lines. Apart from this,
the galloping amplitude of iced transmission lines can be ef-
fectively reduced by increasing the tension and Young’s
modulus at the same time.

Figure 7(a) compares the nonlinear vibration charac-
teristics of response amplitude of the principal resonance
under different wind velocities, in which the tuning pa-
rameter σ is 0.5. When wind velocityU is 8m/s, the response
amplitude has the phenomenon of multivalue. With the
increase in wind velocity, the p-a curve of principal reso-
nance shifts to the left, and the instability intervals of the
frequency-amplitude curve also increase gradually. It can be
seen from Figure 7(a) that the region of multivalue of the
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curve increases with the increase in wind velocity, and the
number of steady-state solutions increases from one to three
in a given excitation amplitude region. Moreover, with the
increase in wind velocity, it is easier to generate the jump
phenomenon of response amplitude with a small excitation
amplitude (p).

Figure 7(b) compares the characteristics of response
amplitude of the principal resonance under different wind
velocities and different tuning parameters. Similar with
Figure 7(a), with the increase in wind velocity, the region of
multivalue of the curve in Figure 7(b) increases; the number
of steady-state solutions increases from one to three in a
given excitation amplitude region. However, the larger the
resonance amplitude is, the faster the instability intervals of
the trivial solution increase under the influence of tuning
parameters.

.e wind velocity, excitation amplitude, tension, and
Young’s modulus have a great influence on the principal
resonance of the forced self-excited system of iced trans-
mission lines and even determine the conditions of the
galloping of iced transmission lines.

4. Forced Vibration Away from
Principal Resonance

Equation (20) is the forced vibration close to principal
resonance, so it is generally considered that the excitation
amplitude of the forced term (p cos(Ωt)) is small. However,
for the forced vibration far away from resonance, it is
considered that the excitation amplitude of the forced term
(p cos(Ωt)) is large. .erefore, the solution form of small
parameter (ε) of the nonlinear galloping equation can be
assumed as follows [30]:

q � εq,

μ∗ � εμ,

_q � ε _q,

_q
3

� ε _q.

(29)

Substituting equation (29) into equation (16), it can be
obtained that

€q + w
2
q + ε c1q

2
+ c2q

3
+ μ∗ − c3( 􏼁 _q + c4 _q

3
􏽨 􏽩 � p cos(Ωt).

(30)

.emultiple-scale method has been discussed, and q, the
partial differential operator symbol, and the frequency of
external excitation are

q � q0 + εq1,

DT � D0T0 + ε D0T1 + D1T0( 􏼁,

Ωt � ξT0 + εσT1.

(31)

Substituting equation (31) into equation (30) and
equating coefficients of like powers of εn (n� 0, 1) led to the
following linear ordinary equations, respectively:

D
2
0q0 + ω2

q0 � p cos ξT0 + εσT1( 􏼁, (32a)

D
2
0q1 + ω2

q1 � − 2D0D1q0 + c1q0
2

+ c2q0
3

+ μ + c3( 􏼁D0q0􏽨

+ c4 D0q0( 􏼁
3
􏽩.

(32b)

In equations (32a) and (32b), Dk is the partial derivative
of Tk, and the solution of equation (32a) is

q0 � A T1( 􏼁e
iωT0 + A T1( 􏼁e

− iωT0 + Be
iΩT0 + Be

− iΩT0 , (33)
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Figure 5: .e frequency-amplitude curve of principal resonance. (a) Different tensions (15,000–30,000N). (b) Different tensions
(30,000–70,000N).
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Figure 6: Continued.
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Figure 6:.e frequency-amplitude curve of principal resonance. (a) Different Young’s modulus (30,000N). (b) Different Young’s modulus
(20,000N). (c) Different Young’s modulus (50,000N).
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Figure 7: .e curves of excitation amplitude (p) and response amplitude (a). (a) Different wind velocities (σ � 0.5). (b) Different wind
velocities and tuning parameters.

Discrete Dynamics in Nature and Society 11



where A(T1) and B(T1) can be defined as

A T1( 􏼁 �
1

2a T1( 􏼁exp iβ T1( 􏼁􏼂 􏼃
,

B �
P

2 ω2
−Ω2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
.

(34)

Substituting equation (33) into equation (32b), it can be
obtained that

D
2
0q1 + ω2

q1 � −2iωD1 Ae
iωt

+ Be
iΩt

􏼐 􏼑 − c1 A
2
e
2iωt

+ AA + BB + 2ABe
2i(ω+Ω)t

+ 2iABe
2i(Ω−ω)t

+ B
2
e
2iΩt

􏽨 􏽩

− c2
A

3
e
3iωt

+B
3
e
3iΩt

+ 6ABBe
iωt

+ 6AABe
iΩt

+ 3A
2
Ae

iωt
+ 3A

2
Be

i(2ω+Ω)t
+ 3B

2
Be

iΩt
+ 3AB

2
e

i(2ω+Ω)t
+ 3A

2
Be

i(Ω− 2ω)t
+ 3B

2
Ae

i(2Ω−ω)t
⎡⎣ ⎤⎦

− μ + c3( 􏼁 iωAe
iωt

+ iΩBe
iΩt

􏼐 􏼑

− c4
6iω2

AABe
iΩt

− iω3
A

3
e
3iωt

− iΩ3B3
e
3iΩt

+ 3iω3
A
2
Ae

iwt
+ 6iωΩ2ABBe

iωt

+3iΩ3B2
Be

iΩt
− 3iΩω2

A
2
Be

i(2w+Ω)t
− 3iωΩ2B2

Ae
i(2Ω+w)t

− 3iωΩ2AB
2
e

i(ω− 2Ω)t
− 3iΩω2

BA
2
e

i(Ω− 2ω)t
⎡⎣ ⎤⎦ + cc.

(35)

According to equation (35), there are subharmonics and
super harmonics in this system. When the excitation fre-
quency is close to integer multiples and fractional multiples
of the natural frequency (Ω � 2ω + εσ;Ω � 3ω + εσ;Ω �

(ω/2) + εσ;Ω � (ω/3) + εσ), the superharmonic resonance
and the subharmonic resonance of the system of the
transmission line would appear. In addition, the 1/2-order
and 1/3-order subharmonic or 2-order and 3-order super-
harmonic resonances also belong to secondary resonance
[31].

4.1.1/2-Order Subharmonic Resonance. When the excitation
frequency (Ω) of the system is defined as 2 times of the
natural frequency (ω), the system will produce the 1/2-order
subharmonic resonance. Let Ω � 2ω + εσ in equation (35);

the averaging equation of response amplitude and phase can
be obtained:

_a �
− μ + c3( 􏼁

2
a −

3
8
ω2

c4a
3

−
c4p

2

3ω2 a −
pc1

6ω3 a · sin σT1 − β( 􏼁,

(36a)

a _β �
3
8ω

c2a
3

+
c2p

2

12ω5 a +
pc1

6ω3 a · cos σT1 − β( 􏼁. (36b)

Introduce c � σT1 − β to acquire the steady-state solu-
tion of the amplitude and phase of equations (36a) and
(36b), let D1A � 0, and obtain the frequency-amplitude
equation by eliminating c:

p

6ω3c1a􏼒 􏼓
2

�
μ + c3

2
a +

3
8
ω2

c4a
3

+
p2

3ω2c4a􏼠 􏼡

2

+ σa −
3c2

8ω
a
3

−
c2p

2

12ω5 a􏼠 􏼡

2

. (37)

In order to analyze the influence of wind velocity, ex-
citation amplitude, and tension on the 1/2-order sub-
harmonic resonance of the forced self-excited system of iced
transmission lines, the frequency-amplitude curve of
equation (37) is drawn by Maple in Figures 8 and 9.

Figure 8 discusses the characteristics of response
amplitude under different excitation amplitudes, in which
the wind velocity U � 4m/s and tension H � 30,000 N. In
Figure 8(a), when the excitation amplitude p∗ � 0.747N/
mm2, the response amplitude (a) of the 1/2-order sub-
harmonic resonance would be 0.400m. With the increase
in excitation amplitude, the peak value of response am-
plitude will increase. In Figure 8(b), when the excitation
amplitude p∗ > 46.700N/mm2, the response amplitude (a)
of the 1/2-order subharmonic resonance will decrease
with the increase in excitation amplitude, and the

resonance region and the instability intervals of the curve
also decrease and even disappear. Besides, with the in-
crease in the excitation amplitude, the tuning parameters
corresponding to the resonance peak and unstable point
move to the positive direction. .e peak value of response
amplitude shifts to the positive direction continuously
with the increase in excitation amplitude, which indicates
that the 1/2-order subharmonic resonance of the forced
self-excited system presents the characteristics of hard-
ening behavior. However, with the increase in excitation
amplitude, the hardening phenomenon of the system first
increases and then decreases gradually.

In order to analyze the influence of tension, wind ve-
locity, and tuning parameter on the 1/2-order subharmonic
resonance of the forced self-excited system of ice-coated
transmission lines, Figures 9(a)–9(d) compare the
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characteristics of response amplitude of the 1/2-order
subharmonic resonance under different tensions, different
wind velocities, and different tuning parameters, respec-
tively. And Young’s modulus E� 47,803.3N/mm2 in Fig-
ure 9, the tension H� 30,000N in Figures 9(b)–9(d), the
tuning parameter σ � 0 in Figures 9(a) and 9(b), and the
wind velocity U� 4m/s in Figures 9(a) and 9(c).

As shown in Figure 9(a), as the tension increases from
15,000N to 70,000N, the peak value of response amplitude
of the 1/2-order subharmonic resonance decreases contin-
uously; the range of excitation amplitude (p∗) corre-
sponding to resonance increases first and then decreases.

As shown in Figure 9(b), as the wind velocity increases
from 4m/s to 20m/s, the response amplitude of the 1/2-
order subharmonic resonance increases continuously;
however, the response amplitude increases more and more
slowly with the increase in wind velocity; and the excitation
amplitude (p∗) range corresponding to the resonance region
of the response amplitude (a) also expands.

As shown in Figure 9(c), the peak value of response
amplitude increases first and then decreases with the
increase in tuning parameter. When the tuning parameter
σ � 0.07, with the excitation amplitude increasing from 0,
the resonance amplitude is 0 at the beginning, which
means there is no nontrivial solution; when the excitation
amplitude increases to a certain value, the first bifurcation
point appears, and on the right side after the bifurcation
point, there is a nontrivial resonance solution, which is
unstable; with the increase in tuning parameters, the

excitation amplitude corresponding to the bifurcation
point of the curve increases, that is, it means that the
resonance peak and the tuning parameters corresponding
to the unstable point move on the transverse axis; and the
peak value of the response amplitude increases at first and
then decreases.

Figure 9(d) compares the response amplitude of the 1/2-
order subharmonic resonance under different wind veloc-
ities and different tuning parameters. Similarly, when the
tuning parameter σ � 0.5 and the wind velocityU� 8m/s, the
same phenomenon as Figure 9(c) appears here. And when
the excitation amplitude continues to increase, the number
of resonance solutions changes from two to one, and the
resonance solutions after this point are stable. Moreover,
with the increase in wind velocity and tuning parameters, the
peak value of the response amplitude of the curve increases
faster, and the resonance peak and the tuning parameters
corresponding to the unstable point move on the abscissa
axis. With the increase in wind velocity and tuning pa-
rameter at the same time, the region of instability of response
amplitude increases continuously. And the peak value of
response amplitude shifts to the positive direction contin-
uously with the increase in excitation amplitude.

4.2. 2-Order Superharmonic Resonance. When the excitation
frequency (ω) is defined as 1/2 times of the natural frequency
(Ω) of the system, the system will produce 2-order super-
harmonic resonance. Let Ω � (ω/2) + εσ in equation (35);
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Figure 8:.e frequency-amplitude curve of the 1/2-order subharmonic resonance. (a) Different excitation amplitudes (0.747–46.700N/m).
(b) Different excitation amplitudes (46.700–84.060N/m).
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the averaging equation of response amplitude and phase can
be obtained:

_a �
− μ + c3( 􏼁

2
a −

3
8
ω2

c4a
3

−
c4p

2

3ω2 a +
4c1p

2

3ω5 · sin σT1 − β( 􏼁, (38a)

a _β �
3
8ω

c2a
3

+
4c2p

2

3ω5 a +
4c1p

2

3ω5 · cos σT1 − β( 􏼁. (38b)

H = 15,000N 

H = 20,000N 

H = 30,000N 

H = 40,000N 
H = 50,000N 

H = 60,000N 

H = 70,000N 

a

p

1.8

1.5

1.2

0.9

0.6

0.3

0 10 20 30 40 50 60 70

(a)

4m/s

8m/s
12m/s

16m/s
20m/s

a

p

2

1.5

1

0.5

0
0 20 40 60 80 100

(b)

σ = 0.07

σ = 0.53

σ = 0.4
σ = 0.2

σ = 0

a

p

2

1.5

1

0.5

0 10 20 30 40 50

Stable
Unstable

(c)

σ = 0.5, U = 8m/s

σ = 0.8, U = 12m/s

σ = 1.0, U = 16m/s

σ = 1.2, U = 20m/s

σ = 0,
U = 4m/s

a

p

4

3

2

1

0 50 100 150

Stable
Unstable

(d)

Figure 9: .e curves of (p) and (a) of 1/2 subharmonic resonance. (a) Different tensions. (b) Different wind velocities. (c) Different tuning
parameters. (d) Different wind velocity and tuning parameters.
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Introduce c � σT1 − β to acquire the steady-state solu-
tion of the amplitude and phase of equation (30), let

D1A � 0, and obtain the frequency-amplitude equation by
eliminating c:

4c1p
2

9ω5􏼠 􏼡

2

� σa −
3
8ω

c2a
3

−
4c2p

2

3ω5 a􏼠 􏼡

2

+
μ + c3( 􏼁

2
a +

3
8
ω2

c4a
3

+
c4p

2

3ω2 a􏼠 􏼡

2

. (39)

4.3. 3-Order Superharmonic Resonance. When the excitation
frequency (Ω) is defined as 1/3 times of the natural fre-
quency (ω) of the system, the system will produce 3-order

superharmonic resonance. Let Ω � (ω/3) + εσ in equation
(35); the averaging equation of response amplitude and
phase can be obtained:

_a �
− μ + c3( 􏼁

2
a −

3
8
ω2

c4a
3
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Introduce c � σT1 − β to acquire the steady-state solu-
tion of the amplitude and phase of equations (40a) and

(40b), let D1A � 0, and obtain the frequency-amplitude
equation by eliminating c:
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. (41)

In order to analyze the influence of tension, excitation
amplitude, tuning parameter, and wind velocity on the
superharmonic resonance of the forced self-excited system
of iced transmission lines, the frequency-amplitude curve of
the superharmonic resonance is drawn byMaple as shown in
Figures 10–12.

Figure 10 discusses the response amplitude of the
superharmonic resonance under different excitation ampli-
tudes with U� 4m/s, E� 47,803.3N/mm2, and H� 30,000N.
Figure 10(a) is obtained by substituting the excitation am-
plitude p∗ � 1.868–22.416N/mm2 into equation (39). When
the excitation amplitude p∗ � 1.868N/mm2, the response
amplitude (a) of the 2-order superharmonic resonance would
be 0.430m. Figure 10(b) is obtained by substituting the ex-
citation amplitude p∗ � 7.472–29.888N/mm2 into equation
(41). When the excitation amplitude p∗ � 7.472N/mm2, the
response amplitude (a) of the 3-order superharmonic reso-
nance would be 0.360m. In addition, the phenomenon of the
2-order and the 3-order superharmonic resonance is the same
as the principal resonance. .e peak value of response am-
plitude increases with the increase in excitation amplitude.
Similarly, the peak value of response amplitude continuously
shifts to the positive direction with the increase in excitation
amplitude, showing the nonlinear characteristics of hardening

behavior. And the resonance peak region of the super-
harmonic curve also continues to expand as the excitation
amplitude increases.

Figure 11 is obtained by substituting different wind ve-
locities, different tuning parameters, and different tensions
into equation (39). And Young’s modulus E� 47,803.3N/
mm2 in Figure 11, the wind velocityU� 4m/s in Figures 11(a)
and 11(b), the tuning parameter σ � 0 in Figure 11(a), and the
tension H� 30,000N in Figures 11(b) and 11(c).

As shown in Figure 11(a), as the excitation amplitude
increases, the response amplitude increases gradually, and
the response amplitude tends to a constant value. As the
tension increases from 15,000N to 70,000N, the response
amplitude of the 2-order superharmonic resonance de-
creases continuously. Likewise, the peak value of response
amplitude increases with the increase in tuning parameter in
Figure 11(b). And the response amplitude tends to a con-
stant value with the increase in excitation amplitude.

Figure 11(c) compares the nonlinear characteristics of
response amplitude of the 2-order superharmonic resonance
under different wind velocities and different tuning pa-
rameters. Similarly, with the increase in wind velocity and
tuning parameter at the same time, the peak value of the
response amplitude increases continuously. In addition,
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with the increase in wind velocity and tuning parameter, the
instability interval of the trivial solution also continues to
increase.

Given Young’s modulus E� 47,803.3N/mm2 in Fig-
ure 12, the wind velocity U� 4m/s in Figures 12(a)–12(c),
the tuning parameter σ � 0 in Figures 12(a) and 12(b), and
the tension H� 30,000N in Figures 12(c) and 12(d). And
Figure 12 is obtained by substituting different tensions,
different tuning parameters, and different wind velocities
into equation (42).

As shown in Figure 12(a), as the excitation amplitude
increases, the response amplitude of the 3-order super-
harmonic resonance increases gradually. When the tension
H� 15,000–30,000N, the larger the tension is, the faster the
response amplitude increases with the increase in excitation
amplitude. As shown in Figure 12(b), with the increase in
excitation amplitude, the response amplitude of 3-order
superharmonic resonance also continues to increase. Ad-
ditionally, with the tension increasing from 30,000N to
70,000N, the phenomenon of right shift appears in
Figure 12(b).

As shown in Figure 12(c), the peak value of response
amplitude increases with the increase in tuning parameter.
And the response amplitude continuously increases with the
increase in excitation amplitude.

Also, Figure 12(d) compares the nonlinear characteris-
tics of response amplitude of the 3-order superharmonic
resonance under different wind velocities and different
tuning parameters. Likewise, with the increase in wind
velocity and tuning parameter at the same time, the peak
value of the response amplitude continues to increase.
Additionally, with the increase in wind velocity and tuning
parameter, the instability intervals of the trivial solution also
continue to increase.

4.4. 1/3-Order Subharmonic Resonance. When the natural
frequency (ω) of the system is defined as 3 times of the
excitation frequency (Ω), the system will produce 1/3-order
subharmonic resonance. Let Ω � 3ω + εσ in equation (35);
the averaging equation of response amplitude and phase can
be obtained:

_a �
− μ + c3( 􏼁
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Introduce c � σT1 − β to acquire the steady-state solu-
tion of the amplitude and phase of equations (42a) and

(42b), let D1A � 0, and obtain the frequency-amplitude
equation by eliminating c:
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P∗ = 14.944N/m 
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Figure 10: .e frequency-amplitude curve of the superharmonic resonance. (a) .e 2-order superharmonic resonance. (b) .e 3-order
superharmonic resonance.
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Given the condition of U� 4m/s, E� 47,803.3N/mm2,
andH� 30,000N, Figure 13 discusses the response amplitude
of the 1/3-order subharmonic resonance under different

excitation amplitudes. Figure 13 is obtained by substituting
the excitation amplitude p∗ � 54.172–112.080N/mm2 into
equation (43).
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Figure 11: .e curves of (p) and (a) of 2-order superharmonic resonance. (a) Different tensions. (b) Different tuning parameters. (c)
Different wind velocity and tuning parameters.
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As shown in Figure 13, the excitation amplitude of the 1/
3-order subharmonic resonance is several times that of
principal resonance. And it is very difficult to excite the 1/3-
order subharmonic resonance in the iced transmission line

system. .erefore, the influence of the 1/3-order sub-
harmonic resonance on iced transmission lines is small. As
general research and design, it is not necessary to consider
the 1/3-order subharmonic resonance.
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Figure 12: .e curves of (p) and (a) of 3-order superharmonic resonance. (a) Different tensions ((H)� 15,000–30,000N). (b) Different
tensions ((H)� 30,000–70,000N). (c) Different tuning parameters. (d) Different wind velocity and tuning parameters.
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5. Conclusions

A new forced self-excited system has been formulated to
describe the influence of dynamic wind on the nonlinear
galloping characteristics of iced transmission lines. .e
analytical solution of the nonlinear galloping equation is
solved by the multiple-scale method. .e principal reso-
nance under weak excitation and the harmonic resonance
under strong excitation are discussed, respectively:

(1) .e change of control parameters (wind velocity,
tension, excitation amplitude, Young’s modulus, and
tuning parameter) has a significant influence on the
resonance peak, resonance region, and dynamic
behavior of the principal resonance and the har-
monic resonance. By changing these control pa-
rameters, the resonance region of the system can be
changed, and the amplitude solution of the system
can be transformed from a single value to multi-
values so that the resonance phenomenon can be
suppressed or excited.

(2) .e principal resonance, 1/2-order subharmonic reso-
nance, and 2-order and 3-order superharmonic reso-
nances can affect galloping characteristics of iced
transmission lines. Under the condition of harmonic
excitation, the critical wind velocity needed for galloping
of iced transmission line is lower, and the time needed
for galloping of iced transmission line is shorter; and the
peak value of the response amplitude of the transmission
line increases, and the response amplitude also shows a
jump phenomenon. .e harmonic excitation reduces
the service life of the transmission line, so the influence
of principal resonance and harmonics should be con-
sidered in the structural parameter design. Designers
can improve the conditions of the transmission line
galloping and reduce the galloping amplitude by
changing the structural parameters of the transmission
line or taking measures to prevent galloping.

(3) .e principal resonance of the forced self-excited
system under weak excitation: as the wind velocity
increases, the response amplitude of principal res-
onance will have the multivalue phenomenon, jump
phenomenon, and hardening behavior; besides, the
instability intervals of the trivial solution will expand.
.e harmonic resonance of the forced self-excited
system under strong excitation: when the tuning
parameter (σ) is greater than 0, the response am-
plitudes of the principal resonance, 2-order and 3-
order superharmonic resonances, and 1/2-order
subharmonic resonance will have multivalue and
jump phenomena; when the tuning parameter (σ) is
greater than 0 and the wind velocity increases, the
instability intervals of the principal resonance will be
faster, and harmonic resonance will also expand.

(4) .e harmonic resonance of the forced self-excited
system under strong excitation: when the excitation
frequency is close to the integral and fractional times
of the natural frequency, it is easier to produce the 1/
2-order subharmonic resonance, 2-order super-
harmonic resonance, and 3-order superharmonic
resonance. As a result of the influence of the 1/3-
order subresonance on the transmission line is small,
it is not necessary to consider the 1/3-order sub-
harmonic resonance for the general research and
design.

(5) .e resonance peak value of the principal resonance
decreases with the increase in Young’s modulus.
Moreover, with the increase in tension, the reso-
nance peak value of the principal resonance increases
first and then decreases. In engineering applications,
increasing the tension and Young’s modulus prop-
erly can reduce the resonance peak value of the
principal resonance and harmonic resonance.
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