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In this paper, a stochastic competitive model with distributed time delays and Lévy jumps is formulated. With or without a
polluted environment, the model is denoted by (M) or (M0), respectively. +e existence of positive solution, persistence in mean,
and extinction of species for (M) and (M0) are both studied. +e sufficient criteria of stability in distribution for model (M) is
obtained. Finally, some numerical simulations are given to illustrate our theoretical results.

1. Introduction

+e dynamics of the biological system has attracted many
researchers and has no interruption in the past few decades.
+is includes the study of the persistence and extinction,
stability in distribution of biological systems, optimal har-
vesting effects of renewable resources (for example, fish and
plants), and so on. +ese studies have implications for the
management of biological resources. +e dynamics behav-
iors from the initial deterministic model to stochastic model
have been extensively studied and a lot of nice results have
been reported [1–4]. It has been verified that the growth rates

of species are inevitably subject to white noise. And whether
to consider the white noise is the difference between the
stochastic model and the deterministic model. Following the
method adopted in [4], we will model a stochastic system
with white noise. For the biological system, usually there are
three kinds of population relationship, i.e., predator-prey,
mutualistic, and competitive scenarios, where the compet-
itive scenario between populations is relatively popular
[5, 6]. +e general competitive model between two pop-
ulations with white noise is as follows:

dy1(t) � y1(t) r10 − a11y1(t) − a12y2(t)􏼂 􏼃dt + σ1y1(t)dB1(t),

dy2(t) � y2(t) r20 − a21y1(t) − a22y2(t)􏼂 􏼃dt + σ2y2(t)dB2(t),
􏼨 (1)

where yi(t) is the size of the i-th population at time t; ri0
represents the growth rate of i-th population; aii > 0 denotes
the intraspecific competitive coefficients of yi; a12 and a21
are positive and represent the competitive rates between y1
and y2, respectively; Bi(t) stands for the standard Brownian
motion defined on a complete probability space
(Ω,F, F{ }t≥0, P) with a filtration F{ }t≥0 satisfying the usual
conditions (i.e., it is increasing and right continuous andF0

contains all P null sets); σ2i is the intensity of the white noise,
i � 1, 2.

However, the world economy is developing more and
more rapidly and the economic development will inevitably
destroy the ecological environment. With the increasing
toxins and pollution into the ecological environment, the
quality of human living environment is becoming worse and
worse. +erefore, the study on the impact of toxin
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importation and environmental pollution on biological
populations has become one of the most popular topics in
the world [7–12], which is of vital significance to the de-
velopment of sustainable economy and the protection of

human’s only living environment. Based on model (1) and
considering the environmental pollution factors, then we
derive the following model:

dy1(t) � y1(t) r10 − r11C1(t) − a11y1(t) − a12y2(t)􏼂 􏼃dt + σ1y1(t)dB1(t),

dy2(t) � y2(t) r20 − r21C2(t) − a21y1(t) − a22y2(t)􏼂 􏼃dt + σ2y2(t)dB2(t),

dC1(t) � k1CE(t) − g1 + m1( 􏼁C1(t)􏼂 􏼃dt,

dC2(t) � k2CE(t) − g2 + m2( 􏼁C2(t)􏼂 􏼃dt,

dCE(t) � −hCE(t) + u(t)􏼂 􏼃dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where C1(t), C2(t), and CE(t) are the concentrations of the
toxicant in the organism of species y1 and y2 and envi-
ronment at time t, respectively; r11 and r21 denote the dose-
response of species y1 and y2 to the organismal toxicant,
respectively; ki and gi represent the absorbing and excretion
rates of the toxicant from the environment respectively, −mi

is depuration rate of the toxicant, i � 1, 2. −hCE(t) denotes
the loss rate of the toxicant because of volatilization; u(t)

represents the exogenous rate of toxicant inputting into the
environment and is always assumed to be bounded.

On the other hand, the behavior between predator and
prey is often not always continuous. For example, in some
cases, young predators cannot engage in predation; that is,
young prey cannot be preyed on. +ese phenomena are
called time delays. Similar phenomena include hibernation,
pregnancy, and migration. In fact, time delays exist not only
in biological systems, but in other domains as well. For
example, R. Manivannan has studied a control system with
probabilistic time-delay signals [13]. +erefore, time delays

are very important to reveal the real world and should be
taken into account in our system. Some scholars pointed out
that discrete delays and continuous delays do not include
each other, but the S-type distributed delays can be done
[14, 15]. +erefore, taking S-type delays into account in
above model is interesting. In addition, in nature there are
some environmental perturbations such as earthquakes,
epidemics, and hurricanes, which differ from white noise
because of its sudden and destructive nature, so Lévy jumps
are introduced to simulate them in mathematical modeling
[16–21]. For example, Liu and Wang [18] studied the per-
sistence and extinction of the two-species model with Lévy
jumps. Liu and Bai [21] investigated the stability in distri-
bution of a stochastic model with Lévy noises by Lyapunov
functional approach.

Motivated by these, taking the S-type distributed time
delays and Lévy noises into the above model, we get the
following stochastic predator-prey model (M):

(M)

dy1(t) � y1 t
−

( ) r10 − r11C1(t) − a11y1(t) − a12 􏽚
0

−τ2
y2 t

−
+ θ( )dμ2(θ)􏼢 􏼣dt + σ1y1(t)dB1(t)

+ y1 t
−

( )􏽚
Z

c1(u)􏽥Γ(dt, du),

dy2(t) � y2 t
−

( ) r20 − r21C2(t) − a21 􏽚
0

−τ1
y1 t

−
+ θ( )dμ1(θ) − a22y2(t)􏼢 􏼣dt + σ2y2(t)dB2(t)

+ y2 t
−

( )􏽚
Z

c2(u)􏽥Γ(dt, du),

dC1(t) � k1CE(t) − g1 + m1( 􏼁C1(t)􏼂 􏼃dt,

dC2(t) � k2CE(t) − g2 + m2( 􏼁C2(t)􏼂 􏼃dt,

dCE(t) � −hCE(t) + u(t)􏼂 􏼃dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

with initial data

yi(θ) � ξi(θ), θ ∈ [−τ, 0],

τ � max τi􏼈 􏼉, i � 1, 2,
(4)

where yi(t− ) denotes the left limit of yi(t);
􏽥Γ(dt, du) � Γ(dt, du) − λ(du)dt represents a compensated

Poisson process, where Γ is a Poisson counting measure, λ is
the characteristic measure of Γ on a measurable subset Z in
(0, +∞) with λ(Z)< +∞, λ(du) is the measure of Z; ci(u)

is a bounded function with ci(u)> −1, u ∈ Z; the term
􏽒
0
−τi

yi(t− + θ)dμi(θ) denotes the Lebesgue–Stieltjes inte-
gral, where μi(θ) denotes a nonnegative variation function
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defined on [−τ, 0] with τ � max τi􏼈 􏼉 satisfying 􏽒
0
−τi

dμi(θ) �

1, i � 1, 2. +e biological meanings of other parameters are
the same as before. If r11 � r21 � 0, the corresponding model
is denoted by (M0), which means that the population is not
contaminated.

We aim to study the dynamical behaviors of (M) and
(M0) such as the extinction and persistence in mean for all
species and explore the impacts on the dynamics of time
delays and Lévy noise.

+e article is structured as follows. For preliminaries, we
give some notations and important lemmas in Section 2. In

Section 3, we establish the sufficient criteria for the per-
sistence in mean and nonpersistence of M and M0 and
investigate the stable in distribution of (M). In Section 4,
some numerical simulations are presented to verify ourmain
results. Finally, conclusion and discussion are given to end
this article in Section 5.

2. Preliminaries

For the simplicity, we first make the following notations:

bi � ri0 − 0.5σ2i − 􏽚
Z

ci(u) − ln 1 + ci(u)( 􏼁λ(du)􏼂 􏼃, i � 1, 2,

Ri(t) � 􏽚
t

0
􏽚
Z
ln 1 + ci(u)( 􏼁􏼁􏽥Γ(ds, du), i � 1, 2,

f(t) � t
− 1

􏽚
t

0
f(s)ds,

f
∗

� lim
t⟶∞

supf(t),

f∗ � lim
t⟶∞

inff(t),

f(t)
∗

� lim
t⟶∞

supt
− 1

􏽚
t

0
f(s)ds,

f(t)∗ � lim
t⟶∞

inft− 1
􏽚

t

0
f(s)ds,

Δ � a11a22 − a12a21,

Δ1 � a22b1 − a12b2,

Δ2 � a11b2 − a21b1,

Δ31 � a22 b1 − r11C1(t)
∗

􏼐 􏼑 − a12 b2 − r21C2(t)∗􏼐 􏼑,

Δ32 � a22 b1 − r11C1(t)∗􏼐 􏼑 − a12 b2 − r21C2(t)
∗

􏼐 􏼑,

Δ41 � −a21 b1 − r11C1(t)∗􏼐 􏼑 + a11 b2 − r21C2(t)
∗

􏼐 􏼑,

Δ42 � −a21 b1 − r11C1(t)
∗

􏼐 􏼑 + a11 b2 − r21C2(t)∗􏼐 􏼑.

(5)

Our later discussion are based on the following tech-
nological hypotheses.

Assumption 1. +ere exists a positive constant L such that

􏽚
Z

ln 1 + ci(u)( 􏼁􏼂 􏼃
2λ(du)< L, i � 1, 2. (6)

Assumption 2. Suppose that Δ> 0, which means the internal
competition is greater than the external competition (see
[22]).

+e following lemmas are necessary for our later proof.

Lemma 1. Let Assumption 1 hold, then for any given initial
data (ξ1(t), ξ2(t)) ∈ C([−τ, 0], R2

+), there exists a unique
solution remaining in R2

+ with probability 1.

Proof. It is obvious that the coefficients of model (M) are
locally Lipschitz. By [5], model (M) has a unique local so-
lution y(t) � (y1(t), y2(t)) ∈ R2

+ a.s. for any initial data
(ξ1(t), ξ2(t)) ∈ C([−τ, 0], R2

+) and t ∈ [0, τe], where τe > 0
is the explosion time. It needs only to verify that τe �∞ a.s.
Let m0 > 0 be sufficiently large such that (ξ1(0),

ξ2(0)) ∈ [1/m0, m0] for each integer m ≥ m0. Define the
stopping time

τm � inf t ∈ 0, τe􏼂 􏼃: y1(t) ∉
1
m

, m􏼒 􏼓, y2(t) ∉
1
m

, m􏼒 􏼓􏼚 􏼛.

(7)

Clearly, τm is strictly increasing with m. Let
τ∞ � limm⟶∞τm a.s., then τ∞ ≤ τm a.s. +en, we only need
to prove τ∞ �∞ a.s. If the statement is not true, then there
exist T> 0 and 0< ε< 1 such that P(τ∞ <T)> ε and an
integer m1 >m0 such that

Discrete Dynamics in Nature and Society 3



P τm ≤T( 􏼁> ε, for anym>m1. (8)

Define

V(y) � βV1 y1( 􏼁 + V2 y2( 􏼁 + V3(t), (9)

where

y � y1, y2( 􏼁,

V1 y1( 􏼁 � y1 − 1 − lny1,

V2 y2( 􏼁 � y2 − 1 − lny2,

V3(t) �
β
2n

2 a12 􏽚
0

−τ2
􏽚

t

t+θ
y
2
2 s

−
( )dsdμ2(θ) +

a21

2n
2 􏽚

0

−τ1
􏽚

t

t+θ
y
2
1 s

−
( )dsdμ1(θ).

(10)

Choose a constant β> 0 and integer n> 0 such that
a21

2n
2 − βa11 < 0,

βa12

2n
2 − a21 < 0.

(11)

For model (M), by Ito’s formula, we get

dV(y) � βLV1 y1( 􏼁 + LV2 y2( 􏼁 +
d
dt

V3(t)􏼢 􏼣dt

+ βσ1 y1 − 1( 􏼁dB1(t) + β􏽚
Z

y1c1(u) − ln 1 + c1(u)( 􏼁( 􏼁􏽥Γ(ds, du)

+ σ2 y2 − 1( 􏼁dB2(t) + 􏽚
Z

y2c2(u) − ln 1 + c2(u)( 􏼁( 􏼁􏽥Γ(ds, du),

(12)

where

LV1 y1( 􏼁 � y1 − 1( 􏼁 r10 − r11C1(t) − a11y1 t
−

( ) − a12 􏽚
0

−τ2
y2 t

−
+ θ( )dμ2(θ)􏼢 􏼣

+ 0.5σ21 + 􏽚
Z

c1(u) − ln 1 + c1(u)( 􏼁( 􏼁λ(du),

LV2 y2( 􏼁 � y2 − 1( 􏼁 r20 − r21C2(t) − a21 􏽚
0

−τ1
y1 t

−
+ θ( )dμ1(θ) − a22y2 t

−
( )􏼢 􏼣

+ 0.5σ22 + 􏽚
Z

c2(u) − ln 1 + c2(u)( 􏼁( 􏼁λ(du).

(13)

By basic inequality a2 + b2 ≥ 2ab, we have

a12 􏽚
0

−τ2
y2 t

−
+ θ( )dμ2(θ) ≤

1
2

a12 n
2

+
1
n
2 􏽚

0

−τ2
y
2
2 t

−
+ θ( )dμ2(θ)􏼠 􏼡, (14)

a21 􏽚
0

−τ1
y1 t

−
+ θ( )dμ1(θ) ≤

1
2

a21 n
2

+
1
n
2 􏽚

0

−τ1
y
2
1 t

−
+ θ( )dμ1(θ)􏼠 􏼡. (15)
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Substituting (14) and (15) into LV1(y1), LV2(y2), then

LV1 y1( 􏼁≤y1 r10 − r11C1(t)( 􏼁 − a11y
2
1 − r10 + r11C1(t) + a11y1 + 0.5σ21

+ 􏽚
Z

c1(u) − ln 1 + c1(u)( 􏼁( 􏼁λ(du) + a12 􏽚
0

−τ2
y2 t

−
+ θ( )dμ2(θ)

≤y1 r10 − r11C1(t)( 􏼁 − a11y
2
1 − r10 + r11C1(t) + a11y1 + 0.5σ21

+ 􏽚
Z

c1(u) − ln 1 + c1(u)( 􏼁( 􏼁λ(du) +
n
2

2
a12 +

a12

2n
2 􏽚

0

−τ2
y
2
2 t

−
+ θ( )dμ2(θ),

LV2 y2( 􏼁≤y2 r20 − r21C2(t)( 􏼁 − a22y
2
2 − r20 + r21C2(t) + a22y2 + 0.5σ22

+ 􏽚
Z

c2(u) − ln 1 + c2(u)( 􏼁( 􏼁λ(du) +
n
2

2
a21 +

a21

2n
2 􏽚

0

−τ1
y
2
1 t

−
+ θ( )dμ1(θ).

(16)

+erefore,

βLV1 y1( 􏼁 + LV2 y2( 􏼁 +
d
dt

V3(t)

≤ β

r10y1 − r11C1(t)y1 − a11y
2
1 − r10 + r11C1(t) + a11y1 + 0.5σ21 +

n
2

2
a12

+􏽚
Z

c1(u) − ln 1 + c1(u)( 􏼁( 􏼁λ(du) +
a12

2n
2y

2
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ r20y2 − r21C2(t)y2 − a22y
2
2 − r20

+ r21C2(t) + a22y2 + 0.5σ22 + 􏽚
Z

c2(u) − ln 1 + c2(u)( 􏼁( 􏼁λ(du) +
n
2

2
a21 +

a21

2n
2y

2
1.

(17)

Substituting (17) into dV(y) and together with (11),
there exists a constant K> 0 such that

dV(y) � Kdt + βσ1 y1 − 1( 􏼁dB1(t) + β􏽚
Z

y1c1(u) − ln 1 + c1(u)( 􏼁( 􏼁􏽥Γ(ds, du)

+ σ2 y2 − 1( 􏼁dB2(t) + 􏽚
Z

y2c2(u) − ln 1 + c2(u)( 􏼁( 􏼁􏽥Γ(ds, du).

(18)

By this result and according to the argument in [23], we
have

∞≤KT + V0 y1(0), y2(0)( 􏼁≤∞, (19)

which leads to a contradiction, and hence, τ∞ �∞ a.s.
+erefore, τe �∞ a.s. +e proof is completed. □

Lemma 2. Let (y1(t), y2(t)) be a positive solution of (14)
initial data (ξ1(θ), ξ2(θ)) ∈ C([−τ, 0], R2

+). 3en, for any
p> 0, there exists a constant Ki(p)> 0 such that

lim
t⟶+∞

supE y
p
i (t)􏽨 􏽩≤Ki(p), i � 1, 2. (20)

Proof. We only prove limt⟶+∞supE[y
p
1(t)]≤K1(p). +e

rest is similar and omitted. Defining Q1(t) � ety
p
1(t), by

Ito’s formula, we have

dQ1(t) � LQ1(t)dt + pe
t
y

p
1σ1dB1(t)

+ 􏽚
Z

e
t
y

p
1 1 + c1(u)( 􏼁

p􏽥Γ(ds, du),
(21)
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where

LQ1(t) � e
t
y

p
1 1 +

p(p − 1)σ21
2

+ 􏽚
Z

1 + c1(u)( 􏼁
p

− pc1(u)􏼐 􏼑λ(du)􏼨

+ p r10 − r11C1(t) − a11y1 t
−

( ) − a12 􏽚
0

−τ2
y2 t

−
+ θ( )dμ2(θ)􏼢 􏼣􏼩.

(22)

Let K1(p) � maxy1 ≥ 0 y
p
1 [1 + (p(p − 1)σ21/2) +􏽮 􏽒

Z
((1+

c1(u))p − pc1(u))λ(du) + pr10] − pa11y
p+1
1 }, then

LQ1(t)≤K1(p)e
t
. (23)

Integrating both sides of (21) from 0 to t and taking
expectation leads to

E e
t
y

p
1􏼐 􏼑 − ξp

1(0)≤K1(p) e
t

− 1􏼐 􏼑. (24)

+en, limt⟶+∞supE[y
p
1(t)]≤K1(p). +e proof is

completed. □

Lemma 3 (see [18]). Let Y ∈ C(R+ ×Ω, R+), Z ∈ C(R+ ×Ω,

R), and ρ ∈ C(R+, R) satisfying limt⟶∞(Z(t)/t) � 0 a.s.

(1) If there exist two constants T> 0 and ρ0 > 0 such that

ln Y(t) � 􏽒
t

0 ρ(s)ds − ρ0 􏽒
t

0 Y(s)ds + Z(t) a.s. for
all t≥T,
then (i) limt⟶∞Y(t) � 0 and limt⟶∞sup
(ln Y(t)/t)≤ 0 a.s. if ρ< 0;
limt⟶∞Y(t) � ρ/ρ0 and limt⟶∞(ln Y(t)/t) �

0 a.s. if ρ≥ 0.

(2) If there exist two constants T> 0 and ρ0 > 0 such that

ln Y(t)≤ 􏽒
t

0 ρ(s)ds − ρ0 􏽒
t

0 Y(s)ds + Z(t) a.s. for
all t≥T

then (i) limt⟶∞Y(t)
∗ ≤ ρ/ρ0 a.s. if ρ≥ 0;

limt⟶∞Y(t) � 0, a.s. if ρ< 0.

(3) If there exist two constants T> 0 and ρ0 > 0 such that
for all

ln Y(t)≥ 􏽚
t

0
ρ(s)ds − ρ0 􏽚

t

0
Y(s)ds + Z(t), a.s. t≥T.

(25)

+en, limt⟶∞Y(t)∗ ≥ ρ/ρ0 a.s.

Lemma 4. Let (y1(t), y2(t)) be any positive solution of
model (M), then

(1) limt⟶∞sup(ln yi(t)/t)≤ 0 a.s., i � 1, 2;

(2) For any positive constant τ, limt⟶∞t− 1

􏽒
t

t−τ yi(s)ds � 0 a.s., i � 1, 2.

+e proof of Lemma 4 is standard and is omitted (see,
e.g., [24]).

3. Main Results

3.1. Persistence in Mean

Definition 1 (see [25]). +e system is said to be persistence
in mean if there are positive constants vi and si (i � 1, 2)

such that

vi ≤yi(t)∗ ≤yi(t)
∗ ≤ si, i � 1, 2, (26)

holds for any solution (y1(t), y2(t)) of model (M) with
initial data

y(t) � ξ1(t), ξ2(t)( 􏼁: − τ ≤ t≤ 0􏼈 􏼉 ∈ C [−τ, 0]: R
2
+􏼐 􏼑. (27)

Theorem 1. Assume Δ1 > 0,Δ2 > 0, then for any initial data
y(t) � (ξ1(t), ξ2(t)): − τ ≤ t≤ 0􏼈 􏼉 ∈ C([−τ, 0]: R2

+), the so-
lution (y1(t), y2(t)) of model (M0) has the following
properties:

lim
t⟶∞

y1(t) �
Δ1
Δ

,

lim
t⟶∞

y2(t) �
Δ2
Δ

.

(28)

Proof. For i � 1, 2, we compute

􏽚
t

0
􏽚
0

−τi

yi s
−

+ θ( )dμi(θ)ds − 􏽚
0

−τi

dμi(θ) 􏽚
t

0
yi s

−
( )ds

� 􏽚
0

−τi

􏽚
0

θ
yi s

−
( )ds dμi(θ) − 􏽚

0

−τi

􏽚
t

t+θ
yi s

−
( )ds dμi(θ).

(29)
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For model (M0), noticing 􏽒
0
−τi

dμi(θ) � 1 (i � 1, 2) and
using Ito’s formula, we get

ln y1(t) � b1t − a11 􏽚
t

0
y1 s

−
( )ds + σ1B1(t) + 􏽚

t

0
􏽚
Z
ln 1 + c1(u)( 􏼁􏽥Γ(ds, du)

+ ln y1(0) − a12 􏽚
t

0
􏽚
0

−τ2
y2 s

−
+ θ( ))μ2(θ)ds

� b1t − a11 􏽚
t

0
y1 s

−
( )ds − a12 􏽚

t

0
y2 s

−
( )ds +Φ1(t),

(30)

lny2(t) � b2t − a22 􏽚
t

0
y2 s

−
( )ds − a21 􏽚

t

0
y1 s

−
( )ds +Φ2(t), (31)

where

Φ1(t) � a12 􏽚
0

−τ2
􏽚

t

t+θ
y2 s

−
( )dsdμ2(θ) − a12 􏽚

0

−τ2
􏽚
0

θ
y2 s

−
( )dsdμ2(θ)

+ ln y1(0) + σ1B1(t) + R1(t),

(32)

Φ2(t) � a21 􏽚
0

−τ1
􏽚

t

t+θ
y1 s

−
( )dsdμ1(θ) − a21 􏽚

0

−τ1
􏽚
0

θ
y1 s

−
( )dsdμ1(θ)

+ ln y2(0) + σ2B2(t) + R2(t).

(33)

Since

􏽚
0

−τ2
􏽚

t

t+θ
y2 s

−
( )dsdμ2(θ) ≤ 􏽚

0

−τ2
dμ2(θ) 􏽚

t

t−τ2
y2 s

−
( )ds,

􏽚
0

−τ2
􏽚
0

θ
y2 s

−
( )dsdμ2(θ) ≤ 􏽚

0

−τ2
dμ2(θ) 􏽚

0

−τ2
y2 s

−
( )ds.

(34)

By Lemma 4, we get

lim
t⟶∞

􏽚
0

−τ2
􏽚

t

t+θ
y2 s

−
( )dsdμ2(θ) � 0,

lim
t⟶∞

􏽚
0

−τ2
􏽚
0

θ
y2 s

−
( )dsdμ2(θ) � 0.

(35)

By the same way, we can derive that

lim
t⟶∞

􏽚
0

−τ1
􏽚

t

t+θ
y1 s

−
( )dsdμ1(θ) � 0,

lim
t⟶∞

􏽚
0

−τ1
􏽚
0

θ
y1 s

−
( )dsdμ1(θ) � 0.

(36)

Substituting (35) and (36) into (32) and (33), respec-
tively, then

lim
t⟶∞

t
− 1Φ1(t) � 0,

lim
t⟶∞

t
− 1Φ2(t) � 0 a.s.

(37)

Computing

a22 ln y1(t) − a12 ln y2(t)

� a22b1 − a12b2( 􏼁t − a11a22 − a12a21( 􏼁 􏽚
t

0
y1 s

−
( )ds +Φ3(t)

� Δ1t − Δ􏽚
t

0
y1 s

−
( )ds +Φ3(t),

(38)

where Φ3(t) � a22Φ1(t) − a12Φ2(t). From (37), we can
easily get limt⟶∞t− 1Φ3(t) � 0 a.s.

By Lemma 4 again, for any ε> 0, there is a T0 > 0 such
that

a22 ln y1(t)≤ Δ1 + a12ε( 􏼁t − Δ􏽚
t

0
y1 s

−
( )ds +Φ3(t),

for any t>T0.

(39)

According to Lemma 3, then

lim
t⟶∞

y1(t)
∗ ≤
Δ1
Δ

a.s. (40)

+us, for any ε> 0 and sufficiently large t, there is

a21y1(t)≤ a21y1(t)
∗

+ ε≤ a21
Δ1
Δ

+ ε. (41)
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Using (41) in (31), we get

ln y2(t)≥ b2 − a21
Δ1
Δ

− ε􏼒 􏼓t − a22 􏽚
t

0
y2 s

−
( )ds +Φ2(t)

�
a22Δ2
Δ

− ε􏼒 􏼓t − a22 􏽚
t

0
y2 s

−
( )ds +Φ2(t),

(42)

Lemma 3 implies that

lim
t⟶∞

y2(t)∗ ≥
Δ2
Δ

a.s. (43)

Similarly, we have

a11 ln y2(t) − a21 ln y1(t)

� a11b2 − a21b1( 􏼁t − a11a22 − a12a21( 􏼁 􏽚
t

0
y2 s

−
( )ds +Φ4(t)

� Δ2t − Δ􏽚
t

0
y2 s

−
( )ds +Φ4(t),

(44)

where Φ4(t) � a11Φ2(t) − a21Φ1(t). Obviously, limt⟶∞
Φ4(t) � 0.

From Lemma 4, for any ε> 0, there is a T1 > 0 such that

a11 ln y2(t)≤ Δ2 + a21ε( 􏼁t − Δ􏽚
t

0
y2 s

−
( )ds +Φ4(t),

for t>T1.

(45)

It follows from Lemma 3 that

lim
t⟶∞

y2(t)
∗ ≤
Δ2
Δ

a.s. (46)

Combining (43) and (46) leads to

lim
t⟶∞

y2(t) �
Δ2
Δ

a.s. (47)

Substituting (47) into (30) and using Lemma 2, we get

lim
t⟶∞

y1(t) �
Δ1
Δ

a.s. (48)

+e proof is completed. □

Next, let us consider model (M).

Theorem 2. If Δ31 > 0,Δ41 > 0 hold, then for any initial
y(t) � (ξ1(t), ξ2(t)): − τ ≤ t≤ 0􏼈 􏼉 ∈ C([−τ, 0]; R2

+), the so-
lution (y1(t), y2(t)) of model (M) has the properties that

Δ31
Δ
≤y1(t)∗ ≤y1(t)

∗ ≤
Δ32
Δ

,

Δ41
Δ
≤y2(t)∗ ≤y2(t)

∗ ≤
Δ42
Δ

.

(49)

+at is to say, model (M) will be persistence in mean.

Proof. Using Ito’s formula to compute ln yi(t) (i � 1, 2),
we have

t
−1 ln y1(t) � b1 − r11C1(t) − a11y1(t) − a12y2(t) + t

− 1Φ1(t),

(50)

t
−1 ln y2(t) � b2 − r21C2(t) − a21y1(t) − a22y2(t) + t

− 1Φ2(t).

(51)

+en,

a11t
− 1 ln y2(t) − a21t

− 1 ln y1(t)

� a11 b2 − r21C2(t)􏼐 􏼑 − a21 b1 − r11C1(t)􏼐 􏼑 − a11a22 − a12a21( 􏼁y2(t) + t
− 1Φ4(t)

≥ a11 b2 − r21C2(t)
∗

􏼐 􏼑 − a21 b1 − r11C1(t)∗􏼐 􏼑 − a11a22 − a12a21( 􏼁y2(t) + t
− 1Φ4(t)

� Δ41 − Δy2(t) + t
− 1Φ4(t).

(52)

We can get from Lemma 3 that

y2(t)∗ ≥
Δ41
Δ

a.s. (53)

For any ε> 0, there is sufficiently T2 > 0 such that

a12y2(t)≥ a12y2(t)∗ − ε≥ a12
Δ41
Δ

− ε, t≥T2. (54)

Substituting (54) into (50), we get

t
− 1 ln y1(t)≤ b1 − r11C1(t)∗ − a12

Δ41
Δ

+ ε

− a11y1(t) + t
− 1Φ1(t)

�
a11Δ32
Δ

+ ε − a11y1(t) + t
− 1Φ1(t).

(55)
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+erefore,

y1(t)
∗ ≤
Δ32
Δ

a.s. (56)

Similar computation leads to

a22t
− 1 ln y1(t) − a12t

− 1 ln y2(t)

� a22 b1 − r11C1(t)􏼐 􏼑 − a12 b2 − r21C2(t)􏼐 􏼑 − a11a22 − a12a21( 􏼁y1(t) + t
− 1Φ3(t)

≥Δ31 − Δy1(t) + t
− 1Φ3(t).

(57)

In view of Lemmas 3 and 4, we have

y1(t)∗ ≥
Δ31
Δ

a.s. (58)

For any ε> 0, there is a T3 > 0 such that

a21y1(t)≥ a21y1(t)∗ − ε≥ a21
Δ31
Δ

− ε, t≥T3. (59)

Substituting (59) into (51), we get

t
− 1 ln y2(t)≤ b2 − r21C2(t)∗ − a21

Δ31
Δ

+ ε − a22y2(t) + t
− 1Φ2(t)

�
a22Δ42
Δ

+ ε − a22y2(t) + t
− 1Φ2(t),

(60)

and then we have

y2(t)
∗ ≤
Δ42
Δ

. (61)

Combing (53), (56), (58), and (61) leads to the result.+e
proof is completed. □

Remark 1. If the limit of C1(t) and C2(t) exist, that is,
C1(t)

∗
� C1(t)∗ and C2(t)

∗
� C2(t)∗, then +eorem 2 will

be simplified as the following case.
If Δ31 > 0,Δ41 > 0 hold, then model (M) will have the

properties that

lim
t⟶∞

y1(t) �
Δ31
Δ

,

lim
t⟶∞

y2(t) �
Δ41
Δ

.

(62)

3.2. Nonpersistence

Theorem 3. If 0<(a11/a21)(b2 − r21C2(t)∗)< b1 − r11C1(t)
∗

≤ b1 − r11C1(t)∗ holds, then for any initial data
y(t) � (ξ1(t), ξ2(t)): − τ ≤ t≤ 0􏼈 􏼉 ∈ C([−τ, 0]: R2

+), the so-
lution (y1(t), y2(t)) of model (M) has the properties that

b1 − r11C1(t)
∗

a11
≤y1(t)∗ ≤y1(t)

∗ ≤
b1 − r11C1(t)∗

a11
,

lim
t⟶∞

y2(t) � 0 a.s.

(63)

+at is to say, model (M) is nonpersistent.

Proof. From (50), we get

t
− 1 ln y1(t)≤ b1 − r11C1(t)∗ − a11y1(t) + t

− 1Φ1(t). (64)

According to Lemma 3, we get

y1(t)
∗ ≤

b1 − r11C1(t)∗
a11

a.s. (65)

We can easily compute

a11t
− 1 ln y2(t) − a21t

− 1 ln y1(t)

� a11 b2 − r21C2(t)􏼐 􏼑 − a21 b1 − r11C1(t)􏼐 􏼑

− Δy2(t) + t
− 1Φ4(t).

(66)

By Lemma 4, for enough large t and any ε> 0, there is

lnyi(t)

t
< ε, i � 1, 2. (67)

+en,

a11t
− 1 ln y2(t)≤ a11 b2 − r21C2(t)∗􏼐 􏼑 − a21 b1 − r11C1(t)

∗
􏼐 􏼑

− Δy2(t) + t
− 1Φ4(t).

(68)

By the assumption
a11

a21
b2 − r21C2(t)∗􏼐 􏼑< b1 − r11C1(t)

∗
, (69)

and Lemma 3, we obtain from (68) that

lim
t⟶∞

y2(t) � 0 a.s. (70)

Substituting (70) into (50), then

t
− 1 lny1(t) � b1 − r11C1(t) − a11y1(t) + t

− 1Φ1(t)

≥ b1 − r11C1(t)
∗

− a11y1(t) + t
− 1Φ1(t).

(71)
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From Lemma 3, we get

y1(t)∗ ≥
b1 − r11C1(t)

∗

a11
, (72)

and thus,

b1 − r11C1(t)
∗

a11
≤y1(t)∗ ≤y1(t)

∗ ≤
b1 − r11C1(t)∗

a11
. (73)

+e proof is finished. □

Theorem 4. If (a11/a21)(b2 − r21C2(t)∗)< b1 − r11C1(t)
∗

≤ b1 − r11C1(t)∗ < 0 holds, then for any initial data y(t) �

(ξ1(t), ξ2(t)): − τ ≤ t≤ 0􏼈 􏼉 ∈ C([−τ, 0]: R2
+), the solution

(y1(t), y2(t)) of model (M) has the properties that
lim

t⟶∞
y1(t) � 0,

lim
t⟶∞

y2(t) � 0 a.s.
(74)

+at is to say, model (M) is nonpersistent.

Proof. Under the assumption that b1 − r11C1(t)∗ < 0, we
can get from Lemma 3 and (64) that

lim
t⟶∞

y1(t) � 0 a.s. (75)

Substituting (75) into (51) reads

t
− 1 ln y2(t) � b2 − r21C2(t) − a22y2(t) + t

− 1Φ2(t)

≤ b2 − r21C2(t)∗ − a22y2(t) + t
− 1Φ2(t).

(76)

+e assumption (a11/a21)(b2 − r21C2(t)∗)< b1 −

r11C1(t)
∗ < 0 implies that b2 − r21C2(t)∗ < 0. +en, from

(76) and Lemma 3, it is easy to verify that

lim
t⟶∞

y2(t) � 0 a.s. (77)

+is completes the proof. □

3.3. Stable in Distribution

Theorem 5. If all the assumptions hold, then model (M) is
stable in distribution.

Proof. +e proof of this result is divided into three steps.
Step 1. We first prove model (M) is globally attractive.
Let y(t) � (y1(t; φ), y2(t; φ)), y∧(t) � (y1(t; φ∧),

y2(t;φ∧)) be any two solutions of (M) with initial data
φ,φ∧ ∈ C([−τ, 0], R2

+), respectively. Denote 􏽥yi(t) � yi(t; φ)

−yi(t;φ∧), i � 1, 2. We only need to verify that

lim
t⟶+∞

E 􏽥yi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � lim
t⟶+∞

E yi(t; φ) − yi t;φ∧( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0,

i � 1, 2.
(78)

Define Vi(t;φ,φ∧) � |ln yi(t; φ) − ln yi(t; φ∧)|, i � 1, 2.
By Ito’s formula, we get

LV1 t;φ,φ∧( 􏼁 � sign 􏽥y1(t)( 􏼁 −a11􏼂 y1(t; φ) − y1 t;φ∧( 􏼁( 􏼁 − a12 􏽚
0

−τ2
y2(t + θ; φ) − y2 t + θ; φ∧( 􏼁( 􏼁dμ2(θ)

≤ − a11 􏽥y1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + a12 􏽚
0

−τ2
􏽥y2(t + θ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dμ2(θ),

LV2 t;φ,φ∧( 􏼁 � sign 􏽥y2(t)( 􏼁 −a22􏼂 y2(t; φ) − y2 t;φ∧( 􏼁( 􏼁 − a21 􏽚
0

−τ1
y1(t + θ; φ) − y1 t + θ; φ∧( 􏼁( 􏼁dμ1(θ)

≤ − a22 􏽥y2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + a21 􏽚
0

−τ1
􏽥y1(t + θ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dμ1(θ).

(79)

Let

V t;φ,φ∧( 􏼁 � 􏽘
2

i�1
Vi t;φ,φ∧( 􏼁 + V3 t;φ,φ∧( 􏼁, (80)

where V3(t;φ,φ∧) � a12 􏽒
0
−τ2

􏽒
t

t+θ |􏽥y2(s)|dμ2(θ)ds + a21
􏽒
0
−τ1

􏽒
t

t+θ |􏽥y1(s)|dμ1(θ)ds.

Using Ito’s formula to (80), we can easily compute that

LV t;φ,φ∧( 􏼁 � LV1 t;φ,φ∧( 􏼁 + LV2 t;φ,φ∧( 􏼁 +
dV3 t;φ,φ∧( 􏼁

dt

≤ − a11 − a21 􏽚
0

−τ1
dμ1(θ)􏼠 􏼡 􏽥y1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − a22 − a12 􏽚

0

−τ2
dμ2(θ)􏼠 􏼡 􏽥y2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(81)
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According to (81), we get

E V t; φ,φ∧( 􏼁( 􏼁≤V 0;φ,φ∧( 􏼁 − a11 − a21 􏽚
0

−τ1
dμ1(θ)􏼠 􏼡 􏽚

t

0
E 􏽥y1(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

− a22 − a12 􏽚
0

−τ2
dμ2(θ)􏼠 􏼡 􏽚

t

0
E 􏽥y2(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds,

(82)

which means

E V t; φ,φ∧( 􏼁( 􏼁 + a11 − a21 􏽚
0

−τ1
dμ1(θ)􏼠 􏼡 􏽚

t

0
E 􏽥y1(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + a22 − a12 􏽚

0

−τ2
dμ2(θ)􏼠 􏼡 􏽚

t

0
E 􏽥y2(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤V 0;φ,φ∧( 􏼁< +∞.

(83)

Consequently,

E 􏽥yi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∈ L
1
[0, +∞), i � 1, 2. (84)

Furthermore, considering the continuity of E(yi(t)),

i � 1, 2, and combining (M), we have

E Bi(t)( 􏼁 � 0, E Ri(t)( 􏼁 � 0, i � 1, 2. (85)

+erefore,

E y1(t)( 􏼁 � y1(0) + 􏽚
t

0
E r10y1(s) − r11C1(t)y1(s) − a11y

2
1(s) − a12y1(s) 􏽚

0

−τ2
y2(s + θ)dμ2(θ)􏼢 􏼣ds. (86)

It is not difficult to see that E(y1(t)) is differential. From
Lemma 2, we get

dE y1(t)( 􏼁

dt
� E r10y1(t) − r11C1(t)y1(t) − a11y

2
1(t) − a12y1(t) 􏽚

0

−τ2
y2(t + θ)dμ2(θ)􏼢 􏼣

≤E y1(t)( 􏼁r10 ≤ r10K1,

(87)

where K1 is a positive constant. +erefore, E(y1(t)) is
uniformly continuous. Similarly, we can also obtain that
E(y2(t)) is uniformly continuous. By virtue of (84) and
Barbalat’s conclusion in [26], we get

lim
t⟶+∞

E 􏽥yi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0, i � 1, 2. (88)

Step 2. For any φ ∈ C([−τ, 0], R2
+), it is denoted by

p(t, φ, dz) the transition probability of the process z(t),
P(t,φ, R2

+) the probability of (y1(t; φ), y2(t; φ))T ∈ R2
+, and

P([−τ, 0], R2
+) the space of all probability measures on

C([−τ, 0], R2
+). For any P1, P2 ∈ P([−τ, 0], R2

+), define

dBL P1, P2( 􏼁 � sup
g∈BL

􏽚
R2

+

g(z)P1(dz) − 􏽚
R2

+

g(z)P2(dz)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(89)

where BL � g: C([−τ, 0], R2
+)⟶ R: |g(z1) − g(z2)|≤􏼈

‖z1 − z2‖, |g(·)|≤ 1}. +anks to Lemma 2 and Chebyshev’s
inequality, for any φ ∈ C([−τ, 0], R2

+), the family p(t, φ, dz)
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is tight. +at is, for any ε ∈ (0, 1), there exists a compact
subset D⊆R2

+ such that P(t,φ, D)≥ 1 − ε for any t≥ 0..
We compute

dBL(p(t + s,φ, ·), p(t, φ, ·))

� sup
g∈BL

􏽚
R2

+

g(z(t + s;φ))p(t + s,φ, dz) − 􏽚
R2

+

g(z(t;φ))p(t, φ, dz)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� sup
g∈BL

|E[g(z(t + s;φ))] − E[g(z(t; φ))]|

� sup
g∈BL

E E g(z(t + s;φ))|Fs􏼂 􏼃􏼂 􏼃 − E[g(z(t; φ))]
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� sup
g∈BL

􏽚
R2

+

E[g(z(t;ψ))]p(s, φ, dψ) − E[g(z(t; φ))]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� sup
g∈BL

􏽚
R2

+

E[g(z(t;ψ)) − g(z(t;φ))]p(s, φ, dψ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ sup
g∈BL

􏽚
R2

+

E[|g(z(t; ψ)) − g(z(t;φ))|]p(s, φ, dψ)

≤ sup
g∈BL

􏽚
UB

E[|g(z(t; ψ)) − g(z(t;φ))|]p(s, φ, dψ)

+ sup
g∈BL

􏽚
R2

+\UB

E[|g(z(t; ψ)) − g(z(t;φ))|]p(s, φ, dψ),

(90)

where UB � (x, y)T ∈ R2
+:

������
x2 + y2

􏽰
≤B􏽮 􏽯.

sup
g∈BL

􏽚
R2

+\UB

E[|g(z(t; ψ)) − g(z(t; φ))|]

· p(s,φ, dψ)≤ 2P s,φ, R
2
+\UB􏼐 􏼑≤ 2ε.

(91)

+erefore, for sufficiently large t and any ε> 0, we can derive
that

dBL(p(t + s,φ, ·), p(t, φ, ·))≤ 3ε. (92)

+at is to say, p(t,φ, ·): t≥ 0􏼈 􏼉 is Cauchy in
P([−τ, 0], R2

+) with initial data φ ∈ C([−τ, 0], R2
+).

Step 3. We prove limt⟶+∞dBL(p(t, φ, ·), v(·)) � 0.

According to (92), for φ0 ∈ C([−τ, 0], R2
+),

p(t, φ0, ·): t≥ 0􏼈 􏼉 is Cauchy in P([−τ, 0], R2
+), then there

exists a unique v(·) such that

1.6

1.4

1.2

1

0.8St
at

e-
ax

is

0.6

0.4

0.2
0 100 200 300

t-axis

400

y1 (t)

t–1∫t
0y1 (s)ds

y2 (t)

t–1∫t
0y2 (s)ds

500 600

(a)

8

7

6

5

4

3

2

1

0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Density of y1 Density of y2

(b)

Figure 1: +e persistent in mean of model (M0) with c1(u) � 1.0187, c2(u) � 0.1332. (a) +e time series of y1, y2, respectively; (b) the
probability density function of c1(u) � 1.0429, c2(u) � 1.6876, respectively.
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lim
t⟶+∞

dBL p t,φ0, ·( 􏼁, v(·)( 􏼁 � 0. (93)

By virtue of (78), we derive

c2(u) � 0.1837. +at is, specie y2 will die out at some
point.

lim
t⟶+∞

dBL p(t, φ, ·), p t,φ0, ·( 􏼁( 􏼁 � sup
g∈BL

E[g(z(t;φ))] − E g z t;φ0( 􏼁( 􏼁􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ sup
g∈BL

E g(z(t;φ)) − g z t;φ0( 􏼁( 􏼁􏼂 􏼃

≤ lim
t⟶+∞

E z(t; φ) − z t; φ0( 􏼁
����

����􏽨 􏽩

� 0.

(94)
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Figure 2:+e persistent in mean of model (M) with c1(u) � 0.1303, c2(u) � 0.1837. (a) Time series of y1 andy2; (b) the probability density
function of y1 andy2.
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By the triangle inequality and together with (93) and
(94), we have

lim
t⟶+∞

dBL(p(t, φ, ·), v(·))≤ lim
t⟶+∞

dBL p(t, φ, ·), p t,φ0, ·( 􏼁( 􏼁

+ lim
t⟶+∞

dBL p t,φ0, ·( 􏼁, v(·)( 􏼁

� 0.

(95)

+is completes the proof. □

4. Numerical Simulations

In this section, some numerical simulations are given to
verify our theoretical results. Take a11 � 0.52, a12 � 0.02,

a21 � 0.03, a22 � 0.8, r10 � 0.71, r20 � 1.35, σ21 � 0.22, σ22 �

0.59, τ1 � 0.1, τ2 � 0.1. It is easy to check that Δ � 0.4154,

which means Assumption 2 holds.

(1) Set c1(u) � 1.0187, c2(u) � 0.1332, and then it
is easy to count that Δ1 � 0.2061,Δ2 � 0.5358.

+eorem 1 implies limt⟶∞y1(t) � 0.4961, limt⟶∞
y2(t) � 1.2900, that is, the species are both persistent
in mean. Simulation also validates the result, see
Figure 1.

(2) Set c1(u) � 0.1303, c2(u) � 0.1837, r11 � 0.48, r21 �

0.86, C1(t) � 0.1 + 0.1 sin t, C2(t) � 0.4 + 0.1 sin t.

By computation, we have Δ31 � 0.3813,Δ41 � 0.2994.

By+eorem 2 and Remark 1, model (M) is persistent
in mean, shown in Figure 2.

(3) Set c1(u) � 0.5528, c2(u) � 1.0391, r11 � 0.48, r21 �

0.86, C1(t) � 0.1 + 0.1 sin t, C2(t) � 0.4 + 0.1 sin t,

and then these parameters satisfy the conditions of
+eorem 3. By +eorem 3, we know that y1 is
permanent, but y2 will die out, see Figure 3.

(4) Set c1(u) � 1.0429, c2(u) � 1.6876, r11 � 0.1, r21 �

0.56, C1(t) � 0.4 + 0.1 sin t, C2(t) � 0.4 + 0.1 sin t,

σ21 � 0.87, σ22 � 1.35. Obviously, +eorem 4 shows
that both y1 and y2 will die out, see Figure 4.

5. Conclusions

+e study of biological dynamics has been a popular topic in
the field of biomathematics in recent years. With the devel-
opment of economy, the environmental pollution is becoming
more andmore serious, which has become an important factor
affecting the population relationship. Time delays are also
important factors affecting the relationship. In this paper, we
formulate a delayed predator-prey model with Lévy noise.
+eorem 1 and 2 give the sufficient criteria of persistent in
mean for cases (M) and (M0), respectively. +eorem 3 and 4
obtain the sufficient conditions of nonpersistence. +eorem 5
investigates the stable in distribution. Finally, numerical
simulations are given to validate our conclusion.

In view of the complexity of the environments, other
factors such as the telephone noise and impulsive input may
bring important influence to the dynamics, which needs
further research in the future.
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