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Rear-end crashes or crash risk is widely recognized as safety-critical state of vehicles under comprehensive conditions. This study
investigated the association between traffic flow uncertainty, drivers’ visual perception, car-following behavior, roadway and
vehicular characteristics, and rear-end crash risk variation and compared the crash risk variation prediction with and without
specific flow-level data. Two datasets comprising 5055 individual vehicles in car-following state were collected through on-road
experiments on two freeways in China. A hierarchical hybrid BN model approach was proposed to capture the association
between drivers’ visual perception, traffic flow uncertainty, and rear-end crash risk variation. Results show that (1) the BN model
with flow-level data outperformed the BN model without flow-level data and could predict 85.3% of the cases of crash risk
decrease, with a false alarm rate of 21.4%; (2) the hierarchical hybrid BN models showed plausible spatial transferability in
predicting crash risk variation; and (3) the incorporation of specific flow-level variables and data greatly benefited the successful
identification of rear-end crash risk variations. The findings of this study suggest that rear-end crash risk is inherently associated
with both individual driving behaviors and traffic flow uncertainty, and appropriate visual perceptual information could

compensate for crash risk and improve safety.

1. Introduction

Rear-end crashes are one of the most killing accident types
on highways. According to a recent accident statistic by
NHTSA [1], rear-end crashes accounted for the largest
proportion (32.3%) of the total number of crashes and
accounted for 45.9% of the crashes with motor vehicle in
2018 in the USA. In China, rear-end crashes were reported to
account for 36.5% of the total crashes and contribute 32.8%
of all the fatalities on freeways in 2017 [2]. Accordingly, an
abundance of efforts has been dedicated to analyzing the
causation factors [3-5], identifying safety-critical events
[6, 7], predicting crash risk propensity [8, 9], and evaluating
traffic safety [10-12]. In these efforts, individual driving
behaviors are without a doubt the unparalleled contributive
factors to be investigated, because an inspection of the

behavioral nature of moving vehicles and drivers is always
worth being the first choice. In addition, speeding [13],
insuflicient headway [14], biased visual perception [14], and
other relevant human factors [15-17] were found to be the
predominant behavioral factors. A variety of nonbehavioral
factors, i.e., external conditions, were also considered to
approximate crash or crash risk, such as roadway feature,
weather (visibility) condition, traffic volume, driver indi-
vidual characteristics, and vehicle feature (see Theofilatos
and Yannis [5]; Mannering et al. [3]; and Papadimitriou et al.
[4] for systematic reviews). In a technical sense, the crashes
or crash risk reasoning and prediction could be deemed as a
task to obtain the conditional probability of the occurrence
of crashes or crash risk under the interactive and complex
impacts of the aforementioned conditions and factors.
Therefore, considerable efforts have resorted to a large
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number of multisource contributive factors and a high
resolution of available datasets. However, most of the pre-
vious studies seemly paid excessive attention to those ex-
ternal factors, and the flow-level information’s association
with and contribution to crash risk were greatly under-
estimated, which exposed a limitation in that it may be hard
to tell if the crashes or crash risk was merely and unbiasedly
due to the drivers’ behavior under certain surrounding
environment, as suggested by Zhu et al. [18]. In addition,
compared with those external conditional factors, little is
actually known about how the traffic flow uncertainty per se
would affect the occurrence and/or the likelihood of crashes
interactively with individual vehicles. As a matter of fact, the
traffic flow uncertainty is supposed to be essentially con-
tributive to crashes or crash risk, since a crash can be
triggered by a short-time disturbance of traffic flow before
the occurrence of the crash ([5, 19] and [20]). Traffic flow
might as well be regarded as a fundamental background
condition from where any crashes or crash risk of individual
vehicles could then possibly be originally and unbiasedly
approximated and understood. Further, previous studies did
not particularly differentiate the traffic flow states in ana-
lyzing rear-end crashes or crash risk. However, rear-end
crashes extensively proved to be closely related to car-fol-
lowing behavior [14, 21-26], and car-following is always
supposed to be a driving state right before the occurrence of
a rear-end crash. Therefore, in this regard, the rear-end
crashes or crash risk might be misunderstood in the absence
of specific car-following behavior and car-following vehicle
flow (car-following platoon).

Following the above rationale, in this study, we attempt
to reason rear-end crash risk and define car-following
behavior by incorporating some specific traffic flow vari-
ables (flow-level data) and to evaluate the performance with
the specific flow-level information. Generally, this was
achieved by extending a prior study, which tentatively
specified crash risk variation with visual perceptual, ve-
hicular, and roadway factors under the presence of a kind of
perceptual markings [14]. In the previous study, the rear-
end crash risk variation was associated with the above
tactors, with drivers’ distance risk perception (DRP) and
speed risk perception (SRP) being a bridge, and was
eventually specified by two extended surrogate safety in-
dicators based on modified time-to-collision (mTTC) and
deceleration rate to avoid collision (DRAC). Continuing
along this framework, in this study, a hierarchical hybrid
Bayesian Network (BN) approach was taken advantage of
to compare the rear-end crash risk analysis with and
without specific flow-level data as input. The BN, as a
probabilistic method, is especially appropriate and ad-
vantageous in this regard, as imbedded information-ag-
gregation mechanism and regression models empower it to
make reasonable statistical inference with multisource data
or information to describe conditional probability distri-
butions for various variables in a system and to explore
inherent causal and complex dependencies among those
variables [27]. With the above framework and hierarchical
hybrid BN approach, two BN models were developed to
quantitatively evaluate the performance with and without
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specific flow-level data. Specifically, the flow-level data used
in this study included the flow rate (FR,,) and heavy vehicle
proportion (ry;) defined in specific 10 min, platoon length
(I P) measured with the number of vehicles involved, and a
flow-level risk indicator of platoon crash risk entropy
(PCRE), as suggested in Ding et al. [22]. Besides, the data
collected on another freeway was utilized to examine the
spatial transferability of the BN models trained with data
sampled from the freeway presented in Ding et al. [14]. The
framework of this study is structured as in Figure 1.

The remainder of the paper is organized as follows.
Following the Introduction, the literature of relevant
knowledge is reviewed in Section 2. Section 3 presents the
experiments, data collection, and variables. Section 4 in-
troduces the hierarchical hybrid BN modeling, followed by
the results and discussion of the BN models in Section 5.
Section 6 concludes the research findings.

2. Literature Review

2.1. Crash Risk Factors. According to the Highway Safety
Manual [28] and to the nature of a surface transportation
system, roadway crashes can be attributed to a combination
of factors: the drivers (human factors), vehicles (vehicular
factors), road infrastructure (roadway factors), and sur-
rounding environment. Specifically, vehicle type and car-
following mode (large/small vehicles following or being
followed) are two main vehicular factors that have been
widely verified to be influential in crashes and crash risk
[14, 22, 29-33]. Similarly, the roadway conditions, such as
road type/grade, road geometric alignment, and road cross-
section features, were extensively considered to account for
crashes and crash risk (see Theofilatos and Yannis [5];
Mannering et al. [3]; and Papadimitriou et al. [4] for sys-
tematic reviews). Among these factors, the horizontal curves
(radius) and their relevant stopping sight distance (SSD)
were found to be two of the key alignment factors related to
crashes [34-36]. This is because the curves, as a specific
component of the roadway, are more likely to be a natural
hazard to drivers due to the changes in driving expectancy
and vehicle handling, which was also actually evidenced by
the persistent large percentage of accidents on curves [1, 2].
Besides, several environmental factors are also considered in
crash risk analysis, e.g., the weather (visibility) condition
[5, 37-39].

Unlike those external conditions, the human factors are
believed to be the most influential yet complex factors in the
occurrence of crashes. Usually, the sociodemographic
characteristics of drivers, such as age, gender, driving ex-
perience, and driving style, are investigated to reveal their
association with the occurrence and/or likelihood of crashes
in a macroscopic manner [40, 41]. Besides, there is also wide
agreement that the microscopic behavioral aspects of drivers
including cognitive psychological behavior
[14, 21, 24, 30, 42-44] and driving behaviors [26] are critical
influential human factors in crashes. Among them, drivers’
cognitive behavior (especially visual perception) is the
fundamental one because the other microscopic behaviors
without exception originate from the primitive cognition
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FIGURE 1: Framework of the study, wherein “G50” and “G56” stand
for data collected from Freeways G50 and G56, respectively.

and perception of the environment [44]. In particular, in-
adequate and/or biased cognitive perception and judgement
were believed to be the critical human factors leading to road
crashes [17], as the vast majority of the rear-end crashes can
occur if the following driver errs in judging closing speed
and headway to the leading vehicle. Particularly, since more
than 90% of the information that drivers obtain and use is
visual [45], drivers’ visual perception matters greatly to
drivers’ choice of speed and distance in car-following and
eventually impacts the risk of rear-end crashes. Accordingly,
various forms of perceptual markings were developed, such
as longitudinal line markings [46-49], transverse line
markings [50-59], and converging chevron markings
[60, 61], and all showed effectiveness in terms of speed
reduction and/or usefulness as a method of crash
prevention.

Actually, the influence of visual perception on driving
behaviors and collision avoidance was originally noticed by
some cognitive psychologists, who verified in virtual-reality
scenes that the existence of certain visual information (which
was termed as “visual cues”) on ground surface could lead to
drivers’ overestimation of speed [42, 44, 48, 62, 63], un-
derestimation of distance [44, 64-70], and untimely and
inadequate brake [42, 43]. Inspired by those cognitive
psychologists, Ding et al. [14, 21, 24, 71, 72] conducted a
series of studies focusing on associating, evaluating, and
explaining the effects and mechanism of drivers’ speed
perception and distance perception on car-following be-
haviors and crash risk, by introducing and testing several
specially designed perceptual markings with on-road ex-
periments and observations. In addition, the inherent
connection between speed/distance perception, driving
behaviors, and crash risk was comprehensively accounted
for by two latent variables, i.e., “speed risk perception (SRP)”
and “distance risk perception (DRP),” which differentiated
the risk perception originating from variations in speed and
distance [14].

2.2. Traffic Flow and Crash Risk. Crash risk or a crash is not
inevitably merely a microscopic behavioral outcome; it is
also subject to traffic flow uncertainty and certain flow-level
factors, wherein traffic states were widely believed to impact

the occurrence of crashes and were extensively used to
translate traffic flow into safety performance. Golob et al.
[73] investigated the level of safety during breakdown from
free flow to congested operations or recovery back to free
flow, and differences in traffic conditions across lanes. They
suggested that the propensity for accidents was explicitly
related to traffic conditions. Xu et al. [74, 75] identified
different traffic states using occupancy and revealed that the
significant traffic variables contributing to crash risk in
various traffic states were quite different, in particular the
traffic state in which free flow in the upstream and congested
flow in the downstream had the greatest impact on crash
occurrences. Similarly, Sun and Sun [8] and Zhao et al. [76]
indicated that the crash involvement rates and crash risk
ratios would greatly vary with different combinations of
upstream and downstream traffic states. Jetto et al. [77]
emphasized that rear-end crashes were more likely to occur
in the congested traffic state. Further, traffic states were
largely characterized by volume, density/occupancy, flow
rate, and speed, for the purpose of more precisely capturing
their association with crash risk (see Theofilatos and Yannis
[5] for a comprehensive review). In particular, traffic volume
and traffic composition were found to have a positive in-
fluence on crash risk, specially in low-speed congestion
segments, and to have a significantly negative impact in
high-speed traffic segments [12, 78, 79]. Traffic density/oc-
cupancy and traffic speed conditions were usually incor-
porated in volume as significant individual variables and
covariates to account for the odds of crash occurrence and
crash risk [8, 80-82]. Besides, the differences of volume,
occupancy, and speed across lanes were also specifically
considered to account for crashes and for developing various
crash prediction models [75]. In addition, the flow rate and
the standard deviation of flow rate were used alternatively as
candidate input variables in crash risk modeling
[9, 22, 74, 75].

The above efforts have successfully associated crashes
and crash risk with macroscopic and statistical traffic flow
characteristics aggregated in a relatively large range of time
and/or distance. However, this kind of macroscopic traffic
flow characteristics could still be limited to precisely
portraying the specific flow states and effectively capturing
the real-time rear-end crashes or crash risk, because a crash
or a high-risk state of a vehicle always occurs under certain
specific conditions that are supposed to emerge momen-
tarily. Additionally, as explained previously, rear-end
crashes are greatly associated with the car-following states
of vehicles, suggesting that a specific focus on car-following
flows might be more effective in predicting rear-end crash
risk. Therefore, a follow-up critical issue is to identify
specific relatively microscopic flow-level variables in car-
following that are supposed to be more informative as crash
precursors to account for rear-end crashes and crash risk.
Actually, this issue might be well understood and addressed
by the fundamental relationship between traffic flow un-
certainty and car-following behavior. As suggested by the
well-known stability theory of car-following models, un-
stable traffic flow can propagate through a platoon and
subsequently expose vehicles to higher crash risks [83]. It



was also widely believed that a crash can be triggered by a
short-time disturbance of traffic flow before the crash
occurs [5, 19, 20]. In particular, the traffic flow of 5-10 min
prior to crashes was widely recognized in the past decades
to have the most significant association with crashes
[8, 9, 12, 37, 74, 80, 82, 84, 85]. Hence, specific crash
precursors of traffic flow uncertainty were encouraged to be
specified in 5-10 min. Given this, we accordingly proposed
the 10 min flow rate (FR,,) and heavy vehicle rate (heavy
vehicle percentage, r;;) to attempt to specify the traffic flow
uncertainty for accounting for rear-end crash risk varia-
tions [22].

Moreover, some particular characteristics of the car-
following states of vehicles are also better to be specified to
be associated with rear-end crash risk. In this regard, the
length (vehicles involved) of the car-following platoon could
be one of the most representative characteristics and in-
fluential variables in rear-end crash risk. Seraj et al. [86]
discovered that a smaller platoon length of vehicles would
lead to a greater safety improvement in car-following and
that the range of headway increase was subjective to the
maximum platoon length. In addition, a recent study by
Hyun et al. [78] reported that more vehicles involved in a
platoon would increase crash risk and crash severity and that
the risk could be even higher with the presence of trucks.
Similar effect of platoon length on crash risk was revealed by
Ding et al. [22], who also developed a novel flow-level in-
dicator to characterize the platoon risk state based on the
time headway distribution of the platooning vehicles, i.e.,
platoon crash risk entropy (PCRE).

3. Experiment and Data Collection

Generally, most of the experimental sites, designs, and
processes of data collection and data treatment had already
been demonstrated in previous studies [14, 71, 72], which
will be briefly mentioned here. Therefore, the variable se-
lection and description are of primary focus to be explained
in this study.

3.1. Experimental Site and Design. In this study, for the
purpose of validating the BN models and testing the model
transferability based on data collected from another freeway,
similar one straight and three curved segments of Hang-
zhou-Ruili Freeway (G56) at Xianning, Hubei, China, were
selected as experimental sites. An overview of the straight
and curved segments of G50 and G56 is profiled in Table 1
and illustrated in Figure 2. In the middle part of these
segments, a 300 m slow lane was installed with the perceptual
markings. It is important to mention here that there was no
tunnel, entrance/exit, or any signs within 300 m area that
could possibly impact driver behaviors, nor any exposed
surveillance device for violation capture. The design of the
perceptual markings, as introduced in Ding et al. [14, 71, 72],
was also followed in the present study. That is, three forms of
perceptual markings were adopted, which were specified by
the units of the perceptual markings, i.e, A =2m, A =4m,
and A = 8 m (see Figure 2).
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3.2. Data Collection. The raw speed, distance headway, time
headway, vehicle type, etc. of individual vehicles were col-
lected on two ways (opposite directions) of each curved
segment at the same time, to minimize the possible impact of
turning direction of the curve. For one direction of a curved
segment, three NC200 traffic analyzers were sequentially
set along the flow direction in the center of the slow lane to
obtain sectional driving behaviors data as mentioned above
(see Figure 3). For the straight segments, only one way was
installed with the perceptual markings for observations as
appropriate. To obtain the driving behaviors data as correct
and accurate as possible, six speed guns were used for
sampling vehicle speeds to verify the data obtained by the
traffic analyzers and for possible reobservations as needed
(see Figure 3). Note that the cameras were mounted outside
the crash barrier on the hard shoulder and were sheltered
with local shrubs being invisible to the drivers. All the data
were collected during 8:30 a.m.-11:30 a.m. and/or 14:00
p-m.-17:00 p.m. in no precipitation days, and at least a one-
day observation was conducted for every single test to
sample adequate vehicles.

3.3. Data Treatment

3.3.1. Data Filtering Process. In this paper, we used the same
methods as those in Ding et al. [14] to filter out free-flow and
lane-change vehicles. The free-flow vehicles were identified
at each observation section by comparing its stopping time ¢,
and time headway h. That is, if t;<h occurred at any ob-
servation sections, the vehicle was regarded as traveling
freely and to be excluded. In this case, the stopping time of a
vehicle can be calculated by t, = v/a, where v is the in-
stantaneous speed of a vehicle, m/s, and a is the deceleration
(a = 2.5m/s* was suggested by AASHTO [87]). Besides, the
vehicles that negotiated a lane change observed between any
two observation sections were also filtered out from the final
data sample, by reviewing the video clips of the six cameras
frame by frame. After the above data filtering process, the
effective data was obtained as descriptively summarized in
Table 2.

3.3.2. Variables Description

(1) Traffic Flow. As explained previously, the specific 10 min
flow rate (FR,,) and heavy vehicle proportion (ry), platoon
length (I,), and platoon crash risk entropy (PCRE), intro-
duced in a recent study [22], were adopted as crash pre-
cursors to specify the traffic flow uncertainty and car-
following states. The specific 10 min flow rate was delivered
as follows:

FRyp = g0 - 6, (1)

where FR, is peak 10 min flow rate of the slow lane, pcu/h/
In, and g, is the maximum volume of a continuous time
interval of 10 min of the slow lane during an observation,
pcu. According to the traffic flow data collected at the eight
segments of the two freeways, FR,, generally ranged from
500 pcu/h/In to 1800 pcu/h/In, and it was discretized into
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TABLE 1: Segments profiles.

Freeway Segment KP start (km) KP end (km) Radius (m) Length (m) Speed limit (km/h) No. of lanes
Straight 1220.2 1221.1 N/A 900 80 4

G50 Curve 1 1251.8 1253.6 1800 477.3 80 4
Curve 2 1238.2 1239.3 1200 349.6 80 4
Curve 3 1227.3 1228.2 800 404.7 80 4
Straight 644.0 644.5 N/A 500 100 4

G56 Curve 1 626.5 627.6 1680 490.1 100 4
Curve 2 634.2 635.1 1150 438.4 100 4
Curve 3 630.3 631.1 800 479.3 100 4

Note. KP: kilo-post, which indicates the distance measured from the start of the freeway; “radius” and “length” of the curves are the radius and length of the
circular part of them; “no. of lanes” is the number of lanes of two ways of the segments in addition to the shoulders.

three intervals: (500 pcu/h/In, 1100 pcu/h/In], (1100 pcu/h/
In, 1500 pcu/h/In], and (1500 pcu/h/In, 1800 pcu/h/In),
coded “S (small),” “M (medium),” and “L (large),” respec-
tively. The code initials are used consistently hereinafter for
the rest of the variables.

Heavy vehicle rate was calculated as follows:

Th=—"" (2)

where r), is the heavy vehicle rate of the slow lane and g, is
the number of heavy vehicles in the specific 10 min, veh.
According to the observations, r, ranged from 35.3% to
65.6%, and it was discretized into (35.3%, 45%], (45%, 60%],
and (60%, 65.6%) and coded “S,” “M,” and “L,” respectively.

The platoon length (I,) was represented by the number
of vehicles involved in the platoon and was categorized into
two vehicles (“TWQO?”), three vehicles (“THREE”), and four
or more vehicles (“MORE”).

Additionally, the potential crash risk status of the car-
following platoon was specified by the indicators of platoon
crash risk entropy (PCRE) as introduced by Ding et al. [22].
The PCRE was derived from the distribution of time
headways and was given as follows.

ny,

pi= N
; (3)
PCRE, (x) = - ) piln pf,
i=1

where p; is the probability of the appearance of time
headway (h;) of vehicle i among the entire values of time
headways of all vehicles at section x; n,, is the number of
appearances of the value of time headway £, in the total data
sample of time headways; N is the total data sample of time
headways in all conditions at an observation section, and
N = 3432 (G50) or N = 1623 (G56); PCRE, (x) is the pla-
toon crash risk entropy of platoon k at section x; and n is the
number of vehicles in platoon k, and n = lp. In practice, the
probability of the time headway (p;) was approximated by
the frequency of each data point of time headway (h;) of
vehicle 7 as it appeared in the total data sample. According to
the distributions of time headways, the PCRE, (x) largely
ranged from 0.04 to 0.46 in the two-vehicle platoon situa-
tions, from 0.07 to 0.68 in the three-vehicle platoon situa-
tions, and from 0.13 to 0.90 when there were four or more

vehicles. Accordingly, the PCRE, (x) was discretized into
(0.04, 0.46], (0.46, 0.13], and (0.13, 0.90] and labeled as “S,”
“M,” and “L,” respectively.

(2) Road Condition. As demonstrated in Table 2, there were
some differences in the radius of the curves on Freeways G50
and G56. Nevertheless, we believe that these slight differ-
ences could be negligible here, so the radii of Curve 2 and
Curve 3 of Freeway G56 were treated as 1800 m and 1200 m
anyway. Then, the road conditions could be categorized as
“R =800,” “R = 1200,” and “R = 1800” and coded “S,” “M,”
and “L,” respectively. In addition, the straight segment was
labeled as “STR” for short.

(3) Vehicle. The types of the following (FVT) and leading
(LVT) vehicles were particularly considered, and they can be
differentiated into small, medium, and large ones by NC200
traffic analyzers by detecting vehicle length and also can be
additionally identified by the number of their axles. For the
sake of simplification and to clearly distinguish the type
(size) of vehicles to expect an easier observation of the effect
of vehicle type, only the small and large vehicles were
considered. To be specific, the small vehicles were two-axle
vehicles including passenger cars, small trucks, and vans; the
large vehicles were the ones with three axles and above,
including large trucks and buses. Similarly, the small vehicles
and large vehicles were assigned the labels “S” and “L,”
respectively.

(4) Individual Driver Behavior. Variables concerning indi-
vidual driving behaviors include speed, distance, and
headway, by which the motion state of a vehicle could be
adequately characterized. According to the data collection
methods demonstrated above, these individual driving be-
haviors were all instantaneously observed at the three ob-
servation sections. That is, as vehicle i passed through
observation section #k at a speed of vf, it would be observed
with a distance headway d¥ and time headway h¥ with regard
to its leading vehicle, k = 1,2,3. Based on the individual
vehicle data, we categorized vehicle speeds into (—oo,
22.22m/s], (22.22m/s, 27.78 m/s], and (27.78 m/s, +00);
distance headways into (-co, 80m], (80m, 100m], and
(100 m, +00); and time headways into (-oo0, 3.0s], (3.0,
4.5s], and (4.5s, +00); and they were coded “S,” “M,” and
“L,” respectively.
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FIGURE 2: An overview of the experimental segments of G56 and the real scenes of the perceptual markings on roads.
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F1GuRre 3: Layout of traffic analyzers and cameras. Here, the roadway was intentionally depicted as straight for a better illustration. The figure
was not proportionally illustrated concerning the dimensions of various elements and was edited and elaborated from Ding et al. [14].

TaBLE 2: The effective sample sizes.

Freeway Segment Baseline A=2m A=4m A=8m
Straight 289 296 301 307

G50 Curve 1 158 203 187 212
Curve 2 143 214 198 177
Curve 3 151 182 205 209
Straight 105 101 93 107

G56 Curve 1 103 98 94 105
Curve 2 111 101 96 106

Curve 3 97 102 101 103
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In addition to the common Newtonian motion parameters
of vehicles, the stopping sight distance (SSD) was also specifically
taken into consideration to specify driving behaviors on curves.
According to AASHTO [87], SSD can be calculated as follows:

k
T D R S N (4)

- Zg((af/g) + G) '

where SSDF is the instantaneous stopping sight distance of
vehicle i when it passes through observation section #k, m;
g = 9.8m/s% a is the deceleration rate, m/s* G is the average
grade; t, is drivers’ reaction time, s; and others mean the
same as above. Here, based on the statistics, the SSD was
categorized into (—oco, 80m], (80m, 110m], and (110 m,
+00) for “S,” “M,” and “L,” respectively.

(5) Visual Perception. As introduced before, the specific vari-
ables with regard to visual perception that we intentionally
manipulated were the temporal frequency f, and spatial fre-
quency f derived from the line markings. The f, of vehicle i
equals its instantaneous speed v; divided by A. The f; equals the
reciprocal of A. As three forms of line markings were adopted
for the on-road experiments, that is, A =2m, A =4m, and
A =8m, f, could be objectively grouped into (3Hz, 5Hz],
(5Hz, 8 Hz], and (8 Hz, 14 Hz]; f, equals 0.5, 0.25, and 0.125;
and they were correspondingly labeled as “S,” “M,” and “L,”
respectively. Besides, “f, = NULL” and “f, = NULL” were
assigned to the condition without line markings.

(6) Crash Risk Variation. To measure crash risk variations of
individual vehicles, the rate of change of DRAC (rprac) we
proposed previously [14] was employed. It can be calculated as
follows:

[v;(t) v, (t)]z
xi (8) = x; () - L)

V; (t)> Vioq (1),
DRAC; (t) =

0, v; (t) <vi_y (£),

DRAGC; (t) - DRAG; (t + At)
DRAGC; (t) ’

prAC =

(5)

where DRAC; (1), x;(t), and v, (t) are the DRAC, position,
and velocity of the following vehicle (i) at timestamp £; L;_; is
the length of the leading vehicle (i — 1); and rpg,c is the rate
of change of DRAC within a time of At. Therefore, the crash
risk variation (CRV) was categorized into crash risk decrease
(rprac >0) and crash risk increase (rppac <0), and they
were labeled as “DECR” and “INCR,” respectively.

(7) Risk Perception. In addition to the observed variables
explained above, two latent variables were incorporated to
associate the observed variables and crash risk variations,
that is, speed risk perception (SRP) and distance risk per-
ception (DRP) that we put forward previously [14]. Spe-
cifically, SRP and DRP were categorized into low and high
and labeled as “LOW?” and “HIGH,” respectively. A detailed
profile of the above variables is summarized in Table 3.

4. Methodology

4.1. Hierarchical Hybrid BN Structure. To investigate the
effects of multisource and multidimensional factors on rear-
end crash risk in car-following under the influence of per-
ceptual line markings, a hierarchical hybrid BN structure was
developed (see Figure 4). Here, the hierarchy of the structure
was characterized by two aspects. On the one hand, the nodes
(variables) incorporated were naturally categorized into
roadway, traffic flow, driving behaviors, and visual perception
according to the variable’s attributes as shown in Table 3. On
the other hand, the variables were structured with four hi-
erarchies according to their relationship with the final crash
risk as follows: (1) external conditions, including the variables
characterizing traffic flow states and other static (temporally
invariant) observed variables; (2) behavioral factors, including
all the driving behaviors related to observed variables; (3) risk
perception, i.e., the latent variables of SRP and DRP; and (4)
crash risk variation, that is, the eventual outcome of variations
in crash risk measured by the surrogate indicator of rpp,c.
Then, based on existing knowledge, the car-following crash
risk directly originated from drivers’ speed risk perception
(SRP), distance risk perception (DRP), some relevant driving
behavior indicators (v, d, and h), and temporal frequency
(f,), and the SRP and DRP were essentially associated with
the driving behaviors (v, d, h, a, and SSD); then, the driving
behaviors, imbedded in the second layer, were specified by the
external conditions of R, FR g, Ip, 7, LVT, FVT, and f . Thus,
eventually, the external conditions and the behavioral factors
were set as the inputs, and the crash risk variation was set as
the output. According to the above analysis, a hierarchical
hybrid BN was theoretically structured as in Figure 4.

4.2. Model Training and Evaluation. For classification
models, a training dataset and testing dataset are supposed to
be assigned randomly from a sample dataset for the training
and evaluation (testing) of the models. Correspondingly, in
general, the data collected on Freeway G50 was assigned to
the training of the structure and parameters of the BN
models and the test of their performance as well, and the data
collected on Freeway G56 was used for the evaluation and
application of the BN models. To be specific, the evaluation
process of the BN models was actually twofold: (1) the BN
models were first trained (learned) and evaluated (tested) by
the data collected on Freeway G50, and (2) the BN models
were then evaluated (tested) using the data collected on
Freeway G56 to verify their applicability to a dataset different
from the one they were trained by. For the first evaluation, to
avoid local optimal estimation, we chose a method that was
similar to the classic and powerful “K-fold cross-validation”
to train and evaluate the BN models. That is, the original
sample dataset from Freeway G50 was first divided into ten
equal-sized subdatasets with roughly similar cases of crash
risk decrease and increase; then, the BN models were trained
based on the first nine subdatasets and tested on the tenth
subdataset. Note that the sizes of the first nine subdatasets
were set as 344, and the remaining 336 records were assigned
to the tenth subdataset. In addition, the BN models’
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TaBLE 3: Summary of variables.
. e . oo Crash risk variation (CRV)
Variable Description Discretization
DECR % INCR % Total
S: (—00, 1100] 1043 94.7 59 53 1102
FR,, 10 min flow rate (pcu/h/In) M: (1100, 1500] 472 29.7 770 48.5 1587
L: (1500, +00) 2101 88.8 265 11.2 2366
S: (—00, 45%] 676 47.4 749 52.6 1425
h Heavy vehicle rate M: (45%, 60%] 1367 73.8 485 26.2 1852
L: (60%, +00) 1705 95.9 73 4.1 1778
Two: 2 525 74.4 26 3.7 705
L Platoon length (vehicle) Three: 3 1595 73.8 96 4.4 2160
More: [4, +00) 812 37.1 901 41.2 2190
S: (0.04, 0.46] 251 71.2 24 6.8 353
PCRE Platoon crash risk entropy M: (0.46, 0.13] 1827 72.7 140 5.6 2513
L: (0.13, 0.90] 854 39.0 859 39.2 2190
S: R =800 940 85.3 162 14.7 1102
R Radius (m) M: R = 1200 794 74.0 279 26.0 1073
L: R = 1800 779 69.7 338 30.3 1117
STR: straight 1234 70.0 529 30.0 1763
. . S: small vehicle 2087 71.7 823 28.3 2910
FVT Following vehicle type L: large vehicle 1661 77.4 485 226 2145
. . S: small vehicle 1749 68.8 794 31.2 2542
VT Leading vehicle type L: large vehicle 1998 79.5 514 20.5 2513
S: (-00, 22.22] 1543 68.6 705 31.4 2248
v Speed (m/s) M: (22.22, 27.78] 1705 81.1 397 18.9 2101
L: (27.78, +00) 500 70.8 206 29.2 705
S: (-0, 80] 2116 72.4 808 27.6 2924
d Distance (m) M: (80, 100] 1087 74.0 382 26.0 1469
L: (100, +00) 544 82.2 118 17.8 661
S: (-00, 3.0] 2160 71.0 882 29.0 3042
h Headway (s) M: (3.0, 4.5] 867 72.8 323 27.2 1190
L: (4.5, +00) 720 87.5 103 12.5 823
S: (—o0, 80] 2072 78.3 573 21.7 2645
SSD Stopping sight distance (m) M: (80, 110] 1102 64.1 617 35.9 1719
L: (110, +00) 573 83.0 118 17.0 691
Null: 0 691 63.5 397 36.5 1087
S: (3, 5] 970 62.9 573 371 1543
fi Temporal frequency (Hz) M: (5, 8] 1646 84.2 309 15.8 1954
L: (8, 14] 426 90.6 44 9.4 470
Null: 0 691 63.5 397 36.5 1087
f Spatial frequenc S:0.125 1014 75.8 323 24.2 1337
: P uency M: 0.25 970 733 353 267 1323
L: 0.5 1073 82.0 235 18.0 1308

performance was evaluated within both the first nine sub-
datasets and the tenth subdataset using the method of “leave
one out.” Eventually, the mean value of the evaluation
metrics based on the first nine subdatasets was used to
represent the model training performance. The second
evaluation based on observations on Freeway G56 could be
also regarded as an evaluation of the spatial transferability of
the BN models when they were applied to a heterogeneous
source of holdout dataset collected at another location.

To evaluate the classification tests, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) are
commonly used for basic statistical measurements. TP
measures the number of actual positives correctly identified as
positives, e.g., the number of cases with crash risk decrease
(rprac > 0) correctly identified as “DECR.” TN measures the

number of negatives correctly identified as negatives, e.g., the
number of cases with crash risk increase (rpgac < 0) correctly
identified as “INCR.” FP defines the number of the estimated
cases that are actually negative but incorrectly identified as
positive, e.g., the number of cases with crash risk increase
(rprac <0) incorrectly identified as “DECR.” FN defines the
number of the estimated cases that are positive in fact but
incorrectly identified as negative, e.g., the number of cases
with crash risk decrease (rprac >0) incorrectly identified as
“INCR.” Based on the above basic measurements and the
classification confusion matrix, several quantitative metrics
could be developed to comprehensively and better evaluate
the classification performance, i.e., precision, recall, sensi-
tivity, specificity, accuracy, F-measure, and G-means. The
precision is the fraction of correct classification of
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Behavioral factors

Risk perception

Crash risk variation

FIGURE 4: The hierarchical hybrid BN structure, wherein the base layer was the external conditions of the roadway and traffic flow (ellipses in
blue), and the risk perception layer contains two latent variables (ellipses in light orange) bridging the explanatory variables and the outcome

of crash risk variations (ellipse in dark orange).

corresponding crash risk out of all events predicted to be
positive (6), and the recall, also named as true positive rate, is
the fraction of correct classification of corresponding crash
risk out of all true events (7); they are often adopted to
evaluate the effective detection ability for one particular class.
The sensitivity is the crash risk classification accuracy, and the
specificity is the non-crash risk classification accuracy, as
written in (8) and (9), respectively. The FP rate, also known as
false alarm rate, is the proportion of cases of INCR incorrectly
classified as DECR in all actual INCR cases, as given in (10).
Accuracy is the fraction of correct classified crash risk out of
all predicted events, as formulated in (11). The G-means is the
geometric mean of the sensitivity and specificity, and F-
measure is the harmonic mean of precision and recall, which
represents the ability to detect crash risk of the model, as
shown in (12) and (13), respectively.

Precision = %, (6)
Recall = TI;EL—PFN, (7)
Sensitivity = "FI;EL—PFI\I’ (8)
Specificity = %, )
FP Rate = %, (10)
Aceuracy = ;i:?; T EN ()

G — means = \/ sensitivity * specificity, (12)
F — measure = 2 * precision * recall (13)

precision + recall

As a harmonic mean of precision and recall, F-measure
averages the proportion of cases correctly identified as

positive in actual positive cases and that in predicted positive
cases. It can serve as an effective performance measure for
the BN models and is particularly informative in finding the
conditions and situations accounting for the crash risk
variation in car-following. Besides, the mean value of the
above metrics based on the first nine parts of the dataset
collected on Freeway G50 was used to represent the model
performance.

5. Results and Discussion

5.1. BN Model Estimation and Validation. In this study, the
open software GeNle Academic (version 3.0.5905.0) was
employed to build the BN structure and estimate the pa-
rameters. The parameters of the BN were learned with the
EM method as explained previously, with a random seed of
zero to especially facilitate the parameter learning with the
presence of latent variables (i.e., SRP, DRP). Figure 5
presents the BN model with flow-level factors and with
learned parameters. Based on the 3432 vehicles in the
dataset collected on the Freeway G50, which was divided
into ten parts for training and testing as explained above,
two BN models were independently developed and eval-
uated with and without the specific flow-level variables and
data. Table 4 presents the BN classification confusion
matrix with aggregated results of the ten subdatasets. The
results of the BN model estimation and validation based on
the confusion matrix were shown in Table 5, wherein the
results of the testing subdataset were the focus of the
analysis.

As can be seen in Table 5, the two BN models built with
and without the specific flow-level data were both reasonably
acceptable with a classification accuracy of around 80% in
terms of predicting crash risk variations. Still, the estimation
results varied in the BN models built with and without the
specific flow-level data. For the model without flow-level
data, the estimation accuracy was 80.8% on average of the
nine training subdatasets, and the accuracy decreased to
79.8% with a 0.4% increase in false alarm rate (FP rate) with
the testing subdataset. The results also indicated that the BN
model without flow-level data was capable of identifying
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82.2% and 81.0% of the cases of “DECR” (rprac > 0) for the
training and testing subdatasets, respectively. For the BN
model with flow-level data, the estimation accuracies were
83.2% and 83.9% for the training and testing subdatasets,
respectively. It can be discovered that the accuracy increased
0.7% and the false alarm rate decreased 1.9% for the testing
subdataset. Similarly, the BN model with flow-level data
showed its capability of classifying 84.8% and 85.3% of the
cases of “DECR” for the training and testing subdatasets,
respectively. More importantly, the results also demon-
strated that the BN model with specific flow-level data
showed better performance in predicting crash risk varia-
tions than the one without flow-level data on both the ac-
curacy and false alarm rate. The BN model with flow-level
data can predict 2.6% more cases of “DECR” than the one
without flow-level data, with a 1.3% reduction in false alarm
rate for the training subdatasets. In addition, even greater
increase (4.3%) in “DECR” prediction and reduction (3.6%)
in false alarm rate were found for the testing subdataset.
These significant differences were also evidenced by F-
measure, which was maximal (0.894) for the BN model with
flow-level data of the testing subdataset, indicating a very
acceptable and better model prediction performance as
compared with its counterpart without flow-level data.

The proposed BN models, especially the one with flow-
level data, also outperformed other similar classification
studies using BN concerning crash and/or crash severity. For
example, De Ona et al. [88] showed a similar range of 61% to
62%, and Chen et al. [89] presented estimation accuracies of
66.84% and 65.76%. Note that these studies did not include
traffic flow variables in their BN models. Comparatively, a
relatively higher estimation accuracy of 76.4% was achieved
by considering the relative macroscopic traffic flow states
and with a reasonable false alarm rate of 23.7% as revealed by
Sun and Sun [8]. Therefore, the present study could be an
even better illustration of the advantage of incorporating
more specific flow-level variables and data to account for
crash risk variations. The impressive performance of the BN
model with flow-level data could be mainly owing to three
reasons as follows: (1) in this study, we focused on a strict
car-following situation, in which the drivers’ behaviors
would be much more steady than in other situations where
they might speed up, change lane, or brake abruptly fre-
quently; (2) we focused on the crash risk and its variations
instead of crashes per se as the aforementioned studies did,
and this could better facilitate an identification of the real-
time safety-critical events [14, 23] and the investigation of
the relationship between crash risk (variation) and those
multisource contributive factors; and (3) the particular in-
corporation of the specific 10 min flow rate (FR,,), platoon
length (lp), heavy vehicle rate (ry), and platoon crash risk
entropy (PCRE) was supposed to better and directly specify
the short-term traffic flow uncertainty and car-following
situations that might lead to rear-end crash risk fluctuations
[22]. Furthermore, the BN model proposed in this study was
able to hierarchically associate various contributing factors
and to capture the inherent connections between variables in
different layers, which accordingly helped to achieve a better
crash risk prediction.

Discrete Dynamics in Nature and Society

5.2. Model Transferability. The transferability is always a
fundamental aspect of the model performance showing its
suitability and application with different datasets. Actually,
as presented in Table 5, the variances between the sensitivity,
accuracy, and F-measure for the training and testing sub-
datasets were all around 1%, indicating a well acceptable
transferability of the BN in explaining and modeling the
testing subdataset of G50. Besides, the spatial transferability
of the BN models was also evaluated, to examine the pre-
diction ability of the built BN model with a heterogeneous
source of dataset collected on another road. To be specific, as
mentioned previously, the data collected on Freeway G56
were used to evaluate the spatial transferability of the BN
models built based on the data from G50. With 1623 vehicle
records as a testing dataset, the BN models with and without
flow-level data were both examined and compared for spatial
transferability in terms of crash risk variation prediction
performance. As demonstrated in Table 6, the BN models
were largely able to correctly predict the crash risk variations
with equivalent false alarm rates. The best performance was
also seen in the BN model with flow-level data, which
predicted as high as 82.6% of the cases of “DECR” with an
even lower false alarm rate of 21.3% and with a yet sustained
high level of F-measure of 0.868. Similarly, the spatial
transferability in the present study was also found to out-
perform the previous ones without considering such specific
flow-level variables, which mainly reported around 60%
crash prediction accuracy for their model’s spatial trans-
ferability [9, 85], and also outperform the one by Sun and
Sun [8], who reported 67% crash prediction accuracy and
20.8% false alarm rate of spatial transferability with con-
sideration of traffic flow states. Moreover, it is worth noting
that the estimation accuracies of the two BN models both
reduced as compared with their counterparts based on the
testing subdataset of G50. The sensitivity, accuracy, and F-
measure decreased by 1.8%, 1.6%, and 0.024 for the BN
model without flow data and reduced by 2.7%, 2.3%, and
0.026 for the BN model with flow data. Nevertheless, these
decreases were all relatively marginal to the decreases of
9.4% and 0.017 for the best-fitted model of Sun and Sun’s [8]
in predicting crashes.

Moreover, the good transferability of the BN model with
flow-level data might as well again underscore the advantage
and importance of introducing specific flow-level variables
and data in crash risk modeling. The reason, in addition to
the previously mentioned ones, could be that the car-fol-
lowing behaviors and rear-end crash risk variations within
the car-following platoon would be more likely to be
equivalent across roads, because the crash risk variations in
car-following states would be overwhelmingly directly
specified by the vehicles’ movement and the platoon they are
involved in. To a certain extent, the rear-end crash risk
variations derived from vehicles’ movement and platoon
states are supposed to be relatively independent of many
external conditions, such as weather condition, light con-
dition, and day of crash, which were prevalent factors in-
vestigated previously [3-5]. Besides, compared to these
external conditions, the specific flow-level variables could
serve as a more direct and natural rear-end crash risk
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FiGUure 5: The BN model with flow-level variables for measuring rear-end crash risk variation.

TABLE 4: BN classification confusion matrix for the dataset of G50.

Predicted crash risk decrease (DECR)

Predicted crash risk increase (INCR)

Observed crash risk decrease (DECR)
Observed crash risk increase (INCR)

TP: 2242 (2318)
FP: 173 (162)

FN: 489 (413)
TN: 528 (539)

Note. The numbers of TP, TN, FP, and FN were aggregated results of the model training and testing with the ten subdatasets of data collected on Freeway G50.
The numbers in the parentheses indicate the performance metrics of the BN model with traffic flow data, and the numbers outside are those of the BN model

without traffic flow data.

TaBLE 5: Estimation performance of BN models.

Model Dataset Precision Sensitivity FP rate Accuracy G-means F-measure
. Training 0.928 0.822 0.246 0.808 0.787 0.872
BN without flow data Testing 0.927 0.810 0.250 0.798 0.779 0.865
. Training 0.934 0.848 0.233 0.832 0.807 0.889
BN with flow data Testing 0.938 0.853 0.214 0.839 0.819 0.894

Note. The performance metrics of “training” were averaged on the first nine subdatasets of data collected on Freeway G50.

precursor, as they inherently specify the crash risk dynamics
along with the oscillation of vehicle movement and the
fluctuations of platoon states.

5.3. Probability Inference. As validated for its estimation
performance, the quantitative interdependency among
variables and their contributions to crash risk variation
could be obtained by the probability inference powered by
the BN models. Based on the BN structure, the particular
impact of a variable on the crash risk variations could be
independently and quantitatively derived by the probabili-
ties of “DECR” while setting a certain class of the variable as
a 100% evidence. Figure 6 shows the abovementioned in-
dependent probability inference results for the observed

variables leading to crash risk decrease (“DECR”, i.e.,
rprac > 0) in the structure of BN models with and without
flow-level data within the testing dataset of G56. In the
figure, the blue dashed line with square markers stands for
the probability inference results of the BN model without
traffic flow data; the orange solid line with circle markers
indicates the probability inference results of the BN model
with traffic flow data; and the dash-dotted line in black
represents the original frequency of cases of crash risk de-
crease (“DECR”) extracted directly from the testing dataset
of G56 (apparently the original frequency is irrelevant to the
variables appearing in the figure). Besides, the suffixes “S”
and “L” indicate the small (“S”) and large (“L”) values of the
variables, which are in accordance with the variable settings
shown in Table 3. For instance, “R_S” means the variable R
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TaBLE 6: Transferability performance of BN models.

Model Precision Sensitivity FP rate Accuracy G-means F-measure

BN without flow data 0.898 0.792 0.245 0.782 0.773 0.841

BN with flow data 0.913 0.826 0.213 0.816 0.807 0.868

was set as small (“S”) for 100% evidence in inferring the
probability of “DECR.” The detailed analyses and inter-
pretation of the probability inferences of various variables
were hierarchically demonstrated in terms of external
conditions and behavioral factors, respectively, as follows.

5.3.1. External Conditions. The external conditions actually
correspond to the base layer in the BN structure including
those flow-level variables (FR,, lp, ry>, PCRE) and tem-
porally invariant observed variables (R, LVT, FVT, f,). As
illustrated in Figure 6, when the specific flow-level variables
were incorporated (i.e., BN model with traffic flow data), it
can be discovered that (1) the probabilities of “DECR” given
those external conditions were significantly greater in the
BN model with traffic flow data than in its counterpart
without flow-level data and (2) in certain conditions, the
probabilities of “DECR” increased as compared with the
original frequency of cases of “DECR,” which was not the
case for the BN model without flow-level variables. Spe-
cifically, when “R =L” was assigned a 1.0 probability as
evidence, the probability of “DECR” increased from 0.731
(original frequency) to 0.740, and when “R = STR” was set as
an evidence, the probability of “DECR” reached 0.744. This
implied that the effects of the perceptual markings would be
less effective in decreasing crash risk on a curved segment
with small radius compared with a straight one. This was
consistent with the previous findings attributing the less
effectiveness to the natural deficiency of drivers in detecting
crash risk on curves as compared with the task on a straight
segment and explaining that drivers need more necessary
and effective information on curve segments than on straight
ones to successfully achieve crash avoidance [14, 21, 90]. The
vehicle type (size) also significantly affects the probability of
crash risk variations, as verified by 0.7% (0.8%) increase of
the probability of “DECR” when “FVT = § (LVT = L)” was
set as evidence. This was in line with the findings of Lee [30],
Andersen et al. [29], and Yoo and Green [33] indicating that
the large leading vehicles would lead to a greater headway of
the following vehicles and thus possibly result in less vari-
ations in crash risk as suggested by Ding et al. [14, 22]. The
spatial frequency actually specified the effects of the per-
ceptual markings on crash risk variations, and if it was set as
“fs =L, the probability of “DECR” increased by 1.3% as
compared with the original frequency. The impact of f, is
related to drivers’ visual perception and will be explained
together with temporal frequency in the next section.

5.3.2. Behavioral Factors. Similar performances of the BN
models with and without flow-level data in terms of “DECR”
estimation were observed in those driving behaviors related
factors, i.e., v, d, h, SSD, and f,. In particular, the probabilities of

“DECR” significantly increased from 0.731 (original frequency)
to 0.763, 0.757, 0.767, 0.768, and 0.734 with “v = L,” “d = S,”
“‘h=S8" “SSD =S,” and “f, = L,” respectively. In addition,
according to Figure 6, it seems that the incorporation of the
specific flow-level data could further significantly differentiate
the impacts of varying states of those behavioral factors in
reasoning crash risk variations. That is, the differences of the
probabilities of “DECR” between given conditions of “v = §”
and “v=L1" “d=8"and “d=L" “h=8"and “h =L, and
“SSD = §” and “SSD = L” were 0.029, 0.022, 0.003, and 0.003 in
BN model without flow-level data and increased to 0.032, 0.093,
0.066, and 0.061 in BN model with flow-level data. Accordingly,
it might be deduced that the specific flow-level variables and data
improved the crash risk variation prediction accuracy and could
be advantageous in capturing the detailed and actual impacts of
the behavioral variables in varying states in accounting for crash
risk variations. The impacts of behavioral variables (v, d, h, and
SSD) on crash risk variations apparently suggested that the rear-
end crash risk in car-following was greatly associated with and
specified by drivers” choices of speed and headways, control of
acceleration, and maintaining of stopping sight distance. Ad-
ditionally, it also suggested that there was a good chance of the
perceptual markings to successfully “help” the drivers to reduce
their speeds and increase their headways to eventually mitigate
crash risk in car-following. These benefits would be attributed to
the temporal frequency (f,) and the “discontinuity effect [64]”
(related to spatial frequency (f,)) concerning drivers’ speed
perception and distance perception. The former would lead to
speed overestimation [42, 44, 48, 62, 63] and the latter would
result in distance underestimation [44, 64-70], which were
combinedly responsible for the reduced speed, increased
headways, and mitigated crash risk as revealed by Ding et al.
14, 22].

The above estimation performances of the external and
behavioral conditions and factors in crash risk variations
driven by the hierarchical hybrid BN models with and
without flow-level data suggest that (1) the incorporation of
specific flow-level variables and data significantly promoted
the successful identification of “DECR” (see Tables 5 and 6)
and (2) the microscopic driver behaviors were somewhat
outcomes partially specified by the traffic flow they were
involved in. As a matter of fact, the benefits of the specific
flow-level variables might be attributed to the inherent in-
teractive nature of the relationship between individual driver
behaviors and traffic flow uncertainty. First and foremost, it
should be recognized that car-following of an individual
vehicle is essentially a state in which the rear-end crash risk
continuously exists and evolves spatiotemporally, being
subjective to dynamics of the specific traffic flow or the car-
following platoon particularly. In particular, crashes were
widely believed to be the outcome of a short-term distur-
bance in the traffic flow a few minutes ahead, and this short-
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FIGURE 6: BN probability inference results for variables in varying states of decreasing crash risk.

term disturbance can be directly owing to the risky driving
behaviors of drivers of certain vehicles in the flow (especially
the platoon), which are typically characterized by speed
fluctuation and inadequate following headway with respect
to their leading vehicles [5, 19, 20]. Conversely, individual
drivers’ instable behaviors at a time would also give rise to an
aggravated uncertainty of the entire flow (especially the
platoon) during a period as suggested by the traffic flow
theory [83] and car-following stability analysis [91, 92].
Therefore, it might be safe to say that the individual car-
following behaviors are generally regulated by and are
subjective to traffic flow uncertainty in specific time and
space, and the crash risk of individual vehicles varies along
with the risk dynamics of specific traffic flow state. In other
words, those microscopic driving behaviors characteristics
might be more precisely captured in associating rear-end
crash risk with the introduction of specific flow-level vari-
ables. Consequently, the BN model without flow-level data
showed a relatively lower estimation accuracy.

5.3.3. Sensitivity Analysis. To investigate the impact sensi-
tivity of the hierarchical influential factors, we performed
sensitivity analysis on drivers’ speed risk perception (SRP),

distance risk perception (DRP), and crash risk variation
(CRYV) as target nodes. Here, the BN model with flow-level
data based on the testing dataset of G56 was what we focused
on and was the base BN structure for the sensitivity analysis.
The sensitivity analyses of the SRP, DRP, and CRV are il-
lustrated as tornado graphs in Figures 7-9 in the full pa-
rameter range of [0, 1]. The length of the bar corresponding
to each input variable in the tornado graphs represents a
measure of the impact of the particular variable on SRP,
DRP, or CRV. The color of the bars shows the influence
direction of the input variables on the target node; green
expresses positive and red negative contributions, respec-
tively. Figure 7 illustrates the impact of a set of the most
influential model parameters on DRP when DRP was tar-
geted as “HIGH.” It can be seen from Figure 7 that
“FR;o = L” had the greatest impact on DRP ([0.531, 0.567]),
which was closely followed by “FR;, = §” ([0.521, 0.555]),
and “DRP=LOWI|SSD=S,d=S, h=S, f,=s,v=M"
([0.531, 0.553]) had the 10th impact on DRP. These implied
that the there was a better chance for the drivers to expe-
rience a high distance risk perception (“DRP = HIGH”)
when the specific 10 min flow rate (FR,,) and the platoon
length (I,) were large. It suggested that the traffic flow
conditions substantially impacted the car-following



14

Discrete Dynamics in Nature and Society

Sensitivity for DRP=HIGH
Current value: 0.547873 Reachable range: [0.521248 .. 0.566668]

0.53 0.54

0.55 0.56

I

| SSD=S, d=S, h=S, fi=

=S| R=STR

FIGURE 7: Sensitivity analysis of DRP (DRP = HIGH).
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FIGURE 8: Sensitivity analysis of SRP (SRP = HIGH).

behaviors and contributed to the rear-end crash risk vari-
ations. Likewise, Figure 8 presents the top ten sets of var-
iables concerning the impact on SRP when SRP was targeted
as “HIGH”. As shown in Figure 8, “SSD = §|R = STR”
([0.514, 0.559]) had the greatest impact and
“SSD = S|R = M” ([0.513, 0.541]) had the least impact on
SRP among the top ten conditional states. Figure 9 dem-
onstrates the sensitivity analysis of the target of
“CRV = DECR” as our primary focus. According to Fig-
ure 9, it can be discovered that CRV was greatly impacted by
and sensitive to DRP and SRP interactively, as evidenced by

the greatest range of the conditional probabilities of
“CRV = DECR” given “CRV = DECR|DRP = HIGH, SRP =
HIGH ([0.431, 0.737])”, “CRV = DECR|DRP = HIGH,
SRP = LOW ([0.519, 0.761])”, and “CRV = DECR|DRP =
LOW, SRP = LOW ([0.720, 0.948])”. These implied that the
crash risk variation of individual vehicles was possibly
driven by drivers’ intuitive risk perception from changes in
distance and/or speed, which was well consistent with
similar findings based on the structural equations modeling
[14]. Besides the latent variables of DRP and SRP, it can be
seen that the conditional states of “f;=NULL’
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“SSD = S| R = STR,” “FRy = L,” “FR,y = S,”
“SSD = M |R = STR,” and “R = STR” were all found to be
influential in the probability of “DECR.” These might also
indicate that the specific flow-level variables (FR,, [, 7y,
and PCRE) empowered the probability inference of crash
risk variation interactively with the visual perceptual vari-
ables, which was in accordance with the results presented
and discussed above.

6. Conclusions

In this study, we attempt to investigate the association between
traffic flow uncertainty, roadway and vehicular characteristics,
car-following behavior, visual perception, and rear-end crash
risk variation and to compare the crash risk variation pre-
diction performance with and without flow-level variables
(FRyg, I, 7> and PCRE). Two datasets comprising 5055 in-
dividual vehicles in car-following state coupled with the
abovementioned data were collected on Freeways G50 and G56
in Hubei, China. A hierarchical hybrid BN model approach was
proposed to capture the association between drivers’ visual
perception, traffic flow uncertainty, and rear-end crash risk
variation. The BN models were trained and tested based on data
collected on Freeway G50, and the spatial transferability of the
models was examined using data collected on Freeway G56.
The main findings of this study are as follows:

(i) The BN model with flow-level data can predict
85.3% of the cases of crash risk decrease (rpgac > 0),
which is 4.3% greater than the one without flow-
level data, with a false alarm rate of 21.4%, which is
3.6% lower than the one without flow-level data,
indicating a very acceptable and better model
prediction performance of BN model with flow-
level data as compared with its counterpart without
flow-level data.

(ii) The hierarchical hybrid BN models show plausible
transferability in predicting crash risk variation with
acceptable false alarm rates. In addition, the BN
model with flow-level data outperforms its coun-
terpart without flow-level data in terms of spatial
transferability, which predicts as high as 82.6% of
the cases of crash risk decrease (DECR) with a low
false alarm rate of 21.3%.

(iii) The probability inferences driven by the hierarchical
hybrid BN models revealed that the incorporation of
specific flow-level variables and data significantly
benefits the successful identification of rear-end crash
risk variation, which might be attributed to the in-
herent interactive nature of the relationship between
individual driver behavior and traffic flow uncertainty.

(iv) The perceptual markings could provide appropriate
visual perceptual information for drivers to com-
pensate for rear-end crash risk and therefore could
be used as an effective crash prevention measure.

Reasoning or predicting crash risk is inherently chal-
lenging as it is associated with individual driving behaviors,
traffic flow uncertainty, and many other factors, so the
fundamental interactive nature between individual driving
behaviors and traffic flow uncertainty should be well con-
sidered and inspected in the first place to originally facilitate
this work. Besides, from practical viewpoints, this study may
cause the governors and road and traffic engineering
practitioners to pay more attention to the heavy vehicle
control and management and the potential safety issue on
curves and, along with efforts on traffic flow monitoring, to
develop a safer road transportation environment. Moreover,
the perceptual markings, as verified and recommended in
this study, may be a plausible measure to mitigate crash risk
and improve road safety. Furthermore, this kind of
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perceptual treatments on roadway is supposed to provide
drivers with more useful and effective information to fa-
cilitate driving and to avoid a crash. Therefore, future re-
search could be oriented to the development of more
contributive and targeted flow-level factors to better account
for rear-end crash risk. Besides, more appropriate BN
structures learned from different algorithms should be in-
vestigated and evaluated. Finally, actual crash data are en-
couraged to be incorporated for a better understanding of
the relationship between traffic flow uncertainty, individual
driving behaviors, external conditions, and rear-end crash
risk.

Appendix

A. Abbreviations and Explanations

The list of abbreviations used in this article is provided in
Table 7.

B. Bayesian Network (BN) Introduction

B.1. Definition. The BN is a specific type of quantitative
causal model structured based on Bayes’ theorem and
composed of a directed acyclic graph and a set of probability
statements. The BN makes a rational statistical inference by
updating the prior information or hypothesis of an

n
P(X, X5 .., X,) =P(X))P(X,1X,) ... P(X, | X1, X5 o5 Xppy) = HP(XI- [ X1, X5 Xi)

For any X, if there exists 7(X,)<{X;, X,,...,X;_1} to
make the variable X; conditionally independent of the other
variables of {X}, X,, ..., X;_,}, which could be expressed as

P(X;1X, X5, .., X)) = P(X; | n(X,)), (B.4)
then the above formula could be further simplified as
follows:

P(X),X,,..,X,) = [ [P(Xiln(Xy)). (B.5)
i=1

elementary event. Prior information or assumptions are set
based on subjective judgement (e.g., expert knowledge/
historical data) or using observed data. BN structure consists
of sets of nodes (variables) and edges (arcs) where nodes
represent the variables (observed data or hidden features)
and edges delineate the causal relationship between the
variables and attributes. Figure 10 shows an example of the
BN structure of crash risk inference.

BN is derived from a simple formula known as Bayes’
rule that could be expressed as

P(Y|X)P(X)

PXIY)=——F~7—

) (B.1)

where P (X[Y) is the probability of X given Y, also known as
posterior probability; P(Y|X) is the conditional probability
of Y at the occurrence of X, representing the likelihood of
the occurrence of X; P(X) is called prior probability of X;
and P(Y) is the prior probability of evidence Y. The joint
probability distribution of X and Y could be written as
follows:

P(X,Y) = P(X)P(Y | X). (B.2)

Suppose a BN consists of n variables X, X,, ..., X,.
According to the “Chain Rules,” the corresponding joint
probability distribution of the # variables could be written as

(B.3)
i=1

As for a BN, 7(X;) stands for the parent node (variable)
of its child node X;, and those nodes without parents would
be root nodes.

Generally, the BN modeling mainly consists three steps:
(1) variable defining, i.e., to select variables suitable for
objective issues in the domain, which represent the nodes in
a BN; (2) BN learning, i.e., to construct an appropriate
topology of a BN and to determine the corresponding pa-
rameters of the BN structure; and (3) BN inferring, i.e., to
obtain the posterior probability of the nodes in the BN
structure under given evidence.
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TABLE 7: Abbreviations.

Abbreviation Full spelling

DRP Distance risk perception

SRP Speed risk perception
mTTC Modified time-to-collision
DRAC Deceleration rate to avoid collision
BN Bayesian network

PCRE Platoon crash risk entropy
SSD Stopping sight distance

KP Kilo-post

STR Straight segment

FVT Following vehicle type

LVT Leading vehicle type

S, M, L Small, medium, and large values of the variables
CRV Crash risk variation

DECR Crash risk decrease

INCR Crash risk increase

GTIT Greedy thick thinning

CPD Conditional probability distribution
CPT Conditional probability table
EM Expectation maximization

TP True positive

TN True negative

FP False positive

FN False negative

B.2. BN Structure Learning. Structure learning is a process
that aims at finding a directed acyclic graph structure that
could best characterize the casual relationships between the
variables. The BN structure learning process could generally
be driven by (1) prior knowledge from relevant research and
experts, (2) a data sample, or (3) a combination of them. The
combination process is as follows: a BN structure is first
formed using machine learning algorithm, given the pres-
ence of certain logical relationship determined by prior
knowledge, and is then modified and optimized based on
experts’ knowledge. Admittedly, the combination method
generally surpasses the others by overcoming deficiencies
due to overmuch subjectiveness of experts’ knowledge or
limited efficiency of machine learning with a large number of
nodes and complex network relationship between them,
which was adopted in the present study.

With available sample data, there are generally two kinds
of methods for BN structure learning: (1) the score-based
method, that is, to search the optimal BN structure by using
a certain scoring function to assess the matching degree of
the BN structure to the sample data, and (2) the constraint-
based method, that is, to learn the BN structure by deter-
mining the dependency (arc) between nodes based on
conditional independency tests. The score-based method is
relatively advantageous, that is, featured with uncomplicated
learning process, large searching range, and efficient
learning, and one of the commonly used score-based
methods was adopted, i.e., the Greedy Thick Thinning
(GTT) algorithm [93].

The GTT algorithm measures the fitness of a learned BN
structure G with the given dataset D by using the scoring
function and obtains the optimal structure after limited
iterations. The detailed process of the GTT algorithm is as
follows:

(1) Add arcs to G. Search and add directed arcs that
promote the score of the structure until the score
stops increasing.

(2) Trim arcs of G. Search the negative arcs, and trim
them off the structure until the score stops in-
creasing. During the above processes, the BN
structure is assessed by the K2 scoring function
proposed by Cooper and Herskovits [94], which
takes the posterior probability P(G|D) as the
scoring criteria:

For any two temporary BN structures G, and G,,
there exists
P(G,|D) P(G,,D)/P(D) P(G,,D)
P(G,|D) P(G,,D)/P(D) P(G,,D)

(B.6)

Accordingly, the comparison between posterior prob-
abilities of structures G, (P (G, | D)) and G, (P (G, | D)
) could be substituted with the comparison of the
corresponding joint probabilities P (G,, D) and P (G,,
D). Suppose D = {X |, X,,..., X}, X; € {x;1, x5, - -,
Xy} 1:22,i=1, 2, ..., n; then, the joint probability
of G and D could be calculated as
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N
P(G|D)=P(D)P(D|G) =P(G)]]p(x:1G) = P(G)H]‘[(
i=1 i=1 1

where P(G) is the prior probability of the structure;
r; is the number of the node X; g, is the value set of
the parent node 7 (X;) of X;; and N, is the number
of cases as the value of the parent node 7 (X;) is in the
value set k when X; = x;, and N;; = Y Nij-

B.3. BN Parameter Learning. The BN parameter learning
process is to determine the conditional probability distribution
(CPD) of nodes by learning from the sample data, which is also
known as the conditional probability table (CPT). According to
the completeness of a sample dataset, the methods for BN
parameter learning could normally be categorized into learning
methods based on incomplete data or on complete data.
Nevertheless, as mentioned above, there were unobserved latent
variables, ie., distance risk perception (DRP) and speed risk
perception (SRP), to be incorporated in our BN structure, so the
Expectation Maximization (EM) algorithm [95, 96] was espe-
cially adopted in this study. EM is an iterative method which
alternates between performing an expectation step (E-step) and
a maximization step (M-step), which could be detailed as
follows.

Suppose DY is a sample dataset containing a subdataset X
of unobserved latent variables {xl,xz, ce Xy .,xm} and a
subdataset Y of observed variables; i.e.,, D° = X;| ] Y. Suppose
6" is the present estimation of the BN structure parameter 6, and
then the posterior probability P (X, = x;|D°, 6) based on the
sample dataset with unobserved variables (missing data) could
be calculated to approximate a complete dataset D'; then, the
estimation of 0 in the right next step could be expected by a log
likelihood function as follows:

E-step:

I(61D") = i Y P(X;=2x1D’ 6)log P(D’, X; = x,|6).

I=1 x;€X;

(B.8)

Usually, [(6] D) is denoted as E(0|6') as D' is com-
pletely determined by the constant sample dataset D° and
the present estimation 6'. The next step (M-step) is to seek a
6 that would maximize its expectation E(66'), as follows:

M-step:

6" = argmaxE(@I Gt). (B.9)
0
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