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+is paper is concerned with the nonfragile state estimation for a kind of delayed fractional-order neural network under the
event-triggered mechanism (ETM). To reduce the bandwidth occupation of the communication network, the ETM is employed
in the sensor-to-estimator channel. Moreover, in order to reflect the reality, the transmission delay is taken into account in the
model establishment. Sufficient criteria are supplied to make sure that the augmented system is asymptotically stable by using
the fractional-order Lyapunov indirect approach and the linear matrix inequality method. In the end, the theoretical result is
shown by means of two numerical examples.

1. Introduction

+e past several decades have witnessed that artificial neural
network (ANN) has attracted particular research attention.
Because of the outstanding performance, ANN has been
extensively applied in image recognition, signal processing
[1], fault diagnosis [2], and so on. With the rapid devel-
opments of artificial intelligence, the ANN has received
considerable attention again by the scholars, which relates to
synchronization, dissipativity, attractivity, stability, and state
estimation (SE) for various kinds of ANNs [3–7].

As we all know, ANNs are composed of plenty of ar-
tificial neurons and the SE problem of the neurons plays a
vital role in practical applications. As such, quite a lot of
results have been reported on the SE issue (see [8–11] and
the reference therein). For the practical systems, the pa-
rameter uncertainties are often considered. So far, a lot of
research studies regarding uncertain systems have been
conducted [12–14]. It is worth noting that the existing results
assumed that parameter of the estimator is accurate, which,
however, is unrealistic. To solve this problem, we aim to
design a nonfragile estimator so as to alleviate the effects
induced by the uncertainty of the estimator parameter on the
system performance. Till now, some initial results have been

published on the nonfragile controller design problems
[14–17].

In the networked systems, the network bandwidth is
always limited which therefore may result in network
congestion when a large amount of data is transmitted. Up
to now, the network-induced phenomena including
transmission delay, packet loss, and quantification have
been discussed adequately. In recent years, much attention
has been focused on the ETM and many communication
protocols, which aims to avoid the occurrence of the
network-induced phenomena. Based on the ETM, plenty of
literature has been available on stability analysis, event-
triggered condition design, controller/filter design, and so
on [18]. Noting that compared with time-triggered
mechanism, the ETM exhibits better performance because
the necessary sampling depends on the “event” rather than
the “time” [19, 20].

In addition, by applying the fractional calculus to the
ANNs, the researchers have found that the performance of
the fractional-order models is better than integer-order
ones, especially in the aspect of memory and hereditary. Till
now, some novel fractional-order theories and methods
concerning the ANNs have been proposed. For example, a
nonfragile nonlinear fractional-order observer is designed in
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[21] and an adaptive event-triggered scheme has been de-
veloped in [22]. But these existing fractional-order systems
employed ETM are introduced with single delay or without
only. Especially, it is a challenge in a fractional system.
However, the problem ofmultiple time delays in real systems
is often encountered. Nevertheless, there are few related
studies on the nonfragile SE for fractional-order neural
network based on ETM with multiple time delays, which
motivates us to shorten this gap.

Inspired by the aforementioned lines, a nonfragile state
estimator is designed for a class of fractional-order neural
networks (FNNs) based on ETM. +e advantages in this
paper are as follows: (1) compared with the existing esti-
mators, a fractional-order nonfragile estimator is first
constructed; (2) to save bandwidth resources, an ETM is
applied in the SE problem of the fractional-order neural
network; (3) the LMI method and the fractional Lyapunov
indirect method are adopted to design the state estimator.

+e remaining content is outlined as follows. In Section
2, some preliminary knowledge is recalled. In Section 3, state
estimation criteria are voiced. In Section 4, two numerical
examples are given with some simulation figures to support
the theorems.

Notation. +roughout this paper, ZT and the symbol ∗
in matrix Z represent matrix transposition and the

symmetric term, respectively.R is the set of integers, andRn

denotes the n-dimensional Euclidean space. In means
n-dimensional identity matrix. P> 0 (P< 0) is defined as a
positive-definite (negative-definite) matrix. ‖z‖ is the Eu-
clidean norm of a vector z in Rn. λmax(R) (λmin(R)) rep-
resents the maximum (minimum) eigenvalue of R and
sym(Y) means Y + YT.

2. Preliminaries and Problem Formulation

Some fractional definitions and model descriptions are
presented firstly. In addition, some important lemmas that
will be used in Section 3 are also presented.

Definition 1 (see [23, 24]). For h(t), the fractional integral
form is defined as

I
α
h(q) �

1
Γ(α)


q

q0

(q − θ)
α− 1

f(θ)dθ, α ∈ R+
, (1)

where q ≥ q0 and Γ(·) is a gamma function.

Definition 2 (see [23, 24]). Caputo’s derivative of h(q) is
denoted by

C
q0

D
α
qh(q) �

1
Γ(z − α)


q

q0

(q − θ)
z− α− 1

h
(z)

(θ)dθ , α ∈ (z − 1, z), h(t) ∈ ιz t0,∞ ,R( , (2)

where q ≥ q0 and z is a positive integer.
In what follows, Dα stands for C

q0
Dα

q for the convenience
of presentation. In this paper, let us consider the following
FNN model:

D
αυ(t) � − Cυ(t) + AZ(υ(t)) + V,

y(t) � Dυ(t),
 (3)

where α ∈ (0, 1) is the predetermined fractional order, C �

diag c1, c2, . . . , cn  with ci > 0(i � 1, 2, . . . , n),A � (aij)n×n is
the connection matrix, the vector
υ(t) � (υ1(t), υ2(t), . . . , υn(t))T ∈ Rn stands for the neuron
state, Z(υ(t)) � (Z1(υ1), Z2(υ2), . . . , Zn(υn))T denotes the
activation function of the neurons, y(t) is the measurement
output, V is the system input, and D is a known constant
matrix.

In what follows, ETM is introduced in order to reduce
the communication burden.+e event-triggered condition is
predesigned as follows:

e
T
y(t)ey(t)≤ σy

T
tkh + jh( y

T
tkh + jh( , (4)

where ey(t) � y(tkh + jh) − y(tkh), σ is a given constant, jh

and tkh are the sampling instant and the release instant,
respectively, y(tkh + jh) stands for the latest sampled signal,
and nih � tk+1h − tkh denotes the release period.

Remark 1. +e sensor is time-driven at discrete instants,
which can avoid the Zeno behavior. Moreover, when σ � 0,
ETM becomes a time-triggered one.

In this paper, the transmission delay dk ∈ [0, d) between
sensor and estimator is considered, where d is a positive
scalar. +erefore, tkh + dk is the arrival time of the trans-
mitted data from sensor to estimator.

In view of [25], the holding interval can be rewritten as
[tkh + dk, tk+1h + dk+1)∪

j�dM

j�0 Ij, where Ij � [tkh + jh + d,

tkh + jh + h + d). For the convenience of analysis, denote
d(t) � t − tkh − jh, and then we have 0≤ d(t)≤ h + d≜dM.
+en, the measurement outputs arrived at the estimator can
be rewritten as

y(t) � ey(t) + y(t − d(t)) � Dek(t) + y(t − d(t)), (5)

where ek(t) is the error vector.
Design a nonfragile state estimator for system (3) as

follows:

D
α
υ(t) � − Cυ(t) + AZ(υ(t)) + V +(K + ΔK)[y(t) − Dυ)],

(6)

where υ(t) ∈ Rn stands for the estimate of υ(t), K ∈ Rn×q is
the gain matrix to be determined, and ΔK represents the
gain variation that satisfies ΔK � MF(t)N, in which M and
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N are known real matrices and F(t) is an unknown sat-
isfying FT(t)F(t)≤ I.

Defining e(t) � υ(t) − υ(t), the estimation error dy-
namics can be obtained from (3) and (5) as follows:

D
α
e(t) � − [C − (K + ΔK)D]e(t) + AZ(e(t))

− (K + ΔK)Dek(t)

− (K + ΔK)Dυ(t − d(t)) +(K + ΔK)Dυ(t),

(7)

where Z(e(t))≜ Z(υ(t)) − Z(υ(t)).
For notation simplicity, we define η(t)≜ [υT(t) eT(t)]T.

An augmented systemmodel from (3) and (8) is given in the
following form:

D
αη(t) � Cη(t) + Aφ(η(t)) + Eek(t) + Kη(t − d(t)),

(8)

where

C �
− C 0

(K + ΔK)D − C − (k + ΔK)D
 , A �

A 0

0 A
 , K �

0 0

− (K + ΔK)D 0
 ,

E �
0

− (K + ΔK)D
 ,φ(η(t))≜ ZT(υ(t)) Z

T
(e(t)) 

T
.

(9)

Lemma 1 (see [26]). For ξ1 and ξ2 ∈ Rn and any positive
scale ϵ> 0, one has

ψT
1ψ2 + ψT

2ψ1 ≤ ϵψ
T
1ψ1 + ϵ− 1ψT

2ψ2. (10)

Lemma 2 (see [27]). For ∀α ∈ (0, 1) and t≥ 0, if υ(t) ∈ Rn is
continuous and differential, then

D
αυT

(t) Qυ(t)≤ 2υT
(t)QD

αυ(t). (11)

Lemma 3 (see [28]). For matrices ϖ,E,H, where ϖ is
symmetric, the inequality

ϖ + EFH +(EFH)
T < 0 (12)

holds if and only if

ϖ + ξEE
T

+ ξ− 1
H

T
H< 0, (13)

in which ξ > 0 refers to a scalar and FTF< I.

Lemma 4 (see [29]). Consider a class of fractional-order
nonlinear systems:

D
αη(t) � h(t, η(t − d(t))), (14)

and the initial condition is η(t0) � ϕ ∈ C([t0 − τ, t0],R
n).

Suppose that ωi(s)(i � 1, 2): R⟶ R are positive functions,
and ω1(0) � ω2(0) � 0,ω2(s1)<ω2(s2)(∀0< s1 < s2). If
there exist two constants 0< μ< ϵ and a continuous differ-
ential function V: R × Rn such taht ω1 ≤V(t, x)≤ω2
satisfying

DαV(t, η(t))≤ − εV(t, η(t))

+ μ sup
− dM ≤ − d(t)≤ 0

V(t + d(t), x(t + η(t − d(t)))),

(15)

then the fractional-order system is globally uniformly as-
ymptotically stable.

Lemma 5 (see [30]). =e matrix

ϕ �
ϕ11 ϕ12
ϕT
12 ϕ22

⎡⎣ ⎤⎦< 0, (16)

holds if and only if (a) ϕ22 < 0,ϕ11 − ϕ12ϕ
− 1
22ϕ

T
12 < 0, or

(b) ϕ11 < 0,ϕ22 − ϕT
12ϕ

− 1
11ϕ12 < 0.

Lemma 6 (see [31]). V is continuous on [t0, +∞) and
bounded on [t0 − ρ, t0]. If there exist p, q such that

D
α
t V(t) ≤ − pV(t) + 

m

k�1
qh sup

− ρh ≤ω≤ 0
V(t + ω), t≥ t0,

(17)

where 0< α< 1, qk > 0, p> 
m
k�1 qk, and

ρ � max ρ1, ρ2, . . . , ρm , then limt⟶∞V(t) � 0.

3. Main Results

Theorem 1. For the given positive scalars ε> μ> 0, system (8)
is globally asymptotically stable if there exist a symmetric
matrix P � diag P1,P2 > 0 and four scalars
βi(i � 1, 2, 3)> 0, c> 0 satisfying the following LMI:

Φ �

Φ11 Φ12 Φ13 Φ14
∗ Φ22 0 0

∗ ∗ Φ33 0

∗ ∗ ∗ Φ44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (18)

β2σI
TI + β3I

T

1 I1 − μP< 0, (19)
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where

Φ11 �
Λ11 D

T
X

T
− cD

T
N

T
N D

∗ Λ2
⎡⎣ ⎤⎦,Φ12 �

P1A 0

0 P2A
 ,Φ14 �

0 0

0 P2M
 ,

Φ13 �
− cD

T
N

T
N D − cD

T
N

T
N D

− X D − cD
T
N

T
N D − X D − cD

T
N

T
N D

⎡⎣ ⎤⎦,Φ22 �
− β1I1 0

0 − β1I1
⎡⎣ ⎤⎦,

Φ33 �
− β2I1 + cD

T
N

T
N D cD

T
N

T
N D

∗ − β3I1 + cD
T

N
T
N D

⎡⎢⎣ ⎤⎥⎦,Φ44 �
− β3I1 0

0 − cI1

⎡⎣ ⎤⎦,

Λ11 � − P1C − C
T
1P + β1M

T
11M11 + ϵP1 + cD

T
N

T
N D, I1 � diag I, I{ },

Λ22 � sym − P2C − X D  + β1M
T
12M12 + ϵP2 + cD

T
N

T
N D.

(20)

Furthermore, the nonfragile estimator gain K of (8) is
designed as K � P− 1

2 X.
Proof. First, we denote

C �
− C 0

K D − C − K D
 , E �

0

− K D
 ,P �

P1 0

0 P2
 , K �

0 0

− K D 0
 . (21)

Considering system (8), design the following Lyapunov
function:

V(t) � ηT
(t)Pη(t). (22)

From Lemma 2, one obtains

D
α
V(t) ≤ 2ηT

(t)PD
αη(t)

� 2ηT
(t)P Cη(t) + Aφ(η(t))

+ Eek(t) + Kη(t − d).

(23)

It follows from Lemma 3 that

2ηT
(t)PAφ(η(t))≤ β− 1

1 ηT
(t)PAA

T
Pη(t)

+ β1η
T
(t)G

T
Gη(t),

(24)

2ηT
(t)PEek(t)≤ β− 1

2 ηT
(t)PKE

T
Pη(t) + β2e

T
k (t)ek(t)

≤ β− 1
2 ηT

(t)PEE
T
Pη(t) + β2ση

T
(t − d(t))I

TIη(t − d(t)),

(25)

2ηT
(t)PKη(t − d(t))≤ β− 1

3 ηT
(t)PKK

T
Pη(t)

+ β3η
T
(t − d(t))η(t − d(t)),

(26)

where I � [− I, I] and I � [I, 0].
Combining (24)–(36), we can get

D
α
V(t)≤ ηT

(t) PC + PE1 + C
T
P + E

T

1P + β− 1
1 PAA

T
P

+ β1G
T
G + β− 1

2 PEE
T
P + β− 1

3 P K K
T
Pη(t)

+ ηT
(t − d(t)) β2σI

TI + β3I
T

1 I1 η(t − d(t)).

(27)

By employing Lemma 5, Φ< 0 is equivalent to

Φ + cN
T
N + c

− 1
MM

T < 0, (28)

where

Φ �

PC + C
T
P + β1M

T
1 M1 + εP1 PA PE PEI

∗ − β1I1 0 0

∗ ∗ − β2I1 0

∗ ∗ ∗ − β3I1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
T

� 0, M
T
P2, 0n×5n ]

T
 , N � [N D, − N D, 0, 0, − N D, − N D, 0].

(29)

Defining an equation as follows:

ΔΦ � MF(t)N + N
T
F

T
(t)M

T
, (30)

we have

ΔΦ≤ c
− 1

MM
T

+ cN
T
N. (31)

Furthermore, from (28) and (31), we arrive at
Φ + ΔΦ< 0.

Based on Lemma 3, we can obtain
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PC + PE1 + C
T
P + E

T

1P + β− 1
1 PAA

T
P + β1G

T
G

+ β− 1
2 PEE

T
P + β− 1

3 P K K
T
P< − εP.

(32)

Combining (27) and (32), we have

D
α
V(t)≤ − ϵηT

(t)Pη(t)

+ μ sup
0≤d(t)≤dM

ηT
(t − d(t))Pη(t − d(t))

� − εV(t) + μ sup
0≤d(t)≤dM

V(t − d(t)).

(33)

It follows from Lemma 4 that (4) is an asymptotical
estimator and system (3) is globally asymptotically stable.
+e proof is completed.

It is worth noting that the parameter uncertainties are
often unavoidable resulting from the inaccuracy of modeling
or the changing environment. In addition, the network
output is composed of linear and nonlinear parts. +erefore,
the following model of FNN is established:

D
αυ(t) � − (C + ΔC)υ(t) +(A + ΔA)f(υ(t)) +(B + ΔB)f(υ(t − τ(t))) + J,

y(t) � Dυ(t) + g(υ(t)),
 (34)

where τ(t) is a time-varying delay satisfying 0≤ τ(t)≤ τM.
Here, τM is a constant. ΔA,ΔB,ΔC are parameter uncer-
tainties which satisfy the following condition:

ΔA ΔB ΔC  � M2F1(t) N1 N2 N3 , (35)

where M2, N1, N2, N3 are known matrices and F1(t) is an
unknown matrix function which satisfies
F1(t)TF1(t)≤ I. □

Assumption 1. g: Rn⟶ Rq stands for the nonlinear dis-
turbance which satisfies the Lipschitz condition:

|g(t, a) − g(t, b)|≤ |F(a − b)|, (36)

where g(t, 0) � 0 and F is a known constant matrix.
+e estimator and estimation error dynamics are ob-

tained as follows:

D
α
υ(t) � − (C + ΔC)υ(t) +(A + ΔA)f(υ(t)) +(B + ΔB)f(x(t − τ(t))) + J +(K + ΔK)(y(t) − Dυ(t)),

D
α
e(t) � [− C − (K + ΔK)D]e(t) +[− ΔC + ΔK)D]υ(t) + Af(e(t)) + ΔAf(υ(t) + Bf(e(t − τ(t)))

+ΔBf(x(t − τ(t))) − (K + ΔK)ey(t) − (K + ΔK)Dx(t − d(t)) − (K + ΔK)g(x(t − d(t))).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

+e augmented system is derived as follows:

D
αη(t) � Cη(t) + Aφ(η(t)) + Bφ(η(t − τ(t)))

+ Hη(t − d(t)) − Gg(Iη(t − d(t))) − Ley(t),

(38)

where

C �
− C − ΔC 0

− ΔC +(K + ΔK)D − C − (K + ΔK)D
 , A �

A + ΔA 0

ΔA A
 ,

B �
B + ΔB 0

ΔB B
 , H �

0 0

− (K + ΔK)D 0
 , I �

0 0

I 0
 ,

G �
0 0

K + ΔK 0
 , L �

0

K + ΔK
 .

(39)

+e following theorem is given to ensure the above
system is asymptotically stable.

Theorem 2. For given positive scalars ϕ, ϑ1, ϑ2 satisfying
ϕ> ϑ1 + ϑ2, the augmented system (48) is asymptotically
stable if there exist a symmetric matrixP � diag P1,P2 > 0
and seven scalars ci(i � 1, 2, 3)> 0, βi(i � 1, 2, . . . , 4)> 0
satisfying the following LMI:

Π �

Π11 Π12 Π13 Π14 Π15 Π16
∗ Π22 0 Π24 Π25 0

∗ ∗ Π33 0 0 0

∗ ∗ ∗ Π44 Π45 0

∗ ∗ ∗ ∗ Π55 0

∗ ∗ ∗ ∗ ∗ Π66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (40)

Θ �
Λ2 0
∗ β1I − ϑ1P2

 < 0, (41)
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Φ �
β2M

T
11M11 − ϑ2P1 0

∗ β2M12T
M12 − ϑ2P2

⎡⎣ ⎤⎦< 0,

(42)

where

Π11 �
Λ1 D

T
X

T
− c3D

T
N

T
4 N4D

∗ Q22 + c3D
T
N

T
4 N4D

⎡⎢⎣ ⎤⎥⎦,Π12 �
− c3D

T
N

T
4 N4D c2M

T
41N

T
2 N3

− X D + c3D
T
N

T
4 N4D 0

⎡⎢⎣ ⎤⎥⎦,

Π13 �
P1B 0

0 P2B
 ,Π14 �

c3D
T
N

T
4 N4 0

X − c3D
T
N

T
4 N4D 0

⎡⎢⎣ ⎤⎥⎦,Π66 �
− c2I 0

∗ − c3I
 ,

Π15 �
− c3D

T
N

T
4 N4 − P1M2

X − c3D
T
N

T
4 N4D − P2M2

⎡⎢⎣ ⎤⎥⎦,Π22 �
− β1I + c3D

T
N

T
4 N4D 0

∗ − β1I
⎡⎣ ⎤⎦,

Π16 �
P1M2 0

P2M2 P2M3

⎡⎣ ⎤⎦,Π24 �
− c3D

T
N

T
4 N4 0

0 0
⎡⎣ ⎤⎦,

Π45 �
c3N

T
4 N4 0

0 0
⎡⎣ ⎤⎦,Π33 �

− β2I + c2N
T
3 N3 0

∗ − β2I
⎡⎣ ⎤⎦,

Π44 �
− β3I + c3N

T
4 N4 0

∗ − β3I
⎡⎣ ⎤⎦,Π25 �

− c3D
T
N

T
4 N4 0

0 0
⎡⎣ ⎤⎦,Π55 �

− β4I + c3N
T
4 N4 0

∗ − c1I

⎡⎣ ⎤⎦,

Λ1 � Q11 + c2M
T
41N

T
2 N2M41 + c3D

T
N

T
4 N4D,

Λ2 � β1I + β3M
T
22M22 + β4σD

T
D + β4σsym D

T
M3  + β4σM

T
3 M3 − ϑ2P2.

(43)

Furthermore, the nonfragile estimator gain K is designed
as K � P− 1

2 X.

Proof. Construct the following Lyapunov functional:

V(t) � ηT
(t)Pη(t). (44)

From Lemma 2, the following inequality is obtained:

D
α
V(t)≤ 2ηT

(t)PD
αη(t)

� 2ηT
(t)P[Cη(t) + Hη(t − d(t)) + Aφ(η(t))

+ Bφ(η(t − τ(t))) − G1g(Iη(t − d(t))) − Ley(t).

(45)

By using Lemma 1 and Lipschitz condition, one gets

2ηT
(t)P Hη(t − d(t))≤ β− 1

1 ηT
(t)P H H

T
Pη(t)

+ β1η(t − d(t))
Tη(t − d(t)),

(46)

2ηT
(t)PBφ(η(t − τ(t)))≤ 2η(t)

T
PBM1η(t − τ(t))

≤ β− 1
2 η(t)PBB

T
Pη + β2η

T
(t − τ(t))M

T
1 M1η(t − τ(t)),

(47)

− 2ηT
(t)PGg(Iη(t − d(t))) ≤ β− 1

3 ηT
(t)PGG

T
Pη(t)

+ β3η
T

(t − d(t))I
T
M

T
2 M2Iη(t − d(t)),

(48)

− 2ηT
(t)PLey(t)≤ β− 1

4 ηT
(t)PLL

T
Pη(t) + β4ey(t)

T
ey(t).

(49)
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From event-triggered condition (5), we can obtain

ey(t)
T
ey(t)≤ σy

T
tkh + jh( y tkh + jh( 

≤ σy
T
(t − d(t))y(t − d(t))

≤ σηT
(t − d(t))D

T
Dη(t − d(t))

+ σηT
(t − d(t)) D

T
M3

I + σI
T

M
T
3 D η(t − d(t))

+ σηT
(t − d(t))I

T
M

T
3 M3

Iη(t − d(t)).

(50)

Combining (45)–(50), one can get

D
α
V(t)≤ 2ηT

(t)PD
αη(t)

≤ ηT
(t) PCη(t) + C

T
P + PAM4 + M

T
4

A
T
P

+ β− 1
1 P H H

T
P + β− 1

2 PBB
T
P + β− 1

3 PGG
T
P

+ β− 1
4 PLL

T
Pη(t)

+ ηT
(t − d(t)) β1�I + β3I

T
M

T
2 M2I + β4σD

T
M3

I

+ β4σI
T
M

T
3 D + I

T
M

T
3 M3

Iη(t − d(t))

+ ηT
(t − τ(t))) β2M

T
1 M1 ηT

(t − τ(t))),

(51)

and therefore

D
α
V(t) + ϕV(t) − ϑ1 sup

− τM ≤ω≤ 0
V(t + ω, x(t + ω)) − ϑ2 sup

− dM ≤ω≤ 0
V(t + ω, x(t + ω))

≤ ηT
(t) PCη(t) + C

T
P + PAM4 + M

T
4

A
T
P + β− 1

1 P H H
T
P + β− 1

2 PBB
T
P + β− 1

3 PGG
T
P + β− 1

4 PLL
T
P 

· η(t) + ηT
(t − d(t))

β1�I + β3I
T
M

T
2 M2I + β4σD

T
M3

I + β4σI
T
M

T
3 D + I

T
M

T
3 M3

I η(t − d(t))

+ηT
(t − τ(t)) β2M

T
1 M1 ηT

(t − τ(t)) + ϕV(t) − ϑ1η
T
(t − τ(t))Pη(t − τ(t)) − ϑ2η

T
(t − d(t))Pη(t − d(t)).

(52)

Based on the above inequations, we have

D
α
V(t) + ϕV(t) − ϑ1 sup

− τM ≤ω≤ 0
V(t + ω, x(t + ω)) − ϑ2 sup

− dM ≤ω≤ 0
V(t + ω, x(t + ω))

≤ ηT
(t)Q1η

T
(t) + ηT

(t − d(t))Q2η
T
(t − d(t)) + ηT

(t − τ(t))Q3η
T
(t − τ(t)),

(53)

where
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Q1 � sym PC + PAM4  + β1P H H
T
P + β2PBB

T
P

+ β1PGG
T
P + β4PLL

T
P + ϕP,

Q2 � β1�I + β3I
T
M

T
2 M2I + β4σD

T
D + sym β4σD

T
M3

I 

+ β4σI
T
M

T
3 M3

I − ϑ1P,

Q3 � β2M
T
1 M1 − ϑ2P.

(54)

By Lemma 5, Π< 0 is equivalent to

Q + c1S
T
1 S1 + c2S

T
2 S2 + c3S

T
3 S3  + c

− 1
1 R1R

T
1 + c

− 1
2 R2R

T
2 + c

− 1
3 R3R

T
3 < 0,

(55)

where

Q �

sym PC1 + PA1M4  PH1 PB1 PG1 PL1

∗ − β1�I 0 0 0

∗ ∗ − β2�I 0 0

∗ ∗ ∗ − β3�I 0

∗ ∗ ∗ ∗ − β4�I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R1 �

− P1M2

− P2M2

07n×n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, R2 �

P1M2

P2M2

07n×n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R3 �

0

P2M2

07n×n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, S1 � N1, 0n×8n ,

S2 � N2M41, 0n×3n,N3 ,0n×4n
 , S3 � N4D, − N4D, − N4D, 0n×3n, N4, 0, N4 .

(56)

Let

Q′ � R1F1(t)S1 + R2F1(t)S2 + R3F2(t)S3 + S
T
1 F

T
1 (t)R

T
1

+ S
T
2 F

T
1 (t)R

T
2 + S

T
3 F

T
2 (t)R

T
3

≤ c1S
T
1 S1 + c2S

T
2 S2 + c3S

T
3 S3 + c

− 1
1 R1R

T
1

+ c
− 1
2 R2R

T
2 + c

− 1
3 R3R

T
3 .

(57)

+en, one gets Q + Q′ < 0. Based on Lemma 5, (55) and
(57) imply that Q1 ≤ 0. According to (40) and (42), we know
that Q2 < 0, and Q3 < 0. +erefore, we can obtain

D
α
V(t) + ϕV(t) − ϑ1 sup

− τM ≤ω≤ 0
V(t + ω, υ(t + ω))

− ϑ2 sup
− dM ≤ω≤ 0

V(t + ω, υ(t + ω))≤ 0.
(58)

+erefore, system (37) is an asymptotical estimator of
(34) by using Lemma 6. +is completes the proof. □

4. Numerical Example

To illustrate the theoretical results, two numerical examples
are shown in this section.

Example 1.

A �

− 1.2 − 0.5 1

1 − 0.2 1.6

0.2 0.8 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,C �

0.3 0 0

0 0.4 0

0 0 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, D �

0.2 0 0

0 0.28 0

0 0 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(59)

where M �diag 0.4, 0.4, 0.4{ }, N� diag 0.3, − 0.3, 0.3{ }, and
M11 � M12 � diag 0.2, 0.2, 0.2{ }.

+e other parameters are given as α � 0.98,
τ � 1,V � [0.5, 0.2, − 0.8]T. +e activation function is given
as follows:

Z υ1, υ2, υ3(  � sin 0.4πυ1( , cos 0.2πυ2( , sin 0.6πυ3(  .

(60)

By using Matlab to solve LMIs (26) and (27), the gain
matrix K can be obtained as

K �

1.5663 0.1752 − 1.0655

0.1475 1.9113 − 0.8569

− 0.7003 − 0.7138 1.6980

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (61)
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+e simulation results are shown in Figures 1–3, where
υ1(t), υ2(t), υ3(t) represent the true states and their esti-
mates υ1(t), υ2(t), υ3(t) and the initial conditions are
(∀t ∈ [− 1, 0]): υ(t) � [0.3, 0.7, − 0.3]T, υ(t) � [− 0.5, − 0.4,

0.2]T.
Figure 4 shows the estimate error ei(t)⟶ 0 as

t⟶∞. According to the simulation results, we can see the
effectiveness of the estimator design method. Figure 5 shows
the release instants and intervals with the threshold pa-
rameter σ � 0.06.

Example 2. To verify that the estimator contains uncertain
terms in (34), the following fractional-order model is shown,
and the corresponding parameters are as follows:

A �

− 0.6 − 0.5 1

0.1 − 0.2 1

0.2. 0.3 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

0.2 − 0.2 0.1

0.3 − 0.2 0.1

− 0.4 − 0.1 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, C �

0.2 0 0

0 0.2 0

0 0 0.3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(62)

where M2 � diag 0.4, 0.2, 0.4{ }, M3 � diag 0.1, 0.1, 0.1{ },
M11 � M12 � M41 � M42 � diag 0.2, 0.2, 0.2{ },
N1 � N2 � diag 0.1, 0.1, 0.1{ }, and N3 � N4 � 0.2, 0.2, 0.2{ }.
Besides, α � 0.92, and the time delays are set as
τM � 1, dM � 0.1, J � [0.01, 0.02, − 0.01]T.+emeasurement
output is g(t, υ) � [tanh(0.4πυ1), tanh(0.2
πυ2), tanh(0.6πυ3))]. Let the activation function be
Z(υ1, υ2, υ3) � [tanh(0.4πυ1), tanh(0.3πυ2), tanh(0.2πυ3))].

By using Matlab to solve the LMI (37), the gain matrix K

can be obtained as

υ 1
(t)

υ1(t)
υ⌃1(t)

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

5 10 15 3025 350 20
Time (second)

Figure 1: Trajectories of υ1(t) and υ1(t).

υ 2
 (t

)

υ2 (t)
υ⌃2 (t)

5 10 15 3025 350 20
Time (second)

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Figure 2: Trajectories of υ2(t) and υ2(t).

υ 3
 (t

)

υ3 (t)
υ⌃3 (t)

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

5 10 15 3025 350 20
Time (second)

Figure 3: Trajectories of υ3(t) and υ3(t).

e (
t)

e1 (t)
e2 (t)
e3 (t)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 3025 350 20
Time (second)

Figure 4: +e estimation errors.
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0.4
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Figure 5: Event-triggered release instants and intervals of +eorem 1.

υ 1
 (t

)

υ1 (t)
υ⌃1 (t)

5 10 15 3025 350 20
Time (second)

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Figure 6: Trajectories of υ1(t) and υ1(t).

υ 2
 (t

)

υ2 (t)
υ⌃2 (t)

–0.8

–0.6

–0.4

–0.2
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0.6

0.8

1
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Time (second)

Figure 7: Trajectories of υ2(t) and υ2(t).
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K �

1.4199 0.2566 − 1.4064

0.0808 1.2616 − 0.6868

− 0.3186 − 0.3723 2.8109

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (63)

+e simulation results are shown in Figures 6–8, where
υ1(t), υ2(t), υ3(t) represent the true states and their esti-
mates υ1(t), υ2(t), υ3(t) are depicted, respectively, with the
initial condition (∀t ∈ [− 1, 0].): υ(t) � [0.7; 1.2; − 0.6],

υ(t) � [− 1; − 0.7; 0.6].
Figure 9 shows the estimate error e1(t), e2(t), e3(t), as

t⟶∞. In Figure 8, we can see clearly the error states
ei(t)⟶ 0. Figure 10 shows the release instants and in-
tervals with σ � 0.06. According to the figures, we can see
that the simulation results voiced the effectiveness of the
estimator design.

5. Conclusions

+is paper has investigated the nonfragile SE issue under the
ETM for the FNNs with time delays. Sufficient conditions
have been obtained to ensure the asymptotic stability of the
considered system by means of the fractional-order Lya-
punov functions and the LMImethod.+e gainmatrix of the
nonfragile estimator has been characterized by a LMI. At
last, two numerical results have confirmed the validity of the
designed estimator. In addition, the results could be ex-
tended to the SE issue of discrete FNNs with fading mea-
surements and so on.
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