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A block of a graph is a nonseparable maximal subgraph of the graph. We denote by b(G) the number of block of a graph G. We
show that, for a connected graph G of order n with minimum degree k≥ 1, b(G)< ((2k − 3)/(k2 − k − 1))n. *e bound is as-
ymptotically tight. In addition, for a connected cubic graph G of order n≥ 14, b(G)≤ (n/2) − 2. *e bound is tight.

1. Introduction

We consider finite, undirected, simple graphs only. Let
G � (V(G), E(G)) be a graph. *e numbers of vertices and
edges of G are called the order and the size of G and
denoted by v(G) and e(G), respectively. A vertex v is called
a cut vertex if com(G − v)> com(G), where com(G) de-
notes the number of components of G. c(G) denotes the
number of cut vertices of G. Rao [1] proved that, for a
connected graph G of order n and size m,

c(G)≤max q: m≤
n − q

2
  + q , (1)

characterized all extremal graphs. Rao and Rao [2] solved the
corresponding problem for a strong digraph. Later, Achu-
than and Rao [3] determined the maximum number of cut
edges in a connected d-regular graph of order p.

Let f(n, d) � max c(G): G{ is a connected k-regular
graph of order n}. Rao [4] determined f(n, d) for d≤ 4.
Nirmala and Rao [5] showed that f(n, d) �

((2n − d − 5)/(d + 1)) − 1 or ((2n − d − 5)/(d + 1)) − 2 for
odd d≥ 5 and have obtained an upper bound for f(n, d) for
even d≥ 6.

Alberten and Berman [6] proved that, for a graph G of
order n and minimum degree k≥ 2,

c(G)<
2k − 2
k
2

− 2
n. (2)

*is bound is asymptotically tight.
Hopkins and Staton [7] showed that every connected

graph of order n contains no more than (r/(2r − 2))n cut
vertices of degree r. Some related results are referred to
[8, 9].

A separation of a connected graph is a decomposition of
the graph into two nonempty connected subgraphs which
have just one vertex in common. *e common vertex is
called a separating vertex of the graph. Since the graph G

under consideration is simple, v ∈ V(G) is a separating
vertex if and only if it is a cut vertex. A block of a graph is a
nonseparable maximal subgraph of the graph. We denote by
b(G) the number of blocks of a graph G.

It is clear that any two blocks of a graph have at most one
vertex in common. Recall that the block tree B(G) of G is the
bipartite graph with bipartition (B,S), where B is the set of
blocks of G and S, the set of separating vertices of G, and a
block B, and a separating vertex v is joined by an edge in
B(G) if and only if B contains v. It is easy to see that if G is
connected, B(G) is a tree. Each leaf of B(G) corresponds to
an end block of G.

Inspired from the bound for the cut vertices, in the
present paper, we consider the upper bound for the number
of blocks, a connected graph of order n with given minimum
degree. Let us begin with two easy cases when δ(G) � 1 and
δ(G) � 2.

Proposition 1. For a connected graph G of order n≥ 2,
b(G)≤ n − 1, with equality if and only if G is a tree.
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Proof. Our proof is induction on n. If n � 2, then G � K2;
thus, the result holds. Next, we assume that n≥ 3. If G has no
cut vertex, then b(G) � 1< n − 1. Now suppose G has a cut
vertex. Let B be an end block of G and v be the cut vertex,
which belongs to B. Let G′ � G − (V(B), v{ }). Clearly, G′ is
connected. By the induction hypothesis, b(G′)≤ v(G′) − 1.
Since b(G) � b(G′) + 1, v(G′)≤ v(G) − 1, we have
b(G)≤ n − 1, with equality only if b(G′) � v(G′) − 1 � n − 2
and B � K2. By the induction hypothesis, G′ is a tree, im-
plying that G is a tree.

On the contrary, if G is a tree, clearly, b(G) � n − 1. □

Proposition 2. For a connected graph G of order n≥ 4 with
δ(G)≥ 2, b(G)≤ n − 3, with equality if and only if G is the
graph obtained from Pn− 4 identifying each end with a vertex of
separate K3, as given in Figure 1.

Proof. If G has no cut vertex, the result holds trivially. Next,
we assume thatG has cut vertices, and thus, it has at least two
end blocks and n≥ 5. Let B1, . . . , Bt be all end blocks ofG. Let
ci be the cut vertex of G, which belongs to Bi for each
i ∈ 1, . . . , t{ }. Clearly, v(Bi)≥ 3 for any i. If ci � cj for any two
distinct i, j, then b(G) � t and n � 

t
i�1(v(Bi)−

1) + 1≥ 2t + 1. *erefore, b(G)≤ (n − 1)/2≤ n − 3.
Otherwise, G has at least two cut vertices. It follows that

the order n′ of G′ � G − ∪ t
i�1V(Bi), ci  is at least two.

Hence, n≥ n′ + 2t and b(G) � b(G′) + t. By Proposition 1,
b(G′)≤ n′ − 1. Summing up the above, we have

b(G) � b G′(  + t≤ n′ − 1 + t≤ n − t − 1≤ n − 3. (3)

From the above, b(G) � n − 3 if and only if t � 2 and
G′ � Pn− 4, B1 � K3 � B2, as we promised. □

It is clear that, for a graph G of order n, b(G) decreases
when δ(G) increases. For a connected graph G of order n

and minimum degree at least k, we have the following result,
which is asymptotically best possible.

Theorem 1. For a connected graph G of order n with
δ(G)≥ k, b(G)< ((2k − 3)/(k2 − k − 1))n.

We show that the bound in the above theorem is as-
ymptotically best possible. Let k≥ 3. Consider a tree T of
order p with each vertex having degree k or 1. By the
handshaking lemma, the number of leaves of this tree is

(k − 2)p + 2
k − 1

. (4)

Let G be the graph obtained from identifying each leaf of
T with a vertex of a clique of order k + 1 separately.
*erefore,

v(G) � p +
(k − 2)p + 2

k − 1
k,

b(G) � p − 1 +
(k − 2)p + 2

k − 1
.

(5)

So, we have

b(G)

v(G)
�

(2k − 3)p − k + 3
k
2

− k − 1 p + 2k
<

2k − 3
k
2

− k − 1
. (6)

However, as p gets larger, b(G)/v(G) gets arbitrarily close to
(2k − 3)/(k2 − k − 1).

What happens for the k-regular graphs? *e situation
becomes complicated. We are just able to get an exact bound
for a cubic graph G of order n: b(G)< n/2 (*eorem 2),
whereas by *eorem 1, we have b(G)< (3/5)n for a con-
nected graph G of order n with δ(G)≥ 3.

Theorem 2. For a connected cubic graph G of order n,

b(G)≤

1, if n≤ 8,

3, if n � 12,

n

2
− 2, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

*e bound is sharp.
To see the sharpness of the bound, we denote by K∗4 the

graph obtained from K4 by replacing an edge with a path of
length two, as drawn in Figure 2.

*e graphs Gn achieve the upper bound in *eorem 2,
which are classified into three types in terms of n ≡ 4 (mod
6), n ≡ 0 (mod 6), and n ≡ 2 (mod 6), respectively.

For an integer n ≡ 4 (mod 6), k � (n − 4)/3 is an even
integer. Let Tk be a tree in which every vertex has degree 1 or
3. It is clear that Tk has exactly (k + 1)/2 vertices of degree 1
(leaves) and (k − 1)/2 vertices of degree 3. Let Gn be a graph
obtained from identifying each leaf of Tk with the vertex of
degree two of a separate K∗4 , as shown in Figure 3.

For an integer n ≡ 0 (mod 6), let Gn be a cubic graph
obtained from a graph Gn− 2 by replacing a vertex of degree
three (not belongs to any K∗4 ) with a triangle, as shown in
Figure 3.

For an integer n ≡ 2 (mod 6), let Gn be a cubic graph
obtained from a graph Gn− 4 by inserting a K4 − e into an
edge of Gn− 4 (not belongs to any K∗4 ), as shown in Figure 3.

It can be checked that v(Gn) � n and b(Gn) � (n/2) − 2
for any graph Gn constructed as above.

2. The Proof of Theorem 1

Suppose the result is not true and let G be a counterexample
of minimum order n, i.e., δ(G)≥ k and b(G)≥ ((2k − 3)/
(k2 − k − 1))n, but for any connected graph G′ of order
n′ < n with δ(G′)≥ k, b(G′)< ((2k − 3)/(k2 − k − 1)) n′.

3 n − 421

Figure 1: *e extremal graph attaining the upper bound in
Proposition 2.
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If k ∈ 1, 2{ }, ((2k − 3)/(k2 − k − 1))n � n. By Proposi-
tions 1 and 2, b(G)≤ n − 1< n. Hence, k≥ 3. Since n≥ k + 1,
we have ((2k − 3)/(k2 − k − 1))n≥ 1, and thus, G has at least
two blocks.

Claim 1. Every end block of G is a clique of order k + 1.

Proof of Claim 1. If it is not, let B be an end block of G. Let
G′ be the graph obtained from G by replacing B with B′ of
order k + 1. Clearly, b(G) � b(G′) and δ(G′)≥ k. By the
choice of G,

b G′( <
2k − 3

k
2

− k − 1
n′. (8)

Combining the above facts, we conclude that
b(G)< ((2k − 3)/(k2 − k − 1))n, contradicting the choice of
G. □

Claim 2. No cut vertex of G belongs to at least two end
blocks of G.

Proof of Claim 2. Let B and B′ be two end blocks of G

containing the same cut vertex v of G. Let
G′ � G − (V(B′), v{ }). By Claim 1, v(B) � v(B′) � k + 1,
and thus, v(G′) � n − k and δ(G′)≥ k. By the minimality of
G,

b G′( <
2k − 3

k
2

− k − 1
(n − k). (9)

Combining (9) with the fact that b(G) � b(G′) + 1, we have
a contradiction:

b(G)<
2k − 3

k
2

− k − 1
(n − k) + 1<

2k − 3
k
2

− k − 1
n, (10)

□

Claim 3. Let c be a cut vertex lying on an end block Bc. If
B≠Bc is a block containing c, then B � K2.

Proof of Claim 3. It suffices to show that v(B) � 2.
First suppose that v(B)≥ k + 1. Let G′ be the graph

obtained from G, (V(Bc), c{ }) and joining c to every vertex
in V(B), c{ }. Clearly, G′ is a connected graph with δ(G′)≥ k.
Moreover, by Claim 1, v(G′) � n − k. Again, by the mini-
mality of G,

b G′( <
2k − 3

k
2

− k − 1
(n − k). (11)

Combining (11) with the fact that b(G) � b(G′) + 1, we have
a contradiction.

b(G)<
2k − 3

k
2

− k − 1
(n − k) + 1<

2k − 3
k
2

− k − 1
n, (12)

Now assume that v(B) ∈ 3, . . . , k{ }. Let
V(B) � v1, . . . , vr , where v1 � c. Since δ(G)≥ k and r≤ k,
each vi is a cut vertex of G. Let G′ be the graph obtained from
G by identifying all vertices in v2, . . . , vr . Clearly,
δ(G′)≥ k, n′ < n, and b(G′) � b(G). By the choice of G,
b(G′)< ((2k − 3)/(k2 − k − 1))n′. *us,

(a) (b) (c)

Figure 3: *e extremal graph G of order n attaining the upper bound in *eorem 2, where (a) n ≡ 4, (b) n ≡ 0, and (c) n ≡ 2 (mod 6),
respectively.

Figure 2: K∗4 .
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b(G)<
2k − 3

k
2

− k − 1
n, (13)

contradicting the choice of G. *is proves the claim.
Take a longest path P of B(G). Let B1 be an end block of

G, which corresponds to a terminal vertex of
P � B1c1B2c2B3c3 · · ·, where c1 be the unique cut vertex of G

which belongs to B1. By Claim 3, B2 � K2. Next, we consider
three possible cases in terms of the order v(B3) of B3. □

2.1. Case 1: v(B3)≥ k + 1. Let G′ be the graph obtained from
G, V(B1) and joining c2 to each vertex of V(B3). It is clear
that δ(G′)≥ k, and by Claim 1, v(G′) � n − k − 1. By the
minimality of G, b(G′)< ((2k − 3)/(k2 − k − 1))(n − k − 1).
Since b(G) � b(G′) + 2, we have

b(G)<
2k − 3

k
2

− k − 1
(n − k − 1) + 2<

2k − 3
k
2

− k − 1
n. (14)

2.2. Case 2: v(B3) � 2. By the choice of P, each block B∗ ≠B3
of G containing c2 is isomorphic to K2. In addition, the end
block containing the other end of B∗ is a leaf of B(G). Since
d(c2)≥ k, there are k − 1 such end block B∗1 , . . . , B∗k− 1, each
of which are jointed c2 with an edge. Let G′ be the graph
obtained from G − ∪ k− 1

i�1 V(B∗i ) by identifying a vertex of a
new clique of order k + 1 with c2. It is clear that δ(G′)≥ k,
n′ � v(G′) � n − (k − 1)(k + 1) + k, and b(G′) � b(G) − 2
(k − 1) + 1. So,

b(G) � b G′(  + 2(k − 1) − 1

<
2k − 3

k
2

− k − 1
n′ + 2(k − 1) − 1

�
2k − 3

k
2

− k − 1
(n − (k − 1)(k + 1) + k) + 2(k − 1) − 1

�
2k − 3

k
2

− k − 1
n

(15)

is a contradiction.

2.3. Case 3: 3≤ v(B3)≤ k. Since δ(G)≥ k, each vertex of B3 is
a cut vertex of G. We distinguish two subcases in terms of
v(B3).

2.3.1. Case 3.1: v(B3) � k. Since δ(G)≥ k, every vertex
v ∈ V(B3) has a neighbor not in V(B3), which belongs to
distinct blocks of G. Let G′ be the graph obtained from G by
contracting B3 to a vertex v′. It can be seen that δ(G′)≥ k,
b(G) � b(G′) + 1, and n′ � n − k + 1. So,

b(G) � b G′(  + 1<
2k − 3

k
2

− k − 1
(n − k + 1) + 1<

2k − 3
k
2

− k − 1
n.

(16)

2.3.2. Case 3.2: 3≤ v(B3)≤ k − 1. Let s � v(B3) and
V(B3) � u1, . . . , us , where u1 � c2 and us � c3. Since
δ(G)≥ k, for any i ∈ 1, . . . , s − 1{ }, there are at least k − s + 1
blocks containing ui, each of which is isomorphic to K2, as
illustrated in Figure 4.

Let G′ be the graph obtained from joining each com-
ponent of G − u2, . . . , us− 1  to c2 or c3 such that dG′(cj)≥ k

for each j ∈ 2, 3{ }. In addition, add an edge c2c3 if
c2c3 ∉ E(G). Note that G′ is a connected graph of order
n′ < n with δ(G′)≥ k and b(G′) � b(G). By the minimality of
G, b(G′)< ((2k − 3)/(k2 − k − 1))n′. *erefore, b(G)<
((2k− 3)/(k2 − k − 1))n, contradicting the choice of G.

*e proof of *eorem 1 is completed.

3. Proof of Theorem 2

Suppose the result is not true and let G be a counterexample
of minimum order n. *e following fact is clear:

(1) G must contain cut vertex.
Since no cubic graph of order ≤ 8 has a cut vertex,
n≥ 10.

(2) Moreover, n≥ 14. If 10≤ n≤ 12, it is not hard to
check that b(G)≤ 3.

Claim 4. Every end block of G is a K∗4 .

u1
usB3

B1

B2
c1

G

(a)

B1
c1

c2
c3

B2

G′

(b)

Figure 4: (a) G and (b) G′ in case 3.2.
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Proof of Claim 4. If it is not, let B be an end block of G. Let
G′ be the graph obtained from G by replacing B with K∗4 .
Clearly, G′ is a connected cubic graph of order n′ < n and
b(G′) � b(G). By the minimality of G,

b G′( ≤
n′
2

− 2. (17)

Combining the above facts, we conclude that
b(G)≤ (n/2) − 2, contradicting the choice of G.

Take a longest path P of B(G). Let B1 be an end block of
G, which corresponds to a terminal vertex of
P � B1c1B2c2B3c3 · · ·, where c1 be the unique cut vertex of G

which belongs to B1. Since G is a cubic graph, B2 � K2. Next
we consider three possible cases. □

3.1. Case 1: v(B3) � k≥ 4. If v ∈ V(B3) is a cut vertex of G,
then v belongs to another block which is isomorphic to K2.
In addition, the end block containing the other end of the K2
is a leaf of B(G). We may assume B3 has r cut vertices except
c3, which belong to B1′, B2′, . . . , Br

′, respectively, where
B1′ � B1.

Let G′ be the graph obtained from G − ∪ r
i�1V(Bi
′)−

(V(B3), c3 ) by identifying c3 with the vertex of degree two
of a new K∗4 . It is clear that G′ is a cubic graph of order
n′ � n − 5r − k + 5 and b(G′) � b(G) − 2r. By the induction
hypothesis, b(G′)≤ (1/2)(n − 5r − k + 5) − 2. *us,

b(G) � b G′(  + 2r

≤
1
2

(n − 5r − k + 5) − 2 + 2r

�
n

2
−

r

2
−

k

2
+
1
2
, (k≥ 4),

≤
n

2
− 2 +

1
2

−
r

2

≤
n

2
− 2.

(18)

3.2. Case 2: v(B3) � 3. It follows that B3 � K3. Every vertex
of B3 is cut vertex. Let G′ be the graph obtained by the same
operation as in the proof of Case 1. We have n′ � n − 8 and
b(G′) � b(G) − 4. *erefore,

b(G) � b G′(  + 4≤
1
2

(n − 8) − 2 + 4 �
1
2

n − 2. (19)

3.3. Case 3: v(B3) � 2. By the choice of P and v(B3) � 2,
one can find another longest path P′ � B1′c1′B2′c2B3c3 · · · of
B(G). Let G′ be the graph obtained from identifying c2 of
G − V(B1) − V(B1′) with the vertex of degree two of a new
K∗4 . Note that b(G′) � b(G) − 3 and n′ � n − 6. By the
induction hypothesis, b(G′)≤ (n′/2) − 2. *erefore,

b(G) � b G′(  + 3≤
1
2

(n − 6) − 2 + 3 �
1
2

n − 2. (20)

*e proof is completed.

4. Conclusions and Future Work

By arguing the properties of a minimum counterexample to
the assertion of the main theorems and by using several
kinds of graph transformation, we arrive at a contradiction,
and thereby, we show our results. However, the upper bound
for b(G) remains open if G is a k-regular graph with k≥ 4.
One of the referees pointed out the possibility of the ob-
tained results to some real-life applications and other fields
(see [10–12] for instance).
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