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Forecasting the depth of groundwater in arid and semiarid areas is a great challenge because these areas are complex hydro-
geological environments and the observational data are limited. To deal with this problem, the grey seasonal index model is
proposed. -e seasonal characteristics of time series were represented by indicators, and the grey model with fractional-order
accumulation was employed to fit and forecast different periodic indicators and long-term trends, respectively. -en, the
prediction results of the two were combined together to obtain the prediction results. To verify the model performance, the
proposed model is applied to groundwater prediction in Yinchuan Plain. -e results show that the fitting error of the proposed
model is 2.08%, while for comparison, the fitting error of the grey model of data grouping and Holt–Winters model is 3.94% and
5%, respectively. In the same way, it is concluded that the fitting error of groundwater in Weining Plain by the proposed model is
2.26%. On the whole, the groundwater depth in Ningxia Plain including Yinchuan Plain and Weining Plain will increase further.

1. Introduction

1.1. Motivation. Groundwater is closely related to the de-
velopment of human civilization. More than 2 billion people
worldwide drink groundwater directly.-is number is rising
as rivers are polluted and depleted. -e overuse of
groundwater destroys the natural water cycle and causes
problems such as ground collapse. China’s groundwater
resources have been drastically reduced due to excessive
exploitation of groundwater. At present, the accumulated
deficit of groundwater deficit in North China is 180 billion
cubic meters. In order to reduce the impact of groundwater
depth decline, it is meaningful to achieve accurate
groundwater prediction. Especially in dry areas, the reliance
on groundwater is greater.

Ningxia Hui Autonomous Region (Ningxia) is located in
Northwest China and is a typical dry area. Ningxia has the
fewest water resources in China. -e average annual runoff
in Ningxia is 18.3mm deep, only 1/15 of the national av-
erage, with annual rainfall from 150mm to 600mm. To solve

the problem of farmland irrigation, the ancient people of
Ningxia built water conservancy projects to divert the Yellow
River. -e water conservancy project is still in use today. In
2017, the ancient irrigation area in Ningxia was listed on the
world irrigation engineering heritage list. Although irrigation
projects have eased the drought on farmland, groundwater is
still the main source of water resources in Ningxia. Moreover,
with the continuous development of China’s western devel-
opment strategy, Ningxia’s economy has developed rapidly,
which has intensified the demand for water resources.
According to Ningxia water resource bulletin, the ground-
water consumption in Ningxia has been on the rise from 2014
to 2018. -e content comes from Ningxia Hydrological In-
formation Network.

In order to provide reference for groundwater man-
agement in Ningxia, the grey seasonal index model (GSIM
(1,1)) was established to predict the groundwater depth of
Ningxia Plain and compared with the results of Holt–
Winters model (Holt–Winters) and grey model of data
grouping (DGGM (1,1)).
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-is paper is organized as follows. -e model is intro-
duced in Section 2. Experimental results are given in Section
3. In Section 4, some conclusions and directions for future
research are provided.

1.2. Literature Review. Under the background of water re-
source depletion, groundwater management has gradually
developed into a discipline to be studied by scholars [1].
Accurate prediction of groundwater is important for
groundwater management. -ere are many studies on
prediction method [2]. -e most direct way is through the
surface vegetation to predict groundwater depth [3].
However, changes in groundwater are most affected by
humans. Industrial water, agricultural water, and domestic
water are considered as the main factors affecting ground-
water [4]. Based on different influencing factors, stochastic
time series and artificial neural network models are consid-
ered to have better effect in groundwater depth assessment
[5]. Rivers are the main natural way to replenish groundwater
and play a regulating role in the water cycle. A groundwater
prediction model based river stage was built [6]. Based on
groundwater dynamic data and related factors, the quantile
regressionmethodwas used to predict groundwater depth [7].
Other factors affecting groundwater depth have also been
investigated [8]. -e development of science and technology
provides convenience for the study of groundwater. -e
conceptual model, the Bayesian network, and artificial net-
work models were applied to groundwater depth prediction
[9]. Support vector machines have good performance in
groundwater depth prediction [10]. -e prediction effects of
grey self-memory model, radial basis function network, and
adaptive neuro fuzzy inference system models on ground-
water were compared [11]. -e mathematical models have
their own characteristics, and different models are combined
and applied to groundwater depth prediction [12]. Hybrid
support vector machine regression and artificial neural net-
work models were applied to groundwater depth prediction
[13]. A hybrid model using entropy spectral analysis with the
optimal input is proved to be effective in predicting
groundwater depth [14]. -e empirical mode decomposition
(EMD) was combined with Elman neural network, and the
coupling forecasting model was constructed to groundwater
depth forecasting [15]. -e EMD is also used in combination
with phase space reconstruction, particle swarm optimization,
and extreme learning machine [16].

Groundwater is a huge system. Due to the influence of
geological conditions, hydrological environment, and other
factors [17–20], the information about groundwater is

ambiguous. -erefore, groundwater is a complex grey sys-
tem. Moreover, the above model needs a lot of data to
guarantee the accuracy of prediction [21]. Without a large
number of training samples, the prediction accuracy of the
model cannot reach the best [22]. -e grey prediction model
has high precision in small sample prediction [23, 24]. Grey
models are widely used in air pollution, energy, electricity,
biology, computer, water resources, and other fields [25–33].
-e fractional-order grey prediction model improves the
stability of themodel from the perspective of fractional order
[34, 35]. On this basis, the seasonal index is introduced into
the fractional-order grey prediction model, and the pro-
cessing ability of the model to nonlinear data is improved.
-us, PSO-GSIM (1,1) is used to predict the groundwater
depth of Ningxia Plain.

2. Methodology

2.1. 'e Holt–Winters Model. -e Holt–Winters model is a
traditional statistical model and has been widely used since it
was proposed by Winters in 1960. Scholars have conducted
in-depth research on the model [36]. -e Holt–Winters
model is used to process data with seasonal characteristics.
Time series data are divided into three parts, namely, re-
sidual data, trend data, and seasonal data. A prediction
model is established based on the Holt–Winters model.
-ere are two kinds of calculation methods for the Holt–
Winters model, namely, addition and multiplication. -e
multiplication Holt–Winters model works better with
solving the seasonal time series prediction problem.
-erefore, the multiplication Holt–Winters model is used
for comparison in this paper. -e establishment process of
the model is as follows.

For the time series X(0) � x(0)(1), x(0)(2), . . . , x(0)(n) ,
the multiplication Holt–Winters model is

St � α
x

(0)
(t)

It−L

+(1 − α) St−1 + bt−1( , 0< α< 1,

bt � c St − St−1(  +(1 − c)bt−1, 0< c< 1,

It � β
x

(0)
(t)

St

(1 − β)It−L, 0< β< 1,

(1)

where L is the seasonal length, such as four quarters, 12
months, and so on, It is the seasonal index, and bt represents
the tendency.

It �
x

(0)
(L)

x
(0)

(t)
,

SL+1 � x
(0)

(L + 1),

bL+1 �
x

(0)
(L + 1) − x

(0)
(1) + x

(0)
(L + 2) − x

(0)
(2) + x

(0)
(L + 3) − x

(0)
(3)

3L
,

(2)
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where x(0)(L) represents the average of same month in
different years and x(0)(t) is general average.

-e Holt–Winters model has three parameters, and the
application of the grey wolf optimization algorithm (GWO)
improves the efficiency of multiparameter optimization.
GWO is an optimization algorithm inspired by the hunting
behavior of wolves. It is widely used for multiparameter
model optimization. -e behavior of a pack of wolves is
represented digitally as follows:

D � C · xp(i) − x(i)


,

x(i + 1) � xp(i) − A · D,
(3)

where i represents the literation at this point, A and D are
coefficient vectors, and xp represents the position vector of
the prey, i.e. objective vector. x(i + 1) is the position of one
of the wolves in the pack. Coefficient vectors A and D are
obtained by the following formula:

A � 2a · r1 − a,

C � 2 · r2,
(4)

where a decreases linearly from 2 to 0 along with iteration
and r1 and r2 are randomly generated from [0, 1].

In GWO, there are three optimization parameters, α, β,
and δ, corresponding to the three variables in the Holt–
Winters model, respectively, where alpha is the dominant
player in GWO. Suppose that the three wolves knew where
their prey was; therefore, the first three best hunting sites
were preserved. Other searcher is forced to update their
locations on this basis. -e other search location update
formula is as follows:

Dα � C1 · xα(i) − x(i)


,

Dβ � C2 · xβ(i) − x(i)


,

Dδ � C3 · xδ(i) − x(i)


,

x1(i + 1) � xα(i) − A1 · Dα( ,

x2(i + 1) � xβ(i) − A2 · Dβ ,

x3(i + 1) � xδ(i) − A3 · Dδ( ,

x(i + 1) �
x1(i + 1) + x2(i + 1) + x3(i + 1)

3
,

(5)

where x(i) is the position of other searcher, xα, xβ, and xδ
are the search locations of alpha, beta, and delta, and x(i + 1)

is where the other searchers are in the next iteration. To
speed up search efficiency, the maximum number of iter-
ations is set to 30. -e value range of parameters is [0, 1].
Detailed description and source codes of GWO can be found
in the literature [37].

2.2. Grey Model of Data Grouping Method. -e traditional
grey prediction model is not applicable to the data of sea-
sonal fluctuation. For the grey model to process the seasonal
data, DGGM (1,1) model was proposed [38]. Twomore steps
are added to the traditional GM (1,1) model. -e calculation
process of DGGM (1,1) model is described below.

Step 1. -e time series data are divided into twelve
monthly groups and are given by

x
(0)

(τ) � x
(0)

(τ, 1), x
(0)

(τ, 2), . . . , x
(0)

(τ, n) ,

τ � 1, 2, . . . , 12.
(6)

Step 2. GM (1,1) models are calculated based on
grouped data separately. An accumulative series x(1)(τ)

is obtained by accumulative calculation:

x
(1)

(τ) � x
(1)

(τ, 1), x
(1)

(τ, 2), . . . , x
(1)

(τ, n) 

� x
(1)

(τ, 1), x
(1)

(τ, 1) + x
(0)

(τ, 2), . . . , x
(1)

(τ, n − 1) + x
(0)

(τ, n − 1) , τ � 1, 2, . . . , 12,
(7)

where x(1)(τ,k) � 
k
i�1 x(0)(τ, i), k � 1,2, . . . ,n; τ � 1,2,

. . . ,12, and the mean series is z(1)(τ,k) � 0.5x(1)(τ,k) +

0.5x(1)(τ,k −1) k � 2,3, . . . ,n; τ � 1,2, . . . ,12.

-e first-order differential equation of a single variable
is used as the prediction model, namely, GM (1,1), and
the grey differential equation is as follows:
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x
(0)

(τ, k) + az
(1)

(τ, k) � b,

k � 2, 3, . . . , n; τ � 1, 2, . . . , 12.
(8)

-e corresponding whitening differential equation is
(dx(1)(τ, t)/dt) + ax(1)(τ, t) � b, where t, a, and b

represent the time variable, grey development coeffi-
cient, and grey action quantity, respectively. Data
matrix B and data vector Y are given by

B �

−
1
2

x
(1)

(τ, 1) + x
(1)

(τ, 2)  1

−
1
2

x
(1)

(τ, 2) + x
(1)

(τ, 3)  1

⋮ ⋮

−
1
2

x
(1)

(τ, n − 1) + x
(1)

(τ, n)  1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

x
(0)

(τ, 2)

x
(0)

(τ, 3)

⋮

x
(0)

(τ, n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, τ � 1, 2, . . . , 12.

(9)

-e undetermined coefficient vector is
a
∧

b
∧⎡⎣ ⎤⎦ � (BTB)−1BTY, and the prediction equation is

obtained:

x
∧(1)

(τ, t + 1) � x
(0)

(τ, 1) −
b

a
 e

−at
+

b

a
,

τ � 1, 2, . . . , 12.

(10)

Step 3. Reductive treatment is conducted. -rough a
subtraction calculation, the predicted values of original
series x(0) are obtained:

x
∧(0)

(τ, t + 1) � x
∧(1)

(τ, t + 1) − x
∧(1)

(τ, t),

t � 1, 2, . . . , n − 1; τ � 1, 2, . . . , 12.
(11)

Furthermore, the twelve groups of monthly predictions
are combined into a new time series:

x
∧(0)

(τ, t + 1) � x
∧(0)

(1, 1), x
∧(0)

(2, 1), x
∧(0)

(3, 1), x
∧(0)

(4, 1), . . . , x
∧(0)

(1, n), x
∧(0)

(2, n), x
∧(0)

(3, n), x
∧(0)

(4, n) . (12)

2.3. 'e GSIM (1,1) Model. -e data varied substantially
among different months, but the traditional grey prediction
model is only suitable for time series with an exponential
trend, and it is not capable of effectively predicting data with
large fluctuations. -us, in order to enhance the forecasting
accuracy, the seasonal data are summarized into annual data
in this study.-e annual data are predicted by GM (1,1) with
fractional-order accumulation (FGM (1,1)) [24]. -e pre-
diction results were calculated by seasonal index and annual
data.

-e time series data on the depth of groundwater are
X(0) � x(0)(1), x(0)(2), . . . , x(0)(n)  with a cycle of L, for
example, L � 12, and the modeling process for the GSIM
(1,1) model is as follows.

Step 1. -e yearly data are Y(0) � y(0)(1), y(0)(2),

. . . , y(0)(ϕ)}, ϕ � [n/L], where y(0)(1) � 
L
i�1 x(0)(i),

y(0)(2) � 
2L
i�L+1x

(0)(i), . . . , y(0) (ϕ) � 
n
i�(ϕ−1)L+1 x(0)

(i). φ is the number of periods.
Step 2. By using y(r)(k) � 

k
j�1 C

k−j

k−j+r−1y
(0)(j), the

r-order accumulation sequence is

Y
(r)

� y
(r)

(1), y
(r)

(2), . . . , y
(r)

(φ), (13)

where C0
r−1 � 1, Ck+1

k � 0, C
k−j

k−j+r−1 � ((k − j + r − 1)

(k − j + r − 2) . . . (r + 1)r)/(k − j)!. r is the fractional
order, and the optimal value can be obtained through
particle swarm optimization (PSO) algorithm.
Step 3. -e differential equation with one variable of the
r-order accumulation sequence Y(r) (i.e., the FGM (1,1)
model) can be defined as

dy
(r)

dt
+ ay

(r)
� b, (14)

where a and b represent grey development coefficient
and grey action quantity, respectively. -e solution to
equation (14) is

y
(r)

(t + 1) � y
(0)

(1) −
b

a
 e

− at
+

b

a
. (15)

-e parameters of the model are calculated by the least
square method.-e calculation process of a

∧
, b
∧
is shown

in the following equation:

a
∧

b
∧

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ � B
T
B 

− 1
B
T
Y, (16)
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where

B �

−0.5 y
(r)

(1) + y
(r)

(2)  1

−0.5 y
(r)

(2) + y
(r)

(3)  1

⋮ ⋮

−0.5 y
(r)

(φ − 1) + y
(r)

(φ)  1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

y
(r)

(2)

y
(r)

(3)

⋮

y
(r)

(φ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

Step 4. a
∧

and b
∧
are entered in the time response

function:

y
∧(r)

(k + 1) � y
(0)

(1) −
b
∧

a
∧

⎛⎜⎜⎝ ⎞⎟⎟⎠e
− a
∧
k

+
b
∧

a
∧,

(18)

and y
∧(r)

(k + 1) is the fitting value at time k + 1.

Step 5. For Y
∧ (r)

� y
∧(r)

(1), y
∧(r)

(2), . . . , y
∧(r)

(φ) , the

restored sequence is

α(r)
Y
∧ (r)

� α(1)
y
∧(r)(1− r)

(1), α(1)
y
∧(r)(1− r)

(2), . . . , α(1)
y
∧(r)(1− r)

(φ) ,

(19)

where α(1)y
∧(r)(1− r)

(k) � y
∧(r)(1− r)

(k) − y
∧(r)(1− r)

(k − 1).
-en, the restored value is

y
∧(0)

(1), y
∧(0)

(2), . . . , y
∧(0)

(φ), y
∧(0)

(φ + 1), y
∧(0)

(φ + 2), . . . .

(20)

Step 6. -e seasonal index d(i, t)(i � 1, 2, . . . , L, t �

1, 2, . . . , ϕ) is calculated by using the average method:

d(0)
(i, t) � d(0)

(1, 1), d(0)
(2, 1), . . . , d(0)

(L, 1), d(0)
(1, 2), . . . , d(0)

(L,φ) , (21)

where

d(0)
(1, 1) �

x
(0)

(1, 1)


L
i�1 x

(0)
(i, 1)

, d(0)
(2, 1) �

x
(0)

(2, 1)


L
i�1 x

(0)
(i, 1)

, . . . , d(0)
(L, 1) �

x
(0)

(L, 1)


L
i�1 x

(0)
(i, 1)

, d(0)
(1, 2)

�
x

(0)
(1, 2)


L
i�1 x

(0)
(i, 2)

, · · · , d(0)
(L,φ) �

x
(0)

(L,φ)


L
i�1 x

(0)
(i,φ)

.

(22)

Step 7. According to the calculation process in Step 2,
the accumulation series d(r)(i, t) is obtained.

d(r)
(i, t) �

d(r)
(1, 1), d(r)

(1, 2), . . . d(r)
(1,φ);

d(r)
(2, 1), d(r)

(2, 2), . . . d(r)
(2,φ);

⋮

d(r)
(L, 1), d(r)

(L, 2), . . . d(r)
(L,φ).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

-e accumulation of the seasonal index is no longer
carried out in accordance with the time series, but data
of the same month are combined into a group for the
accumulation. -e purpose of this is to reduce the
dimension of the data so as to make full use of the grey
model to process the small data. At the same time, it is
also preparation for the prediction of the next cycle.
-e next calculation refers to Steps 3–5, and the
forecasting value is obtained:

d
∧ (0)

(1,φ + 1), d
∧ (0)

(2,φ + 1), . . . , d
∧ (0)

(L,φ + 1), d
∧ (0)

(1,φ + 2), d
∧ (0)

(2,φ + 2), . . . . (24)

Step 8. -e fitting value of the groundwater depth is
obtained.

For X
∧ (0)

� x
∧(0)

(1), x
∧(0)

(2), . . . , x
∧(0)

(n), x
∧(0)

(n + 1),

. . . , the solution formula is
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x
∧(0)

(k) � y
∧(0)

(ω + 1)
d
∧ (0)

(υ,ω + 1)

L
, mod(k, L)≠ 0,

x
∧(0)

(k) � y
∧(0)

(ω)
d
∧ (0)

(L,ω)

L
, mod(k, L) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where ω and υ are the quotient and remainder of k/L,
respectively.
Step 9. -e mean absolute percentage error (MAPE) is
used to test model accuracy, and the calculation process
is as follows:

MAPE �
1
n



n

k�1

x
∧(0)

(k) − x
(0)

(k)

x
(0)

(k)




× 100%. (26)

In the paper, PSO is applied to obtain the optimal value
of the parameter r of the GSIM (1,1) model. PSO has been
widely used since it was proposed [39]. Compared with other
optimization algorithms, PSO is simpler and easier to im-
plement without too much parameter adjustment. To in-
crease the search effect, the position and velocity of the
particle need to be constantly updated.-e updating process
depends on the values Pbest and gbest, where Pbest rep-
resents the current optimal solution and gbest represents the
current optimal solution for any particle. -e updating
process is shown in the following equations:

v(i + 1) � ωv(i) + c1 ∗ rand∗ (Pbest(i) − x(i))

+ c2 ∗ rand∗ (gbest(i) − x(i)),
(27)

x(i + 1) � x(i) + v(i + 1), (28)

where v(i) and x(i) represent the velocity and position of the
particle at i, respectively, ω represents the inertia weight
value which is generally set as 0.8 [40], and rand is a random
function; the optimal value of r of most experiments is
generally within the range of [0, 1]; to ensure the accuracy of
the experiment, the value range of GSIM (1,1) parameter r is
expanded to [0, 2.5]; therefore, rand represents the random
number generated from [0, 2.5]. c1 and c2 are acceleration
constants with equal values and set to 2 [41]. Suppose the
number of individuals in the initial population is N � 50, the
maximum number of iterations is 200. More detailed de-
scription of PSO can be found in literature [42].

3. Experimental Results

3.1. StudyArea andData. Ningxia spans 35°14′–39°14′N and
104°17′–109°39′E and includes five cities. -e climatic types
of Ningxia are temperate, continental, arid, and semiarid.
Ningxia Plain is considered as the largest plain in Ningxia.
-e study region has an area of 66.400 km2 and is bordered
by the Helan Mountains and Liupan Mountains to the
northwestward and south, respectively. Ningxia is
1100–1200meters above sea level and the terrain slopes from

southwest to northeast. -e Yellow River enters from the
southwest of Ningxia and leaves from the northeast. Due to
the different physiognomy types in northcentral Ningxia and
south Ningxia, Ningxia Plain can be divided into Yinchuan
Plain and Weining Plain (Figure 1). -e recoverable
groundwater accounts for 88% of the total groundwater in
Ningxia. Ningxia Plain is surrounded by mountains, water
flows to the plain, and the water table changes slowly and
steadily, creating a predictable gradient of water [43].

-e data are from the official website of the Ministry of
Water Resources of the People’s Republic of China (https://
www.mwr.gov.cn/sj/tjgb/dxsdtyb/). -ere are a total of 47
groundwater monitoring wells in Ningxia Plain. Yinchuan
Plain contains three cities and 28 groundwater monitoring
wells. Weining Plain contains one city and 11 groundwater
monitoring wells (by the end of the 2019). -e groundwater
depth data for Yinchuan Plain and Weining Plain are the
average result of multiple groundwater monitoring wells.

3.2. Forecasting the Groundwater Depth of Yinchuan Plain.
-e groundwater depth of Yinchuan Plain is predicted in this
section. -e depth of groundwater is one of the contents of
hydrology. Groundwater is subject to changes in rainfall or in
rivers. As we all know, changes in rainfall and rivers are
cyclical and seasonal. In recent years, the seasonal variation of
groundwater depth is more obvious under the influence of
human production activities. For example, the original
groundwater depth data of Yinchuan Plain are summarized in
Figure 2. Figure 2 shows that the groundwater depth changes
with time, and groundwater depth fluctuations are similar at
the same time in different years.-erefore, the seasonal model
is used to study the variation of groundwater depth.

3.2.1. 'e Calculation Results of the Holt–Winters Model.
-e groundwater depth data of Yinchuan Plain from 2014 to
2018 were fitted to three models. -e models do not fit the
data of the first period, so the data of the first period are
omitted. -e fitting results of the Holt–Winters model are
listed in Table 1. -e calculation process is completed by
MATLAB 2016b. -e GWO was used to find optimal pa-
rameters α, β, and c, and the optimization result of pa-
rameters is [0.51639, 0.05160, 0.00752]. -e fitting error
(MAPE) of the Holt–Winters model is 5.00%. It can be seen
that the fitting accuracy of the traditional model is lower
than 10%, and the fitting results are accepted. As the first
cycle, the data of 2014 were omitted.

3.2.2. 'e Calculation Results of the DGGM (1,1) Model.
-eDGGM (1,1) model was applied to the data calculation on
a monthly basis. -e data grouping method is adopted to
improve the fitting accuracy of the traditional GM (1,1)model,
and the model can be applied to process seasonal fluctuation
data. -e fitting results of DGGM (1,1) model are listed in
Table 2. MAPE is 3.94%. Compared with the Holt–Winters
model, the new model has higher fitting accuracy. Moreover,
there are no fitting results for the first period of the two
models, increasing contrast between models.
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-e parameters generated by the DGGM (1,1) model in
the fitting process are shown in Table 3. -e time response
function of each set of parameters can be obtained from
equation (16).

3.2.3. 'e Calculation Results of the GSIM (1,1) Model.
-e seasonal index in this paper refers to the index calculated
on a monthly basis. -e seasonal index reflects the

fluctuation of the data in the time series. Most models do not
deal well with fluctuating data. For the purpose of stabilizing
the sequence, scholars used seasonal factors to eliminate
seasonal changes in time series. -is method improves the
ability of themodel to process the fluctuation data. However,
the time series that eliminate seasonal effects may lose a lot of
information. Its accuracy is also difficult to improve. To
reduce information loss in the sequence, the seasonal index
was extracted and studied separately. -e results of yearly
data are listed in Table 4. -eMAPE is 0.38%, and the fitting
accuracy is high.

-en, the seasonal index of monthly data is fitted. During
the fitting process, the GSIM (1,1) model is used sometimes,
so the multiple sets of parameters are generated. Each set of

103°E
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Figure 1: -e general area of Ningxia Plain.
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Table 1: -e fitting value of Yinchuan Plain groundwater depth by
Holt–Winters model (unit: m).

Month
Year

2015 2016 2017 2018
1 2.06 1.69 2.00 2.09
2 2.27 2.19 2.48 2.65
3 2.63 2.53 2.71 2.89
4 2.69 2.62 2.75 2.92
5 2.75 2.68 2.81 3.07
6 1.94 1.90 2.05 2.27
7 1.71 1.70 1.81 2.10
8 1.55 1.59 1.69 2.01
9 1.91 1.81 2.07 2.23
10 2.46 2.18 2.58 2.94
11 2.61 2.57 3.02 3.16
12 1.53 1.56 1.79 1.85
MAPE 5.00
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parameters in Table 5 can be substituted into equation (20)
to obtain the corresponding time response function.

-e fitting values of the seasonal indices are listed in
Table 6. -e average MAPE from 2015 to 2018 is 2.01%.
Groundwater is consumed more in February, March, April,
May, October, and November. Affected by dry and wet
seasons, the groundwater depth varies seasonally through-
out the year. -e GSIM (1,1) model can not only predict
accurately but also quantify the periodic variation of data
within the time span.With the allowable error, it is beneficial
to understand the variation law of groundwater depth.

-e groundwater depth fitting results from 2014 to 2018
are shown in Table 7. -e MAPE of fitting results is 2.08%.
By calculating the seasonal index and annual fitting value of

groundwater depth, the monthly fitting value is obtained. As
the trend parameter, the annual fitting value controls the
change direction of groundwater. -e seasonal index breaks
down the units of time from years into months.

In the calculation process of the above three models, the
GSIM (1,1) model extracts the most information, and the
seasonal variation of the data is shown in the prediction

Table 2: -e fitting value of Yinchuan Plain groundwater depth by DGGM (1,1) model (unit: m).

Month
Year

2015 2016 2017 2018
1 2.03 1.97 2.11 2.18
2 2.38 2.51 2.45 2.62
3 2.56 2.74 2.79 2.91
4 2.64 2.67 2.84 3.09
5 2.56 2.78 3.07 3.24
6 1.83 2.08 2.14 2.28
7 1.64 1.67 1.89 2.07
8 1.61 1.74 1.67 1.78
9 1.82 1.93 2.09 2.26
10 2.33 2.41 2.62 2.77
11 2.45 2.67 2.91 3.05
12 1.31 1.45 1.63 1.8
MAPE 3.94

Table 3: -e parameters of the DGGM (1,1) model fitting process.

Modeling the serial number Grey development coefficient a Grey action quantity b

1 −0.039 1.838
2 −0.019 2.381
3 −0.026 2.539
4 −0.047 2.395
5 −0.072 2.279
6 −0.085 1.574
7 −0.101 1.337
8 −0.043 1.495
9 −0.086 1.53
10 −0.075 2.003
11 −0.069 2.263
12 −0.116 0.992

Table 4: -e annual fitting value of Yinchuan Plain groundwater
depth (unit: m).

Year Actual value Fitting value
2014 26.68 26.68
2015 25.83 25.81
2016 25.71 25.70
2017 28.02 27.70
2018 30.66 30.74
MAPE 0.38

Table 5: -e parameters of the GSIM (1,1) model fitting process in
Yinchuan Plain.

Modeling the serial
number

-e optimal order
number r a b

1 1.21 −0.05 1.08
2 0.99 0.05 1.24
3 0.15 0.89 1.40
4 1.13 −0.03 1.35
5 1.10 −0.04 1.28
6 1.10 −0.05 0.90
7 1.11 −0.07 0.77
8 1.25 −0.07 0.87
9 1.58 −0.19 1.11
10 0.54 0.18 0.83
11 0.57 0.17 0.95
12 0.98 −0.05 0.55
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process. -e prediction accuracy of the GSIM (1,1) model is
also higher than that of the GWO-Holt–Winters model and
the DGGM (1,1) model. -e MAPE of the GSIM (1,1) model
is 2.08%, the MAPE of the Holt–Winters and the DGGM
(1,1) models is 5% and 3.94%, respectively (Table 8). -is
shows that the GSIM (1,1) model is more practical for
seasonal fluctuation data.

-e fitting process of the three models is visualized in
Figure 3. -e consumption of groundwater in Ningxia keeps
increasing, and seasonal fluctuation trend is obvious. -e
fitting line of the GSIM (1,1) model is close to the original
data line. -e three models did not fit the data of the first
period. It can be seen that the original calculation of the
three models has the same characteristics, and the three
models are comparable.

3.2.4. Prediction of Groundwater Depth in Yinchuan Plain.
In the fitting results of groundwater depth in Yinchuan
Plain, the GSIM (1,1) model has the smallest error. -ere-
fore, the GSIM (1,1) model is selected to predict the
groundwater depth of Yinchuan Plain from 2019 to 2020
(Table 9). From the prediction results, groundwater

Table 6: Seasonal index fitting value of groundwater depth in Yinchuan Plain.

Month 2014 2015 2016 2017 2018
Actual value Actual value Fitting value Actual value Fitting value Actual value Fitting value Actual value Fitting value

1 0.92 0.96 0.96 0.89 0.89 0.89 0.88 0.88 0.89
2 1.12 1.17 1.17 1.13 1.12 1.07 1.08 1.04 1.03
3 1.23 1.25 1.25 1.24 1.22 1.17 1.18 1.14 1.14
4 1.23 1.25 1.25 1.22 1.21 1.18 1.20 1.20 1.19
5 1.22 1.24 1.24 1.23 1.23 1.25 1.25 1.27 1.27
6 0.85 0.88 0.88 0.90 0.88 0.87 0.90 0.95 0.93
7 0.73 0.77 0.77 0.80 0.78 0.78 0.81 0.87 0.85
8 0.71 0.78 0.78 0.70 0.73 0.78 0.72 0.71 0.74
9 0.81 0.92 0.92 0.77 0.77 0.87 0.84 0.94 0.96
10 1.04 1.04 1.07 1.12 1.11 1.19 1.12 1.07 1.10
11 1.20 1.18 1.20 1.25 1.24 1.28 1.24 1.20 1.22
12 0.93 0.57 0.63 0.76 0.66 0.67 0.70 0.72 0.73
MAPE 2.01

Table 7: -e fitting value of Yinchuan Plain groundwater depth by
GSIM (1,1) model (unit: m).

Month
Year

2014 2015 2016 2017 2018
1 2.05 2.06 1.91 2.03 2.27
2 2.49 2.52 2.41 2.49 2.65
3 2.73 2.68 2.61 2.72 2.92
4 2.73 2.69 2.60 2.76 3.05
5 2.71 2.67 2.64 2.88 3.26
6 1.89 1.89 1.89 2.08 2.39
7 1.62 1.66 1.68 1.88 2.18
8 1.58 1.68 1.55 1.67 1.90
9 1.80 1.98 1.65 1.93 2.45
10 2.31 2.29 2.38 2.58 2.83
11 2.67 2.58 2.65 2.86 3.12
12 2.07 1.35 1.42 1.61 1.88
MAPE 2.08

Table 8: -e fitting error comparison of three models.

Model MAPE
Holt–Winters 5
DGGM (1,1) 3.94
GSIM (1,1) 2.08
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Figure 3: -e fitting curve of groundwater depth in Yinchuan
Plain.

Table 9: Prediction of groundwater depth in Yinchuan Plain
(unit: m).

Month
Year

Month
Year

2019 2020 2019 2020
1 2.60 3.04 7 2.60 3.12
2 2.86 3.12 8 2.23 2.65
3 3.19 3.53 9 3.24 4.37
4 3.44 3.92 10 3.10 3.40
5 3.76 4.40 11 3.42 3.74
6 2.79 3.30 12 2.22 2.65
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consumption in Yinchuan Plain will increase further. -e
seasonal law of groundwater depth remains unchanged.
Ningxia is inland in Northwest China. -e inland areas are
short of water. Yinchuan Plain is the most economically
dynamic area in Ningxia. Continued economic growth has
increased water consumption. In addition, the tradition
farmland irrigation model consumes most of the water
resources. Strengthening water resources management is
crucial to the economic development and agricultural
production of Yinchuan Plain.

-e GSIM (1,1) model is the best among three models in
Yinchuan Plain. -is model can also predict the ground-
water depth ofWeining Plain.-ese results inWeining Plain
and Yinchuan Plain help us to know the groundwater sit-
uation in the whole Ningxia Plain. -e prediction of
groundwater depth in Weining Plain is described in the next
section.

3.3. Forecasting the Groundwater Depth of Weining Plain.
Yinchuan, the capital of Ningxia, is located on the Yinchuan
Plain. Zhongwei city is located on the Weining Plain. -e
Yellow River enters Ningxia from Zhongwei city. From a
geographical point of view, Weining Plain has more water
resources than Yinchuan Plain. -e Yellow River flows from
Weining Plain to Yinchuan Plain. Weining Plain needs to
coordinate the local water resources to support the water
shortage of Yinchuan Plain. -erefore, the accurate pre-
diction of groundwater in Weining Plain is conductive not
only to the regulation of local water resources but also to the
diversion of water to Yinchuan Plain.

-e annual groundwater depth in Weining Plain
changes slowly. -e annual data of groundwater depth were
fitted by the FGM (1,1) model. -e fitting results are listed in
Table 10, and theMAPE of fitting value is 0.10% and has high
precision. Since 2016, the groundwater depth of Weining
Plain has gradually increased. It shows that water con-
sumption in Weining Plain has increased in recent years.

-e variation law of groundwater consumption in
Weining Plain is known by seasonal index. -e parameters
generated by the GSIM (1,1) model during the fitting process
are listed in Table 11. -e fitting results of the seasonal index
are listed in Table 12, and the MAPE of fitting value is 2.23%.
-e groundwater consumption in Weining Plain is large
from January to May and November to December. -e
seasonal index in December showed a downward trend. It
indicates that the groundwater consumption in December
was reduced. But the seasonal index in October was above 1
several times. Changes in groundwater consumption are also
dynamic, and it is important to predict the next year based
on the index of same season.

-eMAPE of the GSIM (1,1) model for the groundwater
depth of Weining Plain is marked in Figure 4. -e error is
obtained by averaging the monthly data fitting error of a
year. -e original value of groundwater depth in Weining
Plain is represented by the line in Figure 4. -e seasonal
variation of groundwater depth is obvious. -e largest error
occurred in 2016, which is 5.6%. -e overall level of error is
low.

From the fitting value of the year and the seasonal index,
the fitting value of the month from 2014 to 2018 is calculated
(Table 13). -e prediction section in Table 13 is visualized in
Figure 5. It can be seen that the predicted value has a small
increase compared with the original data. -e groundwater
depth in 2019 to 2020 will still fluctuate seasonally. -e
groundwater consumption in the first half is more than the
second half. Government departments should focus on
water management in the first half of the year.

Table 10: Annual fitting value of groundwater depth in Weining
Plain (unit: m).

Year Actual value Fitting value
2014 21.24 21.24
2015 21.54 21.52
2016 20.69 20.66
2017 21.19 21.18
2018 22.31 22.28
MAPE 0.10

Table 11:-e parameters of the GSIM (1,1) model fitting process in
Weining Plain.

Modeling the serial
number

-e optimal order
number r a b

1 1.39 −0.08 1.62
2 0.52 0.21 0.94
3 0.55 0.17 0.91
4 0.52 0.17 0.86
5 0.14 0.50 0.81
6 1.59 −0.18 1.22
7 1.56 −0.17 0.97
8 1.77 −0.24 0.92
9 1.44 −0.18 0.81
10 0.42 0.44 1.08
11 0.47 0.37 1.13
12 0.88 0.01 0.60

Table 12: Seasonal index fitting value of Weining Plain ground-
water depth.

Month
Year

2014 2015 2016 2017 2018
1 1.20 1.32 1.10 1.05 1.05
2 1.17 1.18 1.21 1.20 1.17
3 1.21 1.20 1.24 1.26 1.24
4 1.23 1.19 1.22 1.23 1.22
5 1.17 1.18 1.19 1.18 1.17
6 0.88 0.99 0.82 0.87 0.99
7 0.77 0.78 0.67 0.72 0.81
8 0.72 0.69 0.56 0.67 0.82
9 0.79 0.70 0.69 0.76 0.87
10 0.81 1.06 1.09 1.05 0.99
11 1.04 1.17 1.18 1.13 1.06
12 1.01 0.71 0.72 0.74 0.75
MAPE 2.23
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-e groundwater depth of Yinchuan Plain and Weining
Plain is calculated and analyzed. It shows that the
groundwater depth in Ningxia Plain is increasing year by
year. Maintaining groundwater stability is important in dry
areas. Water resources are coordinated between the two
plains by the Yellow River. Weining Plain in the upper
reaches of the Yellow River can allocate more water re-
sources to Yinchuan Plain. -e concept of coordinated
development is also applied to water resources management.

4. Conclusions

In this paper, the GSIM (1,1) model, the Holt–Winters
model, and the DGGM (1,1) model were established and
applied to groundwater depth prediction in Ningxia Plain.
By comparison, the GSIM (1,1) model is proved to be an
effective one, and its prediction accuracy is higher than that
of other models. -e following conclusions were obtained.

-e GSIM (1,1) model is more suitable for dealing with
seasonal fluctuation data. In the process of calculation, the
seasonal variation of data is presented. -e GSIM (1,1)
model provides a new choice for studying the data with the
characteristics of seasonal variation.

GSIM (1,1) retains the characteristics of the traditional
grey model for processing small sample data and has high
prediction accuracy. Seasonal variations in the data were
quantified and used for the first time to predict research.
Data for the same month for different years are used as the
object of the GSIM (1,1) model, and the processing method
of traditional series data is changed.

In the paper, the GSIM (1,1) model parameter r is re-
served for two decimal places. During the experiment, we
found that the more the bits reserved for parameter r, the
higher the accuracy of the model. Scholars can adjust pa-
rameter r according to the experimental needs to meet
higher accuracy requirements.
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