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+e synergy of computational logistics and deep learning provides a newmethodology and solution to the operational decisions of
container terminal handling systems (CTHS) at the strategic, tactical, and executive levels. Above all, the container terminal
logistics tactical operational complexity is discussed by computational logistics, and the liner handling volume (LHV) has
important influences on a series of terminal scheduling decision problems. Subsequently, a feature-extraction-based lightweight
convolutional and recurrent neural network adaptive computingmodel (FEB-LCR-ACM) is presented initially to predict the LHV
by the fusion ofmultiple deep learning algorithms andmechanisms, especially for the specific feature extraction package of tsfresh.
Consequently, the container-terminal-oriented logistics service scheduling decision support design paradigm is put forward
tentatively by FEB-LCR-ACM. Finally, a typical large-scale container terminal of China is chosen to implement, execute, and
evaluate the FEB-LCR-ACM based on the terminal running log around the indicator of LHV. In the case of severe vibration of
LHV between 2 twenty-foot equivalent units (TEUs) and 4215 TEUs, while forecasting the LHV of 300 liners by the log of five
years, the forecasting error within 100 TEUs almost accounts for 80%.When predicting the operation of 350 ships by the log of six
years, the forecasting deviation within 100 TEUs reaches up to nearly 90%. +e abovementioned two deep learning experimental
performances with FEB-LCR-ACM are so far ahead of the forecasting results by the classical machine learning algorithm that is
similar to Gaussian support vector machine. Consequently, the FEB-LCR-ACM achieves sufficiently good performance for the
LHV prediction with a lightweight deep learning architecture based on the typical small datasets, and then it is supposed to
overcome the operational nonlinearity, dynamics, coupling, and complexity of CTHS partially.

1. Introduction

As the traditional, large-scale logistics warehousing hub, the
production plan, task scheduling, resource allocation, and
execution control of container terminal handling systems
(CTHS), which together are referred to as PSAC, have been
the classical nondeterministic polynomial complete (NPC)
problems even for the single job stage at container terminals.
+ose have been the hotspots and difficulties whether in the
operations research theory or in the logistics industry
production practice [1–11]. +e classical methods, which
cover operational programming [12], optimization algo-
rithm [13], system simulation [14, 15], and simulation-based

optimization [16], have not made a fundamental break-
through in solving the above problems; moreover, they are
increasingly struggling to cope with the myriad new
problems that are constantly emerging in the logistics
industry.

Fortunately, the emergence, development, and applica-
tion of computational thinking [17–20] and deep learning
[21–24] provide the new theory, approach, and solution to
deal with the operational scheduling and decision support of
CTHS at all strategic, tactical, and executive levels. In
particular, the recurrent neural network (RNN) and con-
volutional neural network (CNN) have been widely used in
various scenarios of deep learning, such as image
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recognition [25], natural language processing [26], bio-
medical processing [27], stock market [28], machine health
monitoring [29], intersectional traffic [30], and so on.
However, both are seldom applied in the production and
service operations. A feature-extraction-based lightweight
convolutional and recurrent neural networks adaptive
computing model (FEB-LCR-ACM) is proposed for the
prediction of liner handling volume (LHV) at container
terminals, which is a central running index of CTHS for both
carriers and terminals. It is supposed to elaborate and
demonstrate the solution to overcome the parallelism, dy-
namics, nonlinearity, coupling, context-sensitivity, and
complexity (PDN-CCC) of CTHS, which is at least partly
valid and available, by the combination and integration of
computational thinking and deep learning.

+e rest of the paper is organized as follows: In Section 2,
the applications of machine learning and deep learning in
logistics production and service field are systematically
reviewed, and the research trend of deep learning is pro-
spected in the logistics industry, especially for CTHS. Section
3 sets forth the container terminal logistics tactical opera-
tional complexity, and draws the outline of the solution by
the fusion of computational logistics and deep learning.
Section 4 proposes FEB-LCR-ACM in particular to support
the planning, scheduling, control, and execution of con-
tainer-terminal-oriented logistics generalized computation
abstraction, automation, and intelligence. A real case study
of CTHS is intended to implement the index forecasting and
performance evaluation of LHV by the classical machine-
learning algorithm and FEB-LCR-ACM in Section 5. Finally,
conclusions and suggestions for future research are given in
Section 6.

2. Literature Review and Related Works

With the rapid development of the logistics industry and the
leaps and bounds of machine learning, the combination
between the two are increasingly close, especially for the
deep learning for complex logistics systems (CLS). +e
literature review is divided into twomain parts.+e first part
refers to literature review that themachine learning and deep
learning are applied in the logistics and supply chain key
service indicators forecasting. +e second part refers to
literature review that the machine learning and deep
learning are put into use in the operating decision support of
CLS, especially for CTHS.

In the past five years, artificial intelligence and big data
have been gradually applied to supply chain management
and logistics operational decision; furthermore, this trend is
more and more obvious in applied theoretical research or
industrial engineering practice. Monostori et al. pointed out
the deficiencies and limitations of the classical applications
of control engineering and information technology in
production and logistics [31]. +ereupon, for one thing, the
machine learning and deep learning are introduced to
forecast the logistics service key indicators at the tactical and
executive level, which aim to carry out good operational
planning. Chung et al. concisely examined data science and
analytics in aviation studies in several critical areas, namely,

big data analysis, air transport network management,
forecasting, and machine learning [32]. A novel, deep belief
network method was employed to mine the inner patterns of
flight delays, and supervised fine-tuning was performed
together with support vector regression by Yu et al. [33]. A
deep learning with one-step integration optimal decision-
making approach based CNN and long short-term memory
(LSTM) was proposed to intelligently integrate inventory
optimization and demand-forecasting process during cross-
border e-commerce by Ren et al. [34]. Punia et al. proposed a
novel forecasting method that combines the deep learning
method—LSTM networks and random forest to model
complex relationships of both temporal and regression type,
which were evaluated on a real-world multivariate dataset
from a multi-channel retailer [35]. Shen and Lin compared
two classes of the state-of-the-art deep learning methods in
their ability to predict short-term crowd-shipping delivery
trip production. One captured only the temporal features,
and the other considered both spatial and temporal features
[36]. Chen et al. raised the gradient boosting partitioned
regression tree model to forecast freight travel time based on
big data collected from the traffic Internet of +ings in-
frastructure [37]. Guo et al. [38] and Huang et al. [39]
designed and implemented regional logistics demand
forecasting by multilayer perceptron and back propagation
neural network, respectively. Petros and Ken came up with
three methods of developing the Bayesian networks
employed for spare parts demand forecasting [40]. +orben
and Till investigated how a network model with a stochastic
block of interconnections was applied to model and predict
material flows in manufacturing systems [41]. In particular,
Pani et al. presented some preliminary results obtained using
data mining and proposed a classification and regression
trees model to reduce the range of uncertainty of ship ar-
rivals in port in the past [42]. Recently, Gao et al. trained the
LSTM RNN to predict daily volumes of containers, which
entered the storage yard, by deep learning the historical
dataset [43]. +e LSTM networks were also implemented to
forecast container throughput by Shankar et al.; moreover,
the container throughput data of the Port of Singapore were
used for empirical analysis [44].

Machine learning and deep learning are gradually ap-
plied into the production scheduling and executive decisions
support except for forecasting key service indicators. Liu
stated explicitly that the high-quality development of the
logistics industry needed to realize machine learning and
embedded systems [45]. In consequence, Liu et al. put
forward a framework to estimate large-scale logistics net-
work parameters with high precision through machine
learning, in which the impacting factors were divided into
static and dynamic groups and used as features to train a
learning model for estimation [46]. Elifcan and Rizvan
presented a pick-up routing combinatorial problem with a
three-dimensional loading constraint, clustered backhauls at
the operational level, and trained loading at the tactical level
for an intermodal transportation network. It was solved by
the combination of mathematical models, genetic algorithm,
and machine-learning algorithm [47]. Dai et al. proposed a
sub-bus based on the mobile data that contained the
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passenger flow forecasting and dynamic route planning of
the stations [48]. Xu et al. came up with a new data-driven
method integrating data mining models and facility location
models by integrating with customer behavior data analysis,
to optimize collection and delivery points for online retailers
[49]. Specific to CTHS, Andreas et al. demonstrated the
feasibility of deep learning approach by implementing it as
part of a terminal productivity cockpit prototype that
provided decision support to terminal operators for pro-
active process adaptation [50]. Zhang et al. put forward
novel machine-learning-driven algorithms, which inte-
grated optimization methods and machine-learning tech-
niques, to solve the container relocation problem [51].
Hottung et al. proposed a new method called deep learning
heuristic tree search that used deep neural networks (DNN)
to learn solution strategies and lower bounds customized to
the container pre-marshalling problem solely through an-
alyzing existing or near optimal solutions to container pre-
marshalling problem instances [52].

From the foregoing, it is concluded that the machine
learning and deep learning with artificial neural network
(ANN) andDNNprovide the newmethodology and practice
for the scheduling, control, decision, and execution of CLS
under the dynamic and uncertain environments. In par-
ticular, the prediction function provided by deep learning
for the key operational indicators of CLS provides the pivotal
planning and scheduling benchmark reference for the op-
erational management and executive control. +e planning
and scheduling of CTHS involves multitudinous discrete
and combinatorial optimization issues, especially as the
container terminals move toward intelligent logistics sys-
tems. +e deep learning is bound to develop greatly in the
transformation and upgrading of CTHS. Now, the opera-
tional complexity of CTHS is going be discussed in more
detail in subsequent sections, and then the corresponding
solution by the combination of computational logistics and
deep learning is brought forward in an attempt to improve
the container capacity, response time and service efficiency
of CTHS.

3. Container Terminal Handling Systems

3.1. Overview of Container Terminal Logistics Services.
+e container terminal is a buffer pool for container
switching modes of transportation and also an efficient
distribution center. It is the multimodal transport and
comprehensive logistics hub of global supply chain network.
Judging from the specific practice, it is essentially a large
critical infrastructure of warehousing in the process of lo-
gistics service. CTHS are the typical CLS, and are also the
discrete event dynamic systems, distributed heterogeneous
control systems, and hierarchical parallel and reconfigurable
batch processing systems from the various abstract per-
spectives by computational logistics [53]. CTHS are the most
typical representatives of pivotal logistics hubs (PLH), and it
has been a hot and difficult subject in the field of CLS.

CTHS are mainly composed of infrastructure, facili-
ties, and equipment (IFE) of terminal quay side, the
terminal storage yard, and the IFE of land side besides the

auxiliary pilotage IFE, such as navigation marks and
tugboats. All movements and functions of CTHS focus on
the given container liner set, and the berth is the most
valuable productive resource. +erefore, the berthing,
unberthing, and handling at quay side are the most im-
portant parts of the working of CTHS. Meanwhile, the
running of the yard is the most complicated piece in
CTHS because it not only responds to the planning and
scheduling instructions of quay side and land side si-
multaneously but also processes the import containers,
export containers, and containers for transshipment
synchronously. In addition, the IFE of land side is in
charge of the overland container collection and distri-
bution that takes up a significant portion of the container
throughput, especially in China.

3.2. Container Terminal Logistics Tactical Operational
Complexity. As a typical representative of PLH and CLS,
CTHS possesses the distinguishing features of PDN-CCC,
especially for operational complexity. +e PSAC for single
phrase at container terminals is provided with the distinct
characters of NPC [54–56]. As a result, the PSAC solutions
whether to the single resource allocation or to the integrated
scheduling both are of the evident qualities of strong
timeliness and low flexibility. +erefore, it is essential to give
a preliminary sketch of the container terminal logistics
tactical operational complexity (CTL-TOC).

According to the nature of computation, the handling,
stacking, and transportation procedures at container ter-
minals can be abstracted as the container terminal-oriented
logistics generalized computation (CTO-LGC) that occurs in
the physical world [57].+e generalization and unification of
computation is one of the fundamental principles of com-
putation logistics that is deeply rooted in computational
thinking [58]. +e CTL-TOC can be abstracted and mapped
into the control, execution, and feedback of container-ter-
minal-oriented logistics generalized computation (CEF-
CTO-LGC), and then it may achieve the solution by com-
putational logistics. Judging from the specific practice, the
CEF-CTO-LGC is primarily concerned with a series of
scheduling and executive decision problems, which have
been demonstrated by Figure 1.

Obviously, the CEF-CTO-LGC is provided with high
PDN-CCC even without considering multimodal trans-
portation. Each term in CEF-CTO-LGC is the problem of
NPC; moreover, there are the strong, complicated, and
tangled correlation, and coupling and cascade effects among
them. As a matter of fact, CTL-TOC can be abstracted and
translated into an NPC problem network for logistics
computation decision (NPN-LCD). +e CEF-CTO-LGC lies
in and runs through the NPN-LCD. At the same time, the
LHV affects the planning and scheduling of almost every
problem in NPN-LCD. As a result, we take the LHV
forecasting as an example to illustrate the collaborative
decision-making and combined application of computa-
tional logistics and deep learning.

+e distinguishing features of CTO-LGC are the root
causes of high CTL-TOC, and those include hierarchy,
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dynamics, distributivity, parallelism, locality, affinity, cou-
pling, heterogeneity, reconfigurability, being context-sen-
sitive and goal-oriented. In addition, the indeterminacy,
dynamics, and perturbation in CEF-CTO-LGC and service
environments exacerbate the CTL-TOC. In a word, the
PSAC of container terminal is a typical multi-objective,
multistage, multi-constraint soft real-time compound
combinatorial optimization problem under uncertain en-
vironments. From a generalization point of view, the CTL-
TOC can be regarded as the entropy perspective abstraction
of operational complexity for CTHS to some extent. Ap-
parently, the running entropy of CTHS is going to continue
to mount once the treatments of CTL-TOC are adverse.

3.3. Container-Terminal-Oriented Computational Logistics.
After a decade of exploration and experiment, the definition
of computational logistics is preliminarily proposed by Bin
Li on the 54th IEEE Conference on Decision and Control

(CDC 2015) [58], which is the problem-oriented explora-
tion, specific application, and industry practice of compu-
tational thinking for the CLS technically.

Computational logistics provides a feasible, exercisable,
reliable, and robust decision methodology and engineering
solution for CLS in the physical world, especially for the
public logistics hubs at all levels in global supply chain
networks. +e container terminal is the very large-scale
public logistics infrastructure for the unit logistics; more-
over, it has a vital impact on the operation of the global
logistics hierarchical and multistage network. As a result, the
CTHS has been the typical application to demonstrate the
ideology and philosophy of computational logistics. +e
computational logistics tries to overcome the CTL-TOC by
the combination of computational thinking, theory of
computation, computational lens, and great principles of
computing, which are abbreviated to 4CTTLP [59]. It is
distinct from the classical researchmethods for CTHS. In the
meantime, the emergence and development of machine
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Figure 1: Container terminal logistics tactical operational complexity and intrinsic coupling sketch.
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learning provides the wing plane of the computational lo-
gistics, especially for the booming deep learning in machine
learning [60].

After the computational logistics establishes a sound,
solid, agile, and robust abstraction and automation foun-
dation of CTHS, the deep learning is supposed to provide the
intelligent decision support engine to conquer the NPN-
LCD of CTL-TOC, at least in part. Now, we take the pre-
diction of container terminal LHV as an example to ex-
patiate on the problem-oriented deep learning model by
lightweight, hybrid, flexible, tailorable, scalable, self-orga-
nization, self-adaptation, and self-evolution ANN and DNN
within the conceptual framework of computational logistics.

4. Problem-Oriented Deep Learning with
Adaptive Neural Networks Computation

4.1. Problem-Oriented Exploration and Learning of Compu-
tational Logistics. +e computational logistics is a typical
problem-oriented theory, methodology, solution, and
practice for CLS by abstraction, mechanization, automation,
generalization, unification, transferring, and customization
of theory of computation and computing principles because
it originates from computational thinking and computa-
tional lens inherently. +e widespread adoptions of cyber-
physical systems and digital twin generate and record
practical and massive running process data of CTHS. +ose
are not only the container terminal logistics service mirror
images but also contain a lot of beneficial and adverse lo-
gistics service patterns and scheduling decision laws. +ey
are urgently needed for terminal PSAC decisions. However,
the 4CTTLP of computational logistics do not contain the
relevant theories and methods.

+e deep learning provides the means and methods for
the above objective as the problem-oriented learning
infrastructural accessory package of computational logistics.
Since 2006, the deep learning has gradually become pros-
perous because of the combined effect of some key tech-
nology breakthrough and practices. +e first and foremost is
the significant advances in the design of ANN structures and
training strategies, especially for the emergency and boom of
DNN. +e second is the mass deployed cyber-physical
systems and smart phone devices that provide means and
methods for the acquisition and utilization of big data for the
diverse fields and scenarios. +e last point is the fast de-
velopment of high-performance parallel computing systems,
such as graphics processing units (GPU) and general-pur-
pose graphics processing units [61].

For the last fifteen years or so, deep learning has been
widely used in the multiple typical domains. Nevertheless,
the application of deep learning on scheduling and decision-
making in the field of production and logistics has been very
rare, especially at the tactical and executive level. By com-
putational logistics, the given operational problem for the
CLS is carried out by the abstraction, automation, and
computational mechanization, and the deep learning is all
about a problem-oriented supplementary to implement
pattern recognition, self-learning exploration, and self-
adaptive improvement. Consequently, the combination of

computational logistics and deep learning is supposed to
provide a feasible, sound, agile, and efficient methodology,
solution, and practice for CLS. In fact, we have already made
a preliminary attempt at that in our previous discussion
[62, 63].

4.2. Problem-Oriented Lightweight Adaptive Deep Learning
Model for Liner Handling Volume. According to computa-
tional logistics, the CTHS can be abstracted as the hierar-
chical, parallel, heterogeneous, and reconfigurable CTO-
LGC physical dedicated automatic systems [64]. Meanwhile,
the CTO-LGC is the ultimate implementation of container
terminal logistics abstraction, mechanization, and auto-
mation, and it is the core foundation of the generalized,
unified, and quantitative modelling for the execution and
decision of CTHS as well. +e container terminal is the PLH,
and land-and-water coordinated transportation router es-
sentially; moreover, the container liners and the affiliated
container set are the central service objects of CTHS. In
particular, the container collection is the ultimate execution
targets of the mechanization and automation of CTO-LGC.

On the condition that the visiting liners are abstracted as
the physical job set for CTHS by computational logistics, the
LHV is similar to the program data volume in the main
memory, which is the central indicator of the CTO-LGC
throughput and reliability. +e LHV is critical and crucial
for the accomplishment and execution of CTO-LGC. Fur-
thermore, the LHV is the prerequisite conditions and an
essential foundation for the PSAC of CTHS, which is of
common concern to both terminals and carriers. In a word,
the LHV is a principal line of NPN-LCD, especially for the
tactical and execution levels. Hence, we take the evaluation
and prediction of LHV as an example to illustrate the ap-
plication and exploration of the combination of computa-
tional logistics and deep learning. Given the importance and
volatility of LHV, we initiate a discussion on the LHV
prediction, which is intended to better plan and drive the
implementation, operation, execution, and tuning of CTHS.
We design and implement FEB-LCR-ACM to predict the
LHV whose computing architecture is demonstrated by
Figure 2.

Revolving around the indicators of LHV, we extract the
most relevant performance metrics in the CTO-LGC log,
which is the fundamental basis of feature engineering for
LHV forecasting. +en, the feature vector of LHV fore-
casting (FVLF) is given a clear definition whose number of
attributes is around 20 according to terminal operational
records. Obviously, the label of forecasting is just about LHV
itself. Both construct the FVLF raw petroleum dataset for
deep learning engine. Meanwhile, because of the operational
characteristics of CTHS, the CTO-LGC log set is so small for
the deep learning. Usually, there are only thousands of
records in the running log for five years or more even for
large-scale container terminals. As a result, it is very difficult
for traditional machine learning and deep learning to predict
LHV.

It is supposed to pull through the bottleneck that the
combination of computational logistics and deep learning
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presents with a more comprehensive abstraction, automa-
tion, intelligence, self-organizing, self-learning, and self-
adaptive solution and practice for CTHS. +e FEB-LCR-
ACM is just about the consequence of the combined
practical application of the above two. +e FEB-LCR-ACM
for LHV forecasting mainly consists of six components that
execute sequentially, namely, feature extraction, deep
learning engine preheating, operational mirror data pre-
processing, deep learning model, ANN model evaluation,
and LHV prediction outcome for intelligent decision sup-
port, respectively. +e two core components are feature
extraction and deep learning model. +e two key compo-
nents showed synergetic effect with each other, and are
described below.

For one thing, the feature extraction of CTO-LGC
running log is implemented and performed by a Python
package that is time series feature extraction on the basis of
scalable hypothesis tests named as tsfresh [65], and the
extracted features with tsfresh has been used for multiple
types of tasks, for instance, classification, compression,
forecasting, detection, recognition, and diagnosis [66–70].
For PSAC, the tsfresh package plays an important role in the
deep learning data preparation process. Whether from the
number of attributes or from the quantity of records, the
CTO-LGC dataset is too small. +e tsfresh makes dataset
feature mining and feature screening to be expanded with
key attributes. Finally, the filtered features are going to be
incorporated into the CTO-LGC running log; moreover, the

accessorial characteristic of computing indicators is more
than the primitive attributes of the terminal log. +e above
two generate the ultimate data fuel of the deep learning
engine to achieve the LHV forecasting. As a matter of fact,
the feature exaction by tsfresh is just about the dimen-
sionality raising for the primitive CTO-LGC running log by
pattern recognition and shallow learning in essence.

For another, the design and realization of the deep
learning model is a typical ANN computing architecture that
covers RNN, CNN, dense network, dropout layer, noise
layer, advanced activation layer, self-defining layers, and so
on. +e RNN is further subdivided into four classes: LSTM,
gated recurrent unit (GRU), bidirectional LSTM, and bi-
directional GRU. +e CNN further mines and extracts the
characteristics of the data fuel, and it is intended to improve
the combustion efficiency of data fuel to implementmapping
and forecasting. In consequence, the integration and synergy
between RNN and CNN are the key to dramatically in-
creasing the performance of the ANN model. In the
meantime, based on a large number of computational ex-
periments, the depth of ANN in FEB-LCR-ACM usually is
approximately between four and nine for CTHS, whose
computing architecture is less than ten layers in the vast
majority of cases. As a result, the FEB-LCR-ACM is a typical
lightweight deep learning computing architecture. It is ev-
ident that the FEB-LCR-ACM is tailorable, configurable,
tunable, and customized depending upon the particular
terminals and conditions, which is crucial and critical for the
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Figure 2: Problem-oriented lightweight adaptive deep learning model for LHV.
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rationality, efficiency, agility, flexibility, portability, and
robustness of FEB-LCR-ACM.

4.3. Deep Learning Kernel of Liner Handling Volume
Forecasting. As previously mentioned, the FEB-LCR-ACM
must be self-defined and tuned for the given CTHS due to
the diversity of the various container terminals. However,
for any container terminal, the deep learning kernels of LHV
forecasting is relatively stable, exercisable, and workable,
which are explained in further detail below.

Above all, the CTO-LGC log dataset around LHV is of
outstanding features.+e LHV fluctuates sharply over a wide
range between single digit and five digits for the whole set of
calling container ships. Moreover, in most of the target
datasets predicted by ANN, the time series increases uni-
formly [71, 72]. For all appearances, the liners call at the
terminal at irregular intervals, which makes the LHV
forecasting even more difficult. In addition, the LHV log at
the container terminal must be a small dataset, and it only
covers thousands or tens of thousands of records at the most
because of the terminal operation features, which is far from
big data. Furthermore, the liner routes at container terminals
are often drastically adjusted, and even the ships in operation
for the specific routes are replaced from time to time
according to the rapidly changing economy. However,
compared with the liner berthing time (LBT) at container
terminals that fluctuates within a range between one hour
and 36 hours in most situations [60], the fluctuation degree
of the LHV is more than 100 times that of the LBT, and the
statistical pattern of the LHV is even less obvious. Hence, we
focus on the feature extraction of CTO-LGC running log
surrounded by the topic of liners’ calling and handling in
FEB-LCR-ACM.

Secondly, after the feature extraction by tsfresh, the
computing process of CTO-LGC running log dataset before
deep learning is also crucial and critical to the performance
of FEB-LCR-ACM, which includes numeralization, nor-
malization, supervised serialization, and dataset partition-
ing. +e first three of these are particularly specialized and
custom-made for LHV forecasting. +en, the ultimate data
frame is beginning to take shape to launch and run the deep
learning engine efficiently to explore the intrinsic modes and
the law of development for LHV. It is fundamental for the
application of deep learning for the PSAC of CTHS. Specific
to the LHV forecasting, the numeralization, normalization,
and supervised serialization of CTO-LGC log three form a
three-dimensional and mutually supportive data frame
generation mechanism. Given that there are usually multiple
data types in the original dataset of CTO-LGC, the
numeralization of CTO-LGC running log is a necessary and
mandatory requirement.+e primary task of numeralization
is to transform nonnumerical attributes into numerical
feature components, such as carrier, ship routing, and
voyage. Furthermore, the numerical code cannot introduce
new features into the dataset; otherwise, the FEB-LCR-ACM
may try to find a law that does not exist in CTHS, resulting in
overfitting. In the meantime, because the operation of CTHS
has great dynamics, randomness, nonlinearity, and

uncertainty, it can easily lead to a state of overfitting while
applying FEB-LCR-ACM to the CTO-LGC log. As a result,
the normalization is of great importance to avoid overfitting
and underfitting. In addition, the supervised serialization
plays an important role for the generation of data frame by
defining conversion function, specifying rules for input,
specifying rules for forecasting sequences, and aggregating
data.

+irdly, the combination of RNN and CNN is common
in deep learning. However, it is rarely applied to production
management and scheduling decision, especially for CLS.
+rough our attempt and exploration on the LHV fore-
casting, it has been proved essentially to be a feasible, valid,
and efficient approach to the intelligent decision support for
PSAC. +e tsfresh is a kind of semiautomated feature ex-
traction means, and the CNN is a purely automatic feature
extraction approach. Both get the utmost out of the original
dataset to help the RNN to implement and improve the
forecasting performance. In other words, the CNN and
tsfresh make joint efforts to design and implement the
feature extraction of CTO-LGC running log to improve the
forecasting performance of the FEB-LCR-ACM. Funda-
mentally speaking, the tsfresh pays close attention to the
statistical characteristics of CTO-LGC running log selec-
tively, and the CNN places emphasis on the spatial feature
mapping. Subsequently, the RNN focused on the time series
prediction of LHV on the basis of the feature vectors set
processed by feature engineering with the combination of
tsfresh and CNN.

Lastly, the RNN has a large number of self-defined
components that includes multiple activation functions, lots
of hyperparameters, multifarious optimizers, and so on. +e
combination of unidirectional LSTM and GRU, bidirec-
tional LSTM and GRU, cell LSTM and GRU, noise layers,
advanced activation layers, and self-defined layers constitute
the main body of the predictive computing engine together
with the classical dense network layer and dropout layer.+e
composition and structure make the FEB-LCR-ACM to be
endowed with good flexibility, wide adaptability, and real
portability.

+ereupon, the integration of the three essential core
elements, which are no other than the feature extraction
packages of tsfresh, RNN and CNN, constitute a three-di-
mensional lightweight exploration computing architecture
for the operation of CTHS. +ereinto, the tsfresh imple-
ments a semiautomatic feature engineering, and the CNN
achieves a fully automatic representation learning. As a
result, both construct a hybrid feature extraction and
combination for deep learning model. +e RNN fulfills a
lightweight and adaptive ANN layers customized combi-
nation for the given CTHS. +e above three establish an
agile, efficient, and robust kernel for the FEB-LCR-ACM.
+e kernel can achieve excellent performance even in the
face of the extremely complicated situations, which fully
explains the feasibility, applicability, and practicability of the
FEB-LCR-ACM. It can provide a better managerial insight
into the uncertainty and volatility in future demands for
CTHS, and is critical for constructing an agile, efficient, and
robust physical logistics services as well.
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5. Experiments, Results, and Analysis

5.1. Case Scenario and Loading Job Set Evaluation. A typical,
large-scale container terminal in China is chosen as the
research target to probe into the FEB-LCR-ACM. +e an-
nual container throughput of the terminal is about 1.8
million twenty feet equivalent units (TEUs), which is dis-
tinguished from container units. +e terminal is equipped
with five berths and 12 QCs along the coastwise wharf. More
than 80% of the routes are domestic container liners, and the
rest are international container shipping ones. +is is a very
typical regional container terminal hub in China.

Because the domestic routes liner takes up themain body
of calling ships, we select the corresponding liner calling,
berthing, and handling log as the loading task set of the
CTO-LGC to design and implement the LHV forecasting.
Above all, we intercept the CTO-LGC log data for six years
to make the evaluation of LHV, which is an important basis
of further prediction. +ere are 13,873 container vessels for
the domestic trade to visit the terminal during this period. It
is a physically demanding job set for CTO-LGC for the six
years to execute the quantitative random job testing for
CTHS [73].+e preliminary sketch of LHV can be illustrated
by Figure 3 and Table 1, and two distinct features are shown
in both. For one thing, it is easily concluded that the LHV is
highly volatile and has randomness relative to LBT [62]
because the domestic liners are very diverse for different
routes. For another, one feature stands out. It is that the great
majority of LHV are within 1000 TEUs, which comes up to
12897 items and accounts for over 92 percent of all records.
+e LHV records within 2000 TEUs reach up to 98.57
percent. To some extent, the rest of the 198 ones exert strong
stochastic disturbance for the prediction of LHV, However,
those are the key and critical CTO-LGC tasks with high
priorities that cannot be ignored in practice.

5.2. Machine Learning for Liner Handling Volume Analysis
and Prediction. We apply the k-means algorithm to design
and implement the cluster analysis of the CTO-LGC log, in
order to further evaluate the running characteristics of
CTHS for this case. +e selected cluster variables include
service route encoding, shipping company encoding, liner
berthing time, the separate volume of imported containers
by three specifications (including 20, 40, and 45 feet), the
total import volume by container units, the total import
volume by TEUs, the respective volume of exported
containers by three specifications (including 25, 40, and 45
feet), the total export volume by container units, the total
quantity of export TEUs, the total handling volume
container units, the total amount of loading and dis-
charging TEUs, shifting quantity of hatch covers, and so
on. +e above elements all are of great importance for the
NPN-LCD for any of the CTO-LGC stage or their inte-
gration. Nevertheless, those are considerably different
from the feature vector for the prediction of LBT [60]. At
the same time, the CTO-LGC log set is over 10,000 pieces
of records, which is much more than the dataset for the
discussion of LBT [60, 62].

+e final cluster centers of the CTO-LGC log are shown
in Table 2.+e CTO-LGC log is divided into five categories,
and the number of cases in each category is 177, 7026, 543,
4828, and 1299, respectively. It shows that the differences of
LHV among liners are still significant even if only for
domestic trade routes because of the evident distance
among cluster centers. In the meantime, the difficulty level
of LHV forecasting is interpreted clearly from another
perspective.

Subsequently, we discuss the LHV forecasting by the
support vector machine (SVM), which is a classical machine
learning algorithm based on statistical learning theory
[74, 75]. +e advantage of SVM is mainly reflected in solving
the linear inseparable and regression prediction problem by
introducing the special kernel function.

In view of the fact that the prediction of LHV is a
representative regression problem, the CTO-LGC log is
nonlinear in nature from the insight into the mechanized
execution, automation control, and combinatorial optimi-
zation; moreover, the sample size of the dataset is much
larger than the number of attributes in the feature vector.
Consequently, the SVM model with Gaussian kernel
function is used for LHV forecasting. Besides, the box
constraint parameter value is 250, the epsilon parameter
value is 25, and the kernel scale parameter value is 2, and the
data are standardized as well. Based on the CTO-LGC log
dataset of six years, we execute the LHV forecasting for 350
ships by the trained Gaussian SVM model whose experi-
mental results are shown in Figure 4.

+e Gaussian SVM model has a medium performance,
especially in the high value region of LHV, because the LHV
has been jittery over a large range. Obviously, the classical
machine-learning algorithm has been unable to meet the
requirements of PSAC for CTO-LGC. Now, the FEB-LCR-
ACM is introduced into the LHV forecasting to execute the
problem-oriented exploration by the combination of com-
putational logistics and deep learning.

5.3. Deep Learning for Liner Handling Volume Forecasting.
+e FEB-LCR-ACM is a lightweight deep learning model,
and it does not require much hardware. It is constructed,
implemented, executed, and debugged based on the single
GPU of the NVIDIA GeForce GTX 1660 Ti. +e GPU
compute capability of compute unified device architecture is
only 7.5, and the video memory is just 6 GB. +e time that
the FEB-LCR-ACM runs once usually is less than two
minutes in this case.+ere is no doubt that it provides a good
prerequisite for the intelligent decision support for CTO-
LGC at the tactical and executive level within the given soft
real-time constraint conditions in industry practice.

Based on a large number of computational experiments
that is designed and implemented with the assistance of
tsfresh 0.170, the depth of DNN is usually approximately
between four and nine for the multifarious CTHS. In this
case, the DNN for LHV prediction is defined, constructed,
executed, and debugged by the six-layer architecture, which
is implemented by TensorFlow 2.3 for GPU. Meanwhile, the
multiple activation functions of deep learning are applied in
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diverse ANN layers, and it includes rectified linear unit,
Sigmod, Tanh, etc. Besides, the training epoch is 60, and the
batch size is 30. It is evident that the DNN model is tail-
orable, configurable, and customized, which is crucial and
critical for the efficiency, agility, flexibility, and portability of
FEB-LCR-ACM.

+e whole CTO-LGC log is divided into two datasets,
which is intended to ensure that the FEB-LCR-ACM does
not overfit or underfit. One is the CTO-LGC log for five
years that includes 11037 items, which is named after LHV-
IVE. +e other is CTO-LGC log for six years that covers
13873 ones, which is named after LHV-SIX. +e former is
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Figure 3: Distribution preliminary sketch of calling liners handling volume.

Table 1: Distribution characteristics of LHV for domestic trade routes (unit: TEU).

Year Quantity of
Liners

Minimum of
LHV

Maximum of
LHV

Mean of
LHV

Median of
LHV

Mode of
LHV

Standard deviation
of LHV

Variance of
LHV

YA 1558 8.0000 3853.5000 463.7943 237.5000 150.0000 554.1087 307036.4432
YB 2056 5.0000 2720.0000 335.0133 246.0000 246.0000 328.2853 107771.2362
YC 2213 2.0000 2635.0000 359.4288 291.0000 144.0000 297.2632 88365.3966
YD 2647 2.0000 3193.0000 376.1501 296.0000 186.0000 324.3637 105211.8082
YE 2563 3.0000 3790.0000 467.5443 373.0000 194.0000 400.7074 160566.4049
YF 2836 7.0000 4215.0000 521.4703 395.0000 388.0000 496.3402 246353.5868

Table 2: Final cluster centers of CTO-LGC log dataset with the six years.

Cluster variables Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Liner berthing time 25.552 8.049 19.985 13.076 16.546
Import volume of 20-feet container units 768.000 39.000 593.000 125.000 363.000
Import volume of 40-feet container units 155.000 23.000 116.000 36.000 60.000
Import volume of 45-feet container units 3.000 0.000 1.000 1.000 0.000
Total import volume by container units 926.000 62.000 710.000 161.000 423.000
Total import volume by TEUs 1085.380 85.015 827.633 197.794 484.084
Export volume of 20-feet container units 1166.000 43.000 588.000 124.000 256.000
Export volume of 40-feet container units 113.000 27.000 87.000 64.000 52.000
Export volume of 45-feet container units 2.000 1.000 1.000 1.000 0.000
Total export volume by container units 1281.000 71.000 676.000 189.000 308.000
Total export volume by TEUs 1395.867 99.508 764.316 254.288 360.371
Total handling volume by container units 2207.000 133.000 1386.000 351.000 731.000
Total handling volume by TEUs 2481.247 184.523 1591.949 452.082 844.455
Shifting quantity of hatch cover 47.000 11.000 36.000 19.000 23.000
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segmented into three main sections that are the training set,
validation set, and the testing set, and the proportion of the
three are 80%, 17.282%, and 2.718%, respectively. +e latter
is also divided into three subsets, and the proportions are
80%, 17.477%, and 2.523%, respectively.

It is important to emphasize that the application mode
of tsfresh is special processing for the prediction of LHV.
+e tsfresh package is applied to conduct feature mining
with the handling container quantity by TEU as the target
variable, and over ten characteristic computing indicators
are obtained explicitly. After a number of extraction and
comparison experiments, the combination of absolute
energy value and Mexican cap can help the DNN learning
model to achieve excellent performance. +e former is a
single indicator, and the latter includes four indicators
according to the different parameters. +ese five feature
indicators are computed for an original attribute. +e
multiple raw properties are going to execute the feature
engineering by tsfresh, which include LBT, total import
volume by container units, total import volume by TEUs,
total export volume by container units, total export volume
by TEUs, total handling volume by container units, and
total handling volume by TEUs. As a result, a total of 35
indicators are appended to the original dataset by feature
engineering.

Consequently, the LHV of 300 ships and 350 liners are
going to be forecasted that are about four to five weeks of
liners for China’s domestic trade requirements. In other
words, the FEB-LCR-ACM can make a decision support for
the CTO-LGC planning and scheduling of one month or

more in this case. We performed 100 times for the two
datasets separately with the same random number seed set;
moreover, the running of DNN model has excellent re-
producibility for the same seed. +e typical DNN model
training loss curves can be illustrated by Figures 5 and 6.+e
contrast between typical LHV forecasting with actual values
can be displayed by Figures 7 and 8, respectively. Moreover,
the comparison between the mean of LHV forecasting and
actual values are demonstrated by Figures 9 and 10
independently.

All provide a reference of LHV by a relatively smooth
and reliable pattern with low time and computing costs
because of compound feature extraction and lightweight
self-adaptive computation, which is widely applicable to
various value ranges. Meanwhile, the prediction deviation
profiles of LHV are showed by Tables 3 and 4 that present a
comprehensive understanding for the performance of the
DNN model. All suggest that the FEB-LCR-ACM can ac-
quire a sound and dependable decision reference of LHV
using a feasible, reliable, and efficient mode. +e FEB-LCR-
ACM demonstrates good follow-up and credibility; fur-
thermore, it is neither overfitting nor underfitting.

Based on Figures 7–and 10, Tables 3 and 4, it is easy to
draw the conclusion that the FEB-LCR-ACM supplies the
sound and efficient references for intelligent decision sup-
port of CTHS. In the case of severe vibration of LHV, the
prediction error of LHV within 100 TEUs is close to 80%
based on LHV-IVE, and the prediction error of LHV within
100 TEUs is close to 90% based on LHV-SIX. +at can bring
great conveniences for the PSAC of CTHS.
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Figure 4: A comparison of LHV predicted and true values by the Gaussian SVM model.

10 Discrete Dynamics in Nature and Society



5.4. Forecasting Performance Evaluation and Analysis.
+e FEB-LCR-ACM provides a big clue and a favorable
baseline to improve the precision, efficiency, and capacity of
CTO-LGC. In fact, it shows excellent performance at any
stage of deep learning. For one thing, the index of mean
absolute error (MAE) is utilized to evaluate evolution and
learning effects of DNN model during the phase of training
and validation. For the LHV-IVE, at the end of training, the
final MAE is between 0.0121 and 0.0126 for 100 experiments,
and the average value is 0.0124. In the validation phase, the
final MAE is between 0.0145 and 0.0161 in 100 experiments,
and the mean is 0.0152. With respect to LHV-SIX, at the end
of training, the final MAE is between 0.0101 and 0.0110, and
the average value is 0.0106. In the validation phase, the final
MAE is between 0.0099 and 0.0127, and the mean is 0.0109.
All are close to the theoretical optimal value of MAE.

+e MAE, root mean squared error (RMSE), coeffi-
cient of determination of R-square, and explained vari-
ance score (EVS) jointly construct the core capability
dimensions of LHV forecasting performance for the

testing phase. +e theoretical optimal value of the first two
is 0, and the optimum of the latter two is one. On the one
hand, while applying the SVM model with Gaussian
kernel function, the MAE is 122.4650, and the RMSE is
372.1667. +e R-square is 0.5420, and the EVS is 0.5642.
On the other hand, the experimental results of the FEB-
LCR-ACM are displayed in Tables 5 and 6 under the above
evaluation indicators, which has outstanding perfor-
mance, especially for the latter two. Moreover, the
standard deviation and variance of R-square and EVS are
within an inch of 0, which shows that the LHV forecasting
performance is stable, workable, credible, and excellent.
All indicate that the FEB-LCR-ACM provides the
prominent predictive behaviors for LHV with a stable and
low computing consumption.

5.5. Further Discussion. To sum up, the FEB-LCR-ACM
possesses good comprehensive performance. However, there
is still much room for improvement on the FEB-LCR-ACM. It
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Figure 6: A typical FEB-LCR-ACM training loss curve for LHV-SIX.
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Figure 8: A comparison of predicted values and true values of LHV by LHV-SIX.
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Figure 7: A comparison of predicted values and true values of LHV by LHV-IVE.
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can be inferred from the ANN model training loss curve,
especially for valid loss changing curve. One of the worst ANN
models validating loss curves for LHV-IVE is shown in Fig-
ure 11. Obviously, there are some deficiencies in the validating

loss evolutionary process compared with the training loss.
Actually, throughout the whole group of 100 experiments, the
flaw has always existed, and those are only different in degree,
but there is no difference in essence. We extract the optimal

Table 3: Prediction deviation profile of LHV with FEB-LCR-ACM by LHV-IVE (unit: TEU).

Prediction
deviation of
LHV

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

Standard
deviation of

liners

Variance of
liners Quantitative proportion (%)

(0, 20] 56.0000 77.0000 64.5800 64.5000 64.0000 3.7926 14.3836 21.5267
(20, 40] 47.0000 67.0000 59.0500 59.0000 57.0000 4.2341 17.9275 19.6833
(40, 60] 38.0000 61.0000 50.3400 51.5000 52.0000 4.8233 23.2644 16.7800
(60, 80] 26.0000 46.0000 36.2400 36.0000 34.0000 3.6664 13.4424 12.0800
(80, 100] 18.0000 36.0000 26.3000 26.5000 27.0000 3.9509 15.6100 8.7667
(100, 120] 15.0000 31.0000 21.6000 22.0000 22.0000 3.1812 10.1200 7.2000
(120, +∞] 32.0000 50.0000 41.8900 42.0000 39.0000 3.5381 12.5179 13.9633
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Figure 9: A comparison of LHV prediction average results with real values by LHV-IVE.
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Figure 10: A comparison of LHV prediction average results with real values by LHV-SIX.
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value and the final value of valid loss for 100 trials, and those
are illustrated in Figure 12. However, the above flaw almost
disappears while aiming at LHV-SIX. +is demonstrates the
inadequacies and flaws of the ANN model sufficiently. +e
applicability and stability of the FEB-LCR-ACM need to be
made further targeted performance improvements.

Nevertheless, one flaw cannot obscure the splendor of
the jade. +e FEB-LCR-ACM shows a good predictive
performance based on the easily available hardware plat-
form that is described in Section 5.3. On the one side, the
time consumed is between 87.088 seconds and 95.563 in
every experiment for LHV-IVE, and the average elapsed
time is 89.098 ones. For 100 experiments, the standard
deviation and variance of the experimental time are only
1.387 and 1.925, respectively. On the other side, the con-
suming time is between 106.640 seconds and 115.400
seconds in every experiment for LHV-SIX, and the average
consuming time is 109.794 seconds. For 100 experiments,
the standard deviation and variance of the experimental
time are 1.533 and 2.349, respectively. All the computing
time statistics show the good lightweight design paradigm
and outstanding adaptive evolutionary architecture of FEB-
LCR-ACM.

In fact, the abovementioned statistics demonstrates the
operational performance of the FEB-LCR-ACM, which is
highly efficient, tranquil, and stable. It means that the FEB-
LCR-ACM for the specific CTHS can acquire the minute-

level and quasi-real-time interaction between the DNN
model and physical CTO-LGC. +at is to be completely in
conformity with the requirements of theory and practice for
FEB-LCR-ACM. It has laid a good foundation for the
practical application of FEB-LCR-ACM because of the ac-
ceptable computational complexity, computing expense, and
response time.

Table 4: Prediction deviation profile of LHV with FEB-LCR-ACM by LHV-SIX (unit: TEU).

Prediction
deviation of
LHV

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

Standard
deviation of

liners

Variance of
liners Quantitative proportion (%)

(0, 20] 86.0000 119.0000 105.000 105.000 105.000 6.6182 43.8000 30.0000
(20, 40] 64.0000 102.0000 82.5300 82.0000 76.0000 8.9638 80.3491 23.5800
(40, 60] 50.0000 75.0000 62.3500 62.0000 61.0000 5.4321 29.5075 17.8143
(60, 80] 26.0000 54.0000 36.7400 36.0000 35.0000 5.2357 27.4124 10.4971
(80, 100] 16.0000 34.0000 24.7500 24.0000 24.0000 3.7320 13.9275 7.0714
(100, 120] 9.0000 28.0000 15.4300 15.0000 16.0000 3.8555 14.8651 4.4086
(120, +∞] 17.0000 37.0000 23.2000 23.0000 20.0000 3.8393 14.7400 6.6286

Table 5: Predictive performance evaluation profiles of LHV for the testing phase by LHV-IVE.

Evaluation
indicators

Minimum of
indicators

Maximum of
indicators

Mean of
indicators

Median of
indicators

Standard deviation of
indicators Variance of indicators

MAE 62.0850 69.6746 65.0084 64.9422 1.4611 2.1347
RMSE 83.9257 93.3623 87.7590 87.5726 1.9601 3.8421
R-square 0.9651 0.9718 0.9692 0.9693 0.0014 0.0000
EVS 0.9652 0.9719 0.9692 0.9694 0.0014 0.0000

Table 6: Predictive performance evaluation profiles of LHV for the testing phase by LHV-SIX.

Evaluation
indicators

Minimum of
indicators

Maximum of
indicators

Mean of
indicators

Median of
indicators

Standard deviation of
indicators Variance of indicators

MAE 46.5489 56.1094 49.5053 48.8671 1.9494 3.8002
RMSE 66.7362 80.9819 71.9365 71.4058 2.7337 7.4731
R-square 0.9783 0.9853 0.9829 0.9831 0.0013 0.0000
EVS 0.9797 0.9854 0.9837 0.9838 0.0010 0.0000
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Figure 11: A deficient FEB-LCR-ACM validating loss curve by
LHV-IVE.
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6. Conclusions

+is paper focuses on the automation and intelligence of
CTO-LGC by proposing the FEB-LCR-ACM to support the
PSAC decision at container terminals. +e FEB-LCR-ACM is
an automation mechanism, feature engineering, computing
architecture, design paradigm, and learning philosophy es-
sentially by the combination and integration of computational
logistics and deep learning. +e FEB-LCR-ACM is an im-
portant component of the brain center for CTHS that plays a
key role in self-learning, auto tuning, and adaptive evolution.
+e FEB-LCR-ACM is supposed to drive, achieve, and fulfill
the mechanization, automation, and intelligence of CTO-
LGC. +e FEB-LCR-ACM is a specific practice of container-
terminal-oriented neural-physical fusion computation sub-
stantially [60], which is the integration and synergy between
computational logistics and deep learning through the cyber-
physical systems as a bridge in essence. Moreover, it also
provides a unified insight and an efficient solution to ex-
ploring and exploiting the discrete optimization management
in complex and smart logistics and transportation systems
under dynamic and uncertain environments.
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